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Mixed States and POVMs

9.1 Introduction

As the decades of the twentieth century rolled on, quantum mechanics (QM)

became more and more sophisticated and mathematical. Understanding what

this theory means intuitively was confounded not only by nonclassical concepts

such as wave–particle duality and quantum interference, but also by issues to do

with observation. The Newtonian classical mechanics (CM) paradigm of reality,

wherein reductionist laws of physics describe observer-independent dynamics of

systems under observation (SUOs) with observer-independent properties, was

found to be inadequate. Quantum theorists were confronted with the measure-

ment problem, which attempts to understand, explain, and rationalize the laws

of QM that underpin the processes of observation that go on in the laboratory.

They are not the same as those of CM in several puzzling respects.

Historically, the first sign of the measurement problem was Planck’s quantiza-

tion of energy (Planck, 1900b) and the second was Bohr’s veto on radiation damp-

ing in hydrogen (Bohr, 1913). These occurred in the first quarter of the twentieth

century, a period in physics often referred to asOld Quantum Mechanics. Another

indicator that intuition was inadequate was Born’s interpretation of the squared

modulus of the Schrödinger wave function as a probability density (Born, 1926).1

That interpretation has everything to do with observers and observation, because

probability without an observer is a vacuous concept.

Eventually, the projection-valued measure (PVM) formalism emerged, cham-

pioned by von Neumann in an influential book on the mathematical formulation

of QM (von Neumann, 1955). Subsequently, pioneers such as Ludwig (Ludwig,

1983a,b) and Kraus (Kraus, 1974, 1983) refined the theory into the general pos-

itive operator-valued measure (POVM) formalism that we shall discuss and use.

1 Born appears to have at first taken the magnitude of the wave function as the probability
density, but corrected himself in time.
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9.2 Sets and Measures 115

The quantized detector network (QDN) approach to quantum experiments is

most naturally expressed in the PVM formalism, as QDN focuses on the individ-

ual detectors in the laboratory. However, the POVM formalism is more general

than the PVM formalism, giving a description of multiple detector processes

similar to QDN. This raises the question of how the two approaches, QDN and

POVM, are related. The aim of this chapter is to explore this relationship.

Before we review the PVM and POVM formalisms, we review some essential

mathematical concepts.

9.2 Sets and Measures

Most of the mathematics used in this book involves spaces, which are sets with

additional structure such as inner products (Howson, 1972).

Definition 9.1 A sigma-algebra on set A is a collection ΣA of subsets of A

such that

1. ΣA includes the empty subset ∅.
2. ΣA is closed under complement: if E is an element of ΣA, then so is its

complement in A, denoted Ec. Since by property 1, the empty set ∅ belongs

to ΣA and its complement is A, then property 2 means that A itself is a

member of ΣA.

3. ΣA is closed under countable unions, which means that if we pick any

countable number E1, E2, . . . , En of elements in ΣA, then their union

∪n
i=1E

i is also in ΣA.

4. ΣA is closed under countable intersections, which means that if we pick

any finite number E1, E2, . . . , En of elements of ΣA, then their intersection

∩n
i=1E

i is also in ΣA. Note that this intersection could be empty, but that

possibility is covered by property 1.

Definition 9.2 The extended reals R∗ is the set of real numbers R and two

extra elements, +∞ and −∞. These latter two elements are referred to as plus

infinity and minus infinity , respectively, and are interpreted accordingly.

Definition 9.3 Given a sigma-algebra ΣA over set A, ameasure on A assigns

an extended real number μ(E) to each element E of ΣA such that

1. Nonnegativity : for any element E in ΣA, μ(E) � 0.

2. Measure of empty set : μ(∅) = 0.

3. Countable additivity : for any countable collection {E1, E2, . . .} of pairwise

disjoint elements of ΣA, meaning that Ei ∩ Ej = ∅ for i 	= j, then

μ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

μ(Ei). (9.1)
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116 Mixed States and POVMs

In applications to quantum physics, the set A referred to in the above defini-

tions will consist of all possible outcomes of an experiment; the sigma-algebra

will consist of all possible ways of grouping those outcomes; and the measure μ

will be the assignment of probabilities to the elements of ΣA.

9.3 Hilbert Spaces

Hilbert spaces are complex vector spaces with a suitable inner product concept. In

this chapter, we shall use the well-known Dirac bracket notation, following Paris

(2012). In most of this book we deal with finite-dimensional Hilbert spaces, as

the guiding philosophy of QDN is to model what goes on in the laboratory. No

infinities are ever actually encountered in the laboratory; at worst, a readout on

a counter goes off-scale.

Definition 9.4 An orthonormal basis (ONB) for a d-dimensional Hilbert

space H is a set of elements {|ψn〉 : n = 1, 2, . . . , d} of H with the following

properties:

1. Orthonormality: 〈ψn|ψm〉 = δnm, 1 � n,m � d, where δnm is the

Kronecker delta.

2. Completeness/resolution of the identity:

d∑
n=1

|ψn〉〈ψn| = IH, (9.2)

where IH is the identity operator on H.

9.4 Operators and Observables

An operator is any rule that assigns an element of one Hilbert space to some

element either in the same Hilbert space or in another Hilbert space. There are

various kinds of operators that are important to us here. A linear operator O

from Hilbert space H1 to Hilbert space H2 is one such that if |Ψ〉 and |Φ〉 are

arbitrary elements of H1 and α and β are arbitrary complex numbers, then

O(α|Ψ〉+ β|Φ〉) = αO|Ψ〉+ βO|Φ〉, (9.3)

where we note that addition on the left-hand side of (9.3) is in H1, while addition

on the right-hand side is in H2.

The linear space of linear operators from H to H is denoted L(H) and is itself

a Hilbert space (Paris, 2012).

A positive operator O over Hilbert space H is one such that for any element

|Ψ〉 of H, we have

〈Ψ|O|Ψ〉 � 0. (9.4)

A positive operator is self-adjoint.
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9.6 Projection-Valued Measure 117

An observable X is a self-adjoint operator that admits a discrete spectral

decomposition; i.e., we can write

X =

d∑
n=1

xnPn, (9.5)

where the xn are real and the eigenvalues of X, and the projectors Pn are given

by Pn ≡ |xn〉〈xn|. Here the normalized eigenvectors |xn〉 satisfy the eigenvalue

equation

X|xn〉 = xn|xn〉 (9.6)

and form an ONB for H.2 Orthonormality then leads to the product rule

PnPm = δnmPn (9.7)

and the completeness sum

d∑
n=1

Pn = IH. (9.8)

9.5 Trace

If {|ψn〉 : n = 1, 2, . . . , d} is an ONB for H, then the trace Tr{O} of an operator

O is defined by

Tr{O} ≡
d∑

n=1

〈ψn|O|ψn〉. (9.9)

The trace of an operator is independent of choice of ONB for H.

Given an arbitrary state |Ψ〉 in H, then we can use any ONB to show that

〈Ψ|O|Ψ〉 = Tr{O|Ψ〉〈Ψ|}. (9.10)

This result is crucial to the density operator and POVM formalisms widely

applied in QM.

9.6 Projection-Valued Measure

We are now in a position to discuss PVMs in standard QM.

Given an observable X, the probability Pr(xn|Ψ) of final outcome xn given

initial normalized state |Ψ〉 is according to the Born rule (Born, 1926) given by

Pr(xn|Ψ) = |〈xn|U |Ψ〉|2 = 〈Ψ|U †|xn〉〈xn|U |Ψ〉
= 〈Ψ|U †PnU |Ψ〉 = Tr{PnU�U †}, (9.11)

2 This can always be arranged, even if some of the eigenvalues are degenerate.
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118 Mixed States and POVMs

where U is the unitary evolution operator taking the initial state |Ψ〉 to its final

state U |Ψ〉 at the time of measurement and � is the initial density operator ,

defined by

� ≡ |Ψ〉〈Ψ| (9.12)

in this instance.

The expectation value 〈X〉Ψ of the observable X conditional on Ψ is given by

〈X〉Ψ ≡
d∑

n=1

xPr(xn|Ψ) =

d∑
n=1

xnTr{PnU�U †}

= Tr

{[
d∑

n=1

xnPn

]
U�U †

}
= Tr{XU�U †}. (9.13)

9.7 Mixed States

Suppose an observer carries out an experiment consisting of a large number of

runs but is unsure, at the start of each run, of the initial state. Suppose further

that the observer’s ignorance can be quantified into the statement that for each

run, the initial state is taken from a discrete probability space Ω, that is, a finite

distribution of possible states, each labeled by superscript κ, running from 1 to

some finite integer K, such that the probability of preparing state |Ψκ〉 is ωκ:

Ω ≡
{
ωκ, |Ψκ〉 :

K∑
κ=1

ωκ = 1, 〈Ψκ|Ψκ〉 = 1

}
. (9.14)

Here the possible initial states are normalized but not necessarily mutually

orthogonal. The number K of possibilities is arbitrary and can exceed the dimen-

sion d of HS . The probabilities ωκ are epistemic in character, that is, classical

probabilities. Such a random initial state is referred to as amixed state whenK >

1. When K = 1, the observer’s ignorance about the initial state is zero and the

corresponding unique element of the Hilbert space is referred to as a pure state.

The expectation value 〈X〉� of the observable X conditional on a mixed state

� is now

〈X〉� =
K∑

κ=1

ωκ〈ψκ|U †XU |ψκ〉

= Tr{XU
K∑

κ=1

ωκ|ψκ〉〈ψκ|︸ ︷︷ ︸
�

U †} = Tr{XU�U †}, (9.15)

where

� ≡
K∑

κ=1

ωκ|ψκ〉〈ψκ| (9.16)

is the appropriate generalization of the density matrix operator (9.12) to the

mixed state situation.
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It is easy to show that a density operator is a positive operator and has unit

trace. This means that the eigenvalues of a density operator are nonnegative and

sum to unity.

9.8 Partial Trace

The above formalism is standard quantum theory as applied to a single Hilbert

space, typically the space of SUO states. We now extend the discussion to the

tensor product of two Hilbert spaces, HS and HA, where in anticipation of

our later needs, S will stand for SUO and A will stand for apparatus or, more

technically, ancilla.3 HS will have dimension d and HA will have dimension D.

Given two finite-dimensional Hilbert spaces HS , HA, not necessarily of the

same dimension, consider a state |ΨSA) in the tensor product HS ⊗ HA. Note

that we shall henceforth use round brackets to denote states in such an SUO-

apparatus tensor product space, rather than angular brackets, and call them total

states . Then the associated density operator is defined by

�SA ≡ |ΨSA)(ΨSA|. (9.17)

Now suppose X ∈ L(HS) is an observable over HS . Then we can write

X =

d∑
n=1

xnPn. (9.18)

Now construct the operator P̂n ≡ Pn ⊗ IA in L(HS ⊗ HA), where IA is the

identity operator over HA. Then

Pr(xn|ΨSA) = (ΨSA|U †P̂nU |ΨSA) = TrAB{P̂nU�SAU †}. (9.19)

Here the subscript AB reminds us we are taking the full trace, that is, in the

tensor product space HS ⊗HA.

The concept of partial trace is related to the concept of partial question that

we discussed in the previous chapter. Partial traces are defined by constructing

ONBs for the component Hilbert spaces and summing only over some of them.

Suppose {|sm〉 : m = 1, 2, . . . , d} is an ONB for HS and {|an〉 : n = 1, 2, . . . , D}
is an ONB basis for HA. Then {|sm, an) ≡ |sm〉 ⊗ |an〉 : m = 1, 2, . . . , d, n =

1, 2, . . . , D} is an ONB basis for HS ⊗HA.

Suppose V is an operator over HS and W is an operator over HA. Then the

full trace TrSA{V ⊗W} of the tensor product operator V ⊗W is given by

TrSA{V ⊗W} ≡
d∑

m=1

D∑
n=1

(sm, an|V ⊗W |sm, an)

=

{
d∑

m=1

〈sm|V |sm〉
}{

D∑
n=1

〈an|W |an〉
}
. (9.20)

3 In standard QM, ancillas are often treated as auxiliary, almost incidental aspects. In QDN,
they are essential and as important as SUOs.
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120 Mixed States and POVMs

There are two partial traces available. TrS{V ⊗W} is a partial trace over the

SUO degrees of freedom, giving

TrS{V ⊗W} =

d∑
m=1

〈sm|V ⊗W |sm〉 =
{

d∑
m=1

〈sm|V |sm〉
}
W, (9.21)

and is an operator over HA. Similarly, TrA{V ⊗ W} is a partial trace over the

apparatus degrees of freedom, giving

TrA{V ⊗W} =

D∑
n=1

〈an|V ⊗W |an〉 = V

{
D∑

n=1

〈an|W |an〉
}
, (9.22)

and is an operator over HS .

Given a density operator �SA over HS ⊗HA, then we define the partial traces

�S ≡ TrA{�SA}, �A ≡ TrS{�SA}. (9.23)

Then �S is a density operator over HS and �A is a density operator over HA,

with

TrS{�S} = TrA{�A} = 1. (9.24)

Circularity

For a single Hilbert space H, the trace of operators A,B, . . . , Z satisfies the

circularity property

TrH{ABC . . . Z} = TrH{BC . . . ZA}. (9.25)

This property holds also for tensor products of Hilbert spaces. If R1,R2, . . . , RN

are operators over HS ⊗HA, then

TrSA{R1R2 . . . RN} = TrSA{R2R3 . . . RNR1}. (9.26)

Circularity does not hold for partial traces.

9.9 Purification

Suppose HS is a Hilbert space of dimension d, representing states of some SUO.

Consider a density operator �S over HS . From previous sections, we can find

a set {|ψm〉 : m = 1 . . . d} of normalized eigenvectors of �S with nonnegative

eigenvalues, that is,

�S |ψm〉 = λm|ψm〉, m = 1, 2, . . . , d, λm � 0. (9.27)

Then we can write

�S =

d∑
m=1

λm|ψm〉〈ψm|. (9.28)

We can assume orthonormality, that is, 〈ψm|ψn〉 = δmn.
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Now construct another Hilbert space HA with dimHA = D � d, with an ONB

{θn : n = 1, 2, . . . , D}. Next, define a pure state |ψSA) in HS⊗HA of the form

|ψSA) ≡
d∑

n=1

√
λn|ψn〉 ⊗ |θn〉. (9.29)

The density operator �SA associated with this pure state is then given by

�SA ≡ |ψSA)(ψSA| =

d∑
m,n=1

√
λmλn|ψm〉〈ψn| ⊗ |θm〉〈θn|. (9.30)

Now partially trace �SA over HA:

TrA{�SA} ≡
D∑
c=1

〈θc|�SA|θc〉 =
D∑
c=1

〈θc|
d∑

m,n=1

√
λmλn|ψm〉〈ψn| ⊗ |θn〉〈θn|θc〉

=

D∑
c=1

d∑
m,n=1

√
λmλn|ψm〉〈ψn|〈θc|θm〉︸ ︷︷ ︸

δcm

〈θn|θc〉︸ ︷︷ ︸
δnc

=
d∑

m=1

λm|ψm〉〈ψm|, (9.31)

that is,

TrA{�SA} = �S . (9.32)

In words, we can represent the density operator for a mixed state in one Hilbert

space by the density operator for a pure state in a larger Hilbert space. This fun-

damental result opens the door to Naimark’s theorem (below). The state |ψSA)

is called a purification of �S . There are infinitely many possible purifications of

a given density operator.

9.10 Purity and Entropy

Definition 9.5 Given a density operator � with spectrum of eigenvalues

{λk : k = 1, 2, . . . , d}, define the purity μ[�] by

μ[�] ≡
d∑

k=1

(λk)2. (9.33)

It is straightforward to prove that for any density operator, d−1 � μ[�] � 1.

Mixed states ignore correlation information encoded between an SUO and its

environment. Given a density operator �, another measure of information loss

associated with � is the von Neumann entropy , defined by

S[�] ≡ −Tr{� ln�} = −
∑
k

λk lnλk. (9.34)
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Then it is straightforward to show that 0 � S[�] � ln d. Von Neumann entropy

is a monotonically decreasing function of purity and vice-versa (Paris, 2012). A

pure state has purity 1 and von Neumann entropy zero, while a maximally mixed

state has entropy ln d and purity 1/d.

9.11 POVMs

The Born rule for mixed states can be rewritten in a form that can be gener-

alized, leading to the POVM formalism, a more general approach to quantum

measurement than the PVM formalism.

In standard QM, given a density operator �S on a d-dimensional SUO Hilbert

space HS and observable X ≡
∑d

m=1x
mPm, then the probability Pr(xm|�S) of

outcome xn is given by

Pr(xm|�S) ≡ Tr{PmU�SU †Pn}, (9.35)

where we use PnPn = Pn.

Now suppose we can find a set {Mn : n = 1, 2, . . . , N} of operators called

Kraus (or detection) operators such that

N∑
n=1

Mn†Mn = IS . (9.36)

Then the generalization of (9.35) is to assert that

Pr(yn|�S) ≡ Tr{Mn�SMn†} (9.37)

is the probability associated with detection outcome associated with Mn, where

now the number N of possible outcomes is not necessarily equal to d ≡ dimHS .

We define the POVM elements {En : n = 1, 2, . . . , N} of the probability (or

positive) operator-valued measure (POVM) by

En ≡ Mn†Mn. (9.38)

Then (9.36) gives

N∑
n=1

En = IH
S

. (9.39)

The POVM operators En are positive.

The detection operators Mn are defined up to unitary transformations; that

is, given a detection operator Mn, then for unitary operator V , M ′n ≡ V nMn

is a valid detection operator giving the same POVM element E′n ≡ M ′n†M ′n as

Mn, i.e.,

E′n = En. (9.40)

This scheme is called a generalized measurement .
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9.12 Naimark’s Theorem

This theorem is critical in the formal justification and rationalization of QDN.

The theorem goes under the name of Naimark, but Naimark was not concerned

with application to quantum theory per se.

The theorem has two parts (Paris, 2012). We write it out here in its QDN

form, where S refers to the SUO and A refers to apparatus or ancilla.

Theorem 9.6 Part 1

Suppose we are given a POVM set {En : n = 1, 2, . . . , N} on SUO Hilbert

space HS with finite dimension d. Then we know that the En are positive

operators and

N∑
n=1

En = IS . (9.41)

Then there exists a Hilbert space HA of dimension at least N , and a pure state

|ωA〉 in HA such that

1. The density operator �A ≡ |ωA〉〈ωA| ∈ L(HA), the Hilbert space of linear

operator over HA.

2. There is some unitary evolution operator (in QDN a semi-unitary operator)

U ∈ L(HS ⊗HA) such that

U †U = UU † = ISA. (9.42)

3. There is a set {Pn} of projectors over HA,

such that

En = TrA{IS ⊗ PnU IS ⊗ �AU †}. (9.43)

Note that the U operator can encode any dynamical evolution in the

combined system.

Part 2

In this part, we derive an expression for the detection operators {Mn}.
Suppose an initial mixed state is prepared, such that in HS ⊗ HA it is

described by density operator

�0
SA ≡ �0

S ⊗ |ω0
A〉〈ω0

A| (9.44)

and then allowed to evolve under unitary evolution U , giving the final density

operator

�SA = U�0
ABU †. (9.45)

Then a projective measurement to test for outcome |xn〉 of observable X is

made via the apparatus. The probability Pr(xn|�0
SA) is given by the equivalent

of the Born rule, in this case
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Pr(xn|�0
SA) = TrSA{�SAIS ⊗ Pn}, (9.46)

where Pn ≡ |xn〉〈xn|. Then

Pr(xn|�0
SA) = TrSA{U�0

SAU †IS ⊗ Pn}
= TrSA{U�0

S ⊗ |ω0
A〉〈ω0

A|U †IS ⊗ |xn〉〈xn|}
= TrSA{�0

S ⊗ |ω0
A〉〈ω0

A|U †IS ⊗ |xn〉〈xn|U}
= TrS{�0

S〈ω0
A|U †Is ⊗ |xn〉〈xn|U |ω0

A〉}
= TrS{�0

S〈ω0
A|U †|xn〉〈xn|U |ω0

A〉}
= TrS{〈xn|U |ω0

A〉︸ ︷︷ ︸
Mn

�0
S〈ω0

A|U †|xn〉︸ ︷︷ ︸
Mn†

} (9.47)

i.e.

Pr(xn|�0
SA) = TrS{Mn�0

SMn†} = TrS{En�0
S}, (9.48)

where En ≡ Mn†Mn.

9.13 QDN and POVM Theory

We turn our attention now to the relationship between QDN and POVMs. This

is important because a generalized QDN-POVM formalism is used extensively in

our computer algebra (CA) implementation of QDN, program MAIN, discussed

in Chapter 12 and used in all our specific calculations.

The first step is to recognize that the quantum registers we are concerned

with model only the labstates, that is, the apparatus states, and say nothing

per se about the imagined SUO states. As we stressed previously, QDN was not

designed to give specific information about what happens in the information void.

Therefore, the quantum physics of SUOs has to be appended “by hand”. This

is achieved by introducing a stage-dependent Hilbert space HS
n at each stage Σn

to contain the SUO “internal” states, and a separate quantum register Qn to

contain the signal state of the apparatus. Elements of HS
n will be called system

states, elements of Qn are called labstates, and elements of Hn ≡ HS
n ⊗Qn will

be called total states.

Notation

In the following, Dirac’s bracket notation |ψn〉 is used for system states; our bold

notation in denotes computational basis representation (CBR) of labstates; and

modified Dirac brackets |Ψn) = |ψn, in) ≡ |ψn〉 ⊗ in describe total states. We

make an exception to our rule suppressing tensor product symbols in the case of

total states, in order to separate out system states and labstates.

By definition, system states are unobservable directly and there is no nat-

ural preferred basis for HS
n .

4 Therefore, we are free to choose any convenient

4 The principle of “general covariance,” or independence of frame of reference, is meaningful
as far as system states are involved, but vacuous as far as labstates are concerned.
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orthonormal basis for HS . We shall denote elements of our choice by |αn〉,
that is, with lowercase Greek labels, with the inner product rule 〈αn|βn〉 ≡
δαβ , and assume that HS

n has finite dimension dn. For instance, dn = 2 if

Hn describes vertical and horizontal electromagnetic polarization eigenstates

(ignoring momenta and other attributes).

Summations occur frequently in the following, so we make the following sim-

plification:

dn∑
α=1

2rn−1∑
i=1

→
[n]∑
αi

, (9.49)

where rn is the rank of Qn.

Initial Total State

A pure initial total state |Ψ0) and its dual (Ψ0| will take the general form

|Ψ0) ≡
[0]∑
i

ψαi
0 |α0〉 ⊗ i0, (Ψ0| =

[0]∑
αi

ψαi∗
0 〈α0| ⊗ i0, (9.50)

where ψαi∗
0 is the complex conjugate of ψαi

0 . If the initial total state is normalized

to unity, then we have

(Ψ0|Ψ0) =

[0]∑
αi

|ψαi
0 |2 = 1. (9.51)

Final Total State

Assuming semi-unitary evolution, the final total state |ΨN ) is given by

|ΨN ) ≡ UN,0|Ψ0), N � 0, (9.52)

where ΣN is the final stage and the contextual evolution operator UN,0 is given by

UN,0 ≡
[N ]∑
αi

[0]∑
βj

Uαi,βj
N,0 |αN 〉〈β0| ⊗ iNj0. (9.53)

The retraction operator UN,0 is given by

UN,0 =

[N ]∑
αi

[0]∑
βj

Uαi,βj∗
N,0 |β0〉〈αN | ⊗ j0iN . (9.54)

The semi-unitary condition UN,0UN,0 = I0, where I0 is the identity operator for

the initial total space H0, requires the conditions

[N ]∑
αi

Uαi,βj∗
N,0 Uαi,γk

N,0 = δβγδjk. (9.55)
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QDN POVM Operators

The QDN Kraus operators are defined as

M i
N,0 ≡ iNUN,0 =

[N ]∑
α

[0]∑
βj

Uαi,βj
N,0 |αN 〉〈β0| ⊗ j0,

M
i

N,0 ≡ UN,0iN =

[N ]∑
α

[0]∑
βj

Uαi,βj∗
N,0 |β0〉〈αN | ⊗ j0, (9.56)

giving the POVM operators

Ei
N,0 ≡ M

i

N,0M
i
N,0

=

[0]∑
βj

[0]∑
δk

⎧⎨⎩
[N ]∑
α

Uαi,βj∗
N,0 Uαi,δk

N,0

⎫⎬⎭ |β0〉〈δ0| ⊗ j0k0, i = 0, 1, 2, . . . , 2rN − 1.

(9.57)

Using the semi-unitary conditions (9.36), we readily find

[0]∑
i

Ei
N,0 = I0, (9.58)

which is the QDN analogue of the standard POVM condition (9.39).

Interpretation

We may readily understand the QDN POVM formalism if we consider the pos-

sible questions that the observer could ask. Those questions can be only asked

about the signal status of the apparatus. If the final stage normalized total state

is |ΨN ) and the final stage apparatus has rank rN , then there is a grand total

of 2rN maximal questions, each of them equivalent to a projector of the form

ISN ⊗ iN iN , for i = 0, 1, 2, . . . , 2rN − 1. The probability P (iN |Ψ0) that the final

labstate is iN is given by

P (iN |Ψ0) ≡ (ΨN |iN iN |ΨN ) = (Ψ0|UN,0iN iNUN,0|Ψ0)

= (Ψ0|UN,0iN︸ ︷︷ ︸
M

i
N,0

iNUN,0︸ ︷︷ ︸
Mi

N,0

|Ψ0) = (Ψ0|M
i

N,0M
i
N,0︸ ︷︷ ︸

Ei
N,0

|Ψ0) (9.59)

= Tr
{
Ei

N,0�0
}
, (9.60)

where �0 ≡ |Ψ0)(Ψ0| is the initial stage density operator.

We saw in Chapter 8 that we can also ask partial questions, involving only a

subset of all the final state detectors. We can answer these questions as well,

because any partial question is equivalent to some combination of maximal

questions.

Example 9.7 Consider a rank-three quantum register. There are 23 = 8

maximal questions, corresponding to the eight projection operators associated

with the CBR. Specifically, we have Q0 ≡ P1P2P3 = 00, Q1 ≡ P̂1P2P3 = 11,

. . ., Q7 ≡ P̂1P̂2P̂3 = 77.
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Suppose we wanted to ask the partial question P̂2, that is, look only at

detector 2 and ask whether it is in its signal state. Then we use the rule that

for i = 1, 2, ...,d, Pi + P̂i = I, the register identity, to write

P̂2 = IP̂2I = (P1 + P̂1)P̂2(P3 + P̂3)

= P1P̂2P3 + P̂1P̂2P3 + P1P̂2P̂3 + P̂1P̂2P̂3

= Q2 +Q3 +Q6 +Q7. (9.61)

We conclude from this that knowledge of all the maximal questions and their

answers allows us to answer all partial questions.

Mixed Initial States

The above has assumed that the initial total state is a pure one. We can readily

extend the formalism to the case of mixed initial states. All we need do is replace

the pure density operator �0 ≡ |Ψ0)(Ψ0| with the appropriate mixed density

operator. This will have the generic form

�0 ≡
∑
κ

ωκ|Ψκ
0 )(Ψ

κ
0 |, (9.62)

where the ωκ are probabilities summing to unity and |Ψκ
0 ) is the normalized total

state occurring with probability ωκ in the mixture.

There is an interesting possibility here: not only could the randomness be

associated with the system states, but there could be uncertainty about the

apparatus. In other words, we should be prepared for the possibility that the

apparatus at any given stage is not determined beforehand but is created by

random processes. This raises deeper questions to do with the general theory of

observation that will certainly need to be addressed in the future. We discuss

some aspects of this topic in Chapter 21, on self-intervening networks.

There are three important aspects to our modeling. First, in common with

standard quantum modeling of pointer states, our initial apparatus register (at

stage Σ0) will be a rank-one quantum register Q1 referred to as a preparation

switch. This models the logic of state preparation: if the observer knows that an

SUO state |Ψ〉 has been prepared, then that state is tensored with element 10 of

Q0, whereas if such a state has not been prepared, then that state is tensored

with element 00 of Q0. We see from this that QDN attaches significance to what

has not been done as much as to what has been done. This is reminiscent of

Renniger’s thought experiment, where an absence of observation has measurable

consequences (Renniger, 1953).

The second aspect concerns the interpretation of what is going on. In QDN,

only signal states of the apparatus are physically meaningful. The SUO and

therefore the mathematical representation of its states is a convenient fiction

encoding contextuality. Therefore, we do not need to treatHS on the same footing

as Qn. It may be convenient to employ the Schrödinger picture for evolution of
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SUO states and treat HS as stage independent.5 That is certainly not the case

for the quantum registers Qn.

The third aspect concerns the notion of purification that we discussed above for

standard QM. There it was pointed out that the dimension of the ancilla Hilbert

space HA had to be at least as great as the number of independent states in

the prepared mixture that was being purified, and that there was always an

infinite number of ancillas that could be employed. In the case of QDN, neither

of these comments applies. The analogue of the ancilla concept is the quantum

register modeling the apparatus, and the rank of that register is determined

by the number of detectors that the observer has constructed. That number is

independent of the dimensionality of HS . Moreover, the concept of preferred

basis does not apply to the standard ancilla concept, whereas it is relevant in

QDN. The moral here is that standard QM treats states of SUO as the primary

objects of interest, whereas QDN relegates them to auxiliary devices and elevates

the apparatus to be the only thing that matters. This is exactly in line with

Wheeler’s participatory principle, mentioned previously.

We start our analysis therefore with a statement as to what is known at initial

stage Σ0. We will assume that a mixed SUO state has been prepared at stage

Σ0,
6 such that the initial density matrix �0

SA is an element of L(HS ⊗ Q0)

given by

�0
SA ≡ �S ⊗ 1010 = �S ⊗ P̂1

0, (9.63)

where �S is a density operator, an element of L(HS).

We now imagine that the combined SUO-apparatus state evolves from stage

Σ0 to some final stage, ΣN , where N > 0. Consider quantum evolution from

Hilbert space HS ⊗ Qn at stage Σn to Hilbert space HS ⊗ Qn+1 at stage

Σn+1, where HS is the SUO Hilbert space of dimension d and Qn,Qn+1 are

the quantum registers representing labstates of the apparatus. An ONB at Σn

is given by {|A, in) ≡ |A〉 ⊗ in : i = 0, 1, . . . , dn} with the orthonormalization

(A, in|B, jn) = δABδij , while at Σn+1 we have ONB {|A, in+1) ≡ |A〉 ⊗ in+1 :

i = 0, 1, . . . , dn+1} with the orthonormalization (A, in+1|B, jn+1) = δABδij .

Here dn ≡ 2rn − 1.

Pure quantum evolution is given by

Un+1,n|A, in) =
d∑

B=1

dn+1∑
j=0

UBA,ji
n+1,n|B, jn+1) : i = 0, 2, . . . , dn. (9.64)

5 In our computer algebra program MAIN, discussed in Chapter 12, we take the system space
to change from stage to stage.

6 States of SUOs are treated in QDN as convenient repositories of context. By their actions
in the state preparation process, an observer will in general be entitled to model some of
that context in terms of a density operator representing a mixed state of an SUO.
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Using completeness, this gives the dyadic representation of Un+1,n

Un+1,n =

d∑
A,B=1

dn+1∑
j=0

dn∑
i=0

|B, jn+1)U
BA,ji
n+1,n(A, in|. (9.65)

The retraction operator Un+1,n is defined to be

Un+1,n =

d∑
A,B=1

dn+1∑
j=0

dn∑
i=0

|A, in)UBA,ji∗
n+1,n (B, jn+1|. (9.66)

By definition, we have

Un+1,nUn+1,n = IS ⊗ I1
A, (9.67)

where IS is the identity over HS and I1
A is the identity over Q1. From this, we

arrive at the semi-unitary conditions

d∑
C=1

dn+1∑
j=0

UCA,ja∗
n+1,n UCB,jb

n+1,n = δABδab. (9.68)

Now consider a pure total state

|Ψ0) ≡
d∑

A=1

ΨA
0 |A〉 ⊗ 10,

d∑
A=1

|ΨA
0 |2 = 1, (9.69)

evolving from state Σ0 to stage Σ1, giving total state |Ψ1) ≡ U1,0|Ψ0).

Continuing this process, we find the state at stage ΣN is given by |ΨN ) =

UN,0|Ψ0), where UN,0 ≡ UN,N−1UN−1,N−2 . . . U1,0.

Suppose now the observer asks a partial question Qθ
N of the state of the

apparatus at stage ΣN . The expectation value E[Qθ
N |Ψ0] of the answer is given by

E[Qθ
N |Ψ0] ≡ (ΨN |IS ⊗Qθ

N |ΨN ) =

d∑
A,B=1

ΨA∗
0 ΨB

0 〈A|Eθ
N |B〉, (9.70)

where

Eθ
N ≡ 10UN,0I

S ⊗Qθ
NUN,010. (9.71)

If now the initial state is a mixed state, such that the initial SUO state |Ψα
0 〉 is

given with probability ωα, then the expectation value is given by

E[Qθ
N |�0] = TrS{�A

0 E
θ
N}, (9.72)

where

�A
0 ≡

∑
α

ωα|Ψα
0 〉〈Ψα

0 |. (9.73)

This is the QDN generalization of the standard POVM formalism.
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We note that, provided we sum θ over all elements of an identity class Θ only,7

then∑
θ in Θ

Eθ
N = 10UN,0I

S ⊗
∑

θ in Θ

Qθ
NUN,010 = 10UN,0I

S ⊗ INUN,010 = IS . (9.74)

Hence ∑
θ in Θ

E[QN
θ|�0] = TrS

{
�0

A
∑

θ in Θ

EN
θ

}
= TrS{�0

AIS} = 1. (9.75)

The interpretation of the expectation values E[QN
θ|�0] therefore is consistent

with probability, provided we restrict θ to a single identity class.

7 Identity classes are discussed in the previous chapter.
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