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Abstract
In this study, we quantify the relationship between socio-economic status and life expectancy and identify com-
binations of socio-economic variables that are particularly useful for explaining mortality differences between
neighbourhoods in England. We achieve this by examining socio-economic variation in mortality experiences across
small areas in England known as lower layer super output areas (LSOAs). We then consider 12 socio-economic
variables that are known to have a strong association with mortality. We estimate the relationship between those
variables and mortality rates using a random forest algorithm. Based on the resulting estimate, we then create a
new socio-economic mortality index – the Longevity Index for England (LIFE). The index is constructed in a way
that eliminates the impact of care homes that might artificially increase mortality rates in LSOAs with care homes
compared to LSOAs that do not contain a care home. Using mortality data for different age groups, we make the
index age-dependent and investigate the impact of specific socio-economic characteristics on the age-specific mor-
tality risk. We compare the explanatory power of the LIFE index to the English Index of Multiple Deprivation
(IMD) as predictors of mortality. While we find that the IMD can explain regional mortality differences to some
extent, the LIFE index has significantly greater explanatory power for mortality differences between regions. Our
empirical results also indicate that income deprivation amongst the elderly and employment deprivation are the
most significant socio-economic factors for explaining mortality variation across LSOAs in England.

1. Introduction
It is well documented that there is a strong association between mortality and socio-economic status.
While this relationship has been known for many years, the availability of more granular data allows us
to look more closely at the impact of socio-economic characteristics on mortality. In recent years, there
have been numerous studies on this relationship: Bennett et al. (2015) discuss modelling life expectan-
cies in different areas of England and Wales via a Bayesian model with spatial effects; Raleigh and Kiri
(1997) study trends in life expectancy in relation to deprivation; Woods et al. (2005) describe mortality
in England and Wales by deprivation and in each government office region during 1998; Cairns et al.
(2019) identify different socio-economic groups in Denmark and model their mortality rates using an
affluence index and Wen et al. (2021) explore mortality rates in populations identified by deciles of the
English Index of Multiple Deprivation (IMD). Deciles of the IMD index are also used by Lyu et al.
(2022) to identify three socio-economic groups that are then used to study the effectiveness of an index-
based longevity hedge for which the three groups are modelled with a generalised three-way Li–Lee
model. Mayhew et al. (2020) also use the IMD to measure deprivation and study its impact on demo-
graphic differences measured by life expectancy, lifespan variation and mortality. They also consider
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differences in those quantities between different geographic areas. Finally, the IMD was also used by
Villegas and Haberman (2014) who proposed a new approach for the joint modelling of the mortality in
subpopulations of a larger national population. All of those studies documented significant differences
in mortality levels and mortality improvement rates between socio-economic classes.

In this paper, we develop a socio-economic mortality index that we call the Longevity Index for
England – LIFE. The LIFE index is designed to enable us to predict mortality risk in small neigh-
bourhoods across England relative to national mortality based on specific socio-economic data for such
neighbourhoods. In other words, the LIFE index models the relative risk of dying within a small pop-
ulation in England as a function of certain socio-economic variables. The index is created based on a
regression analysis using a random forest algorithm to estimate a non-parametric regression function.

We consider a total of 12 socio-economic factors that are known to be linked to mortality. Many are
domains or subdomains of the English indices of deprivation: in particular, the IMD – English Index
of Multiple Deprivation. Those indices are constructed and published by the Ministry of Housing,
Communities & Local Government in the United Kingdom. Others are derived from the 2011 national
census. We are using the indices of deprivation published in 2015, see Smith et al. (2015). The indices
of deprivation provide a score for small neighbourhoods, called lower layer super output area (LSOAs),
in different domains of deprivation. An LSOA is a lower layer super output area – a small area in
England with a population of about 1500 people. For the 2015 indices of deprivation, there were 32,844
LSOAs in England.

The main difference to the IMD-based research mentioned above is that we consider the impact of
individual variables on mortality in very small neighbourhoods rather than grouping the data by one
measure (IMD deciles) into rather large groups that are then considered to be homogenous.

Two of the 12 variables used to explain mortality in LSOAs are measuring the proportion of an
LSOA’s population that live in care homes. Since the existence of care homes has the potential to arti-
ficially increase the mortality in an LSOA, we adjust those variables for the construction of the LIFE
index.

In the empirical part of this paper, we investigate the explanatory power of the LIFE index in com-
parison to the English Index of Multiple Deprivation. We find that the LIFE index is better able to
explain regional differences in mortality than the IMD. This comparison is based on the analysis of age
and deprivation standardised mortality rates (ADSMRs). We explain the construction of ADSMRs and
show that large mortality differences between regions remain unexplained when ADSMRs are based
on the IMD. Applying LIFE-based ADSMRs reduces those regional differences significantly indicating
that the LIFE index is better able to capture mortality related factors. We also study the impact of specific
predictors on LIFE scores. It turns out that old-age income deprivation is the most powerful predictor
of mortality amongst those considered.

As mentioned above the index is based on an application of the random forest algorithm to estimate
the non-parametric regression function linking mortality to the 12 predictors, see Breiman (2001) and
James et al. (2013). This approach offers a high degree of flexibility, does not require assumptions
about the underlying relationship between predictive variables, and we show that it is an effective tool
for analysing large and complex mortality datasets. The random forest estimator is a well-understood
and widely used method from machine learning, and it has been applied in mortality modelling as an
alternative to parametric models, see for example, Bjerre (2022), Hong et al. (2021), Levantesi and Nigri
(2020) and Levantesi and Pizzorusso (2019). While those authors apply the random forest method to
improve the goodness-of-fit and the predictive power of mortality models, we use the method to analyse
the impact of socio-economic characteristics on higher or lower mortality in any given neighbourhood
compared to the national mortality levels for a population with a similar age structure.

Estimating the effect of socio-economic factors on the deviation of LSOA-specific mortality from
national mortality is a regression problem. As for many other regression problems, there are several
estimation methods to choose from. We have chosen the random forest method as it offers a high degree
of flexibility, but in contrast to other non-parametric methods it requires a relatively small number of
hyper-parameters to be chosen. In addition, computations are rather fast.
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Wen (2022) applies other estimators to explain the impact of socio-economic factors on mortality. He
finds that non-parametric methods (random forest and local linear regression) outperform generalised
linear models in terms of an out-of-sample mean squared error. It seems that the structure of the gener-
alised linear models considered by Wen (2022) is not sufficiently flexible to capture non-linear effects
of certain factors or the join effects that some factors might have on mortality. It might be possible to
extend the analysis by Wen (2022) by including GLMs with more factors or interaction terms between
certain factors, but this is not in the scope of this study.

The remainder of this paper is organised as follows. In Section 2, we describe the mortality data and
socio-economic data used in our study, and in Section 3, we introduce the LIFE index. Section 4 provides
an overview of the random forest method and shows how it is applied in the context of this paper. In
this section, we also study the performance of this method for the data in our study. We then investigate
the impact of different age groups on the LIFE index ranks of LSOAs in Section 5 and compare the
LIFE index to the IMD in Section 6. We then apply the life index to study the distribution of low and
high mortality groups across urban and rural LSOAs in Section 7 and analyse the impact of individual
variables in Section 8. We return to a comparison of the LIFE index with the IMD in Section 9 where
we consider mortality rates in LIFE deciles and IMD deciles and compare ADSMRs based on the two
indices. Our final conclusions are presented in Section 10.

2. Data
The data used in this paper are for England and have been sourced from the UK’s Office for National
Statistics (ONS). Further details can be found in the supplementary material published online and in
Wen (2022).

Socio-economic data and mortality data are available at a neighbourhood level called LSOA. An
LSOA is a geographical unit that describes a small neighbourhood with a population size of around
1600, and generally with a high degree of socio-economic homogeneity within each LSOA. The number
of LSOAs and their boundaries varies from time to time as populations change. This paper uses the
revisions based on the 2011 Census and there are N = 32, 844 LSOAs. The data described below are
available for each of the N LSOAs.

The specific data considered in our study are the following

• mid-year population estimates (exposure size) Eita by single LSOA i = 1, . . . , N, year t and
age a;

• death counts Dita by single LSOA i = 1, . . . , N, year t and age a;
• a vector of K predictive variables Xi = (Xi,1, . . . , Xi,K) for each LSOA i = 1, . . . , N. These data

are not year or age-specific but describe socio-economic characteristics of the entire population
of an LSOA measured at a specific point in time. Details about the predictive variables used in
this study are provided in Section 2.2.

The mortality data, Eita and Dita, are available for calendar years 2001–2018 by single year of age. As
the total exposure in any individual LSOA is very small, we will group ages for the construction of the
mortality index. In this study, we will focus on three age groups: 60–69, 70–79 and 80–89.

Note that the boundaries of some LSOAs have changed during our observation period 2001–2018.
All data used in this study are based on LSOA boundaries used in the 2011 census.

2.1. Mortality data and relative risk
In this study, we model the relative mortality risk in an individual LSOA i ∈ {1, . . . , N} compared to the
average mortality in England. To define our measure of relative risk, we first define a baseline death rate
mb

ta for year t and age a for the whole of England in the usual way:
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mb
ta =

∑N
i=1 Dita∑N
i=1 Eita

. (2.1)

The model will be fitted using data from years T and age range A. Without any additional information,
the expected1 total number of deaths D̂0

i across all ages a ∈A and years t ∈ T in LSOA i is given by

D̂0
i =

∑
t∈T , a∈A

mb
taEita for all i = 1, . . . , N,

and we define the observed relative risk of death R0
i for an individual living in LSOA i as the ratio of the

actual number of deaths to the expected number of deaths in that LSOA, that is,

R0
i =

∑
t∈T , a∈A Dita

D̂0
i

for all i = 1, . . . , N. (2.2)

With our definition, the realised relative risk R0 in any neighbourhood is a random variable since the
realised number of deaths is random. In the following, we are interested in modelling the conditional
expectation of R0 given a vector of socio-economic characteristics.

Note that the relative risk R0
i is not age and year specific. However, as mentioned above, we will

calculate and model the relative risk using mortality data for different age ranges A, see Section 5 for
details.

2.2. Socio-economic characteristics
In Section 3, we will construct an index that explains differences in the mortality rates in different LSOAs
based on differences in their socio-economic characteristics. In Wen (2022), a large universe of predic-
tive variables for LSOA-specific mortality rates were considered. Based on findings there, we restrict our
attention in this paper to 12 variables. They are listed in Table 1. Further details about those 12 variables,
including data sources, can be found in the supplementary material published online.

The possible values of the first nine numerical variables x1, . . . , x9 in Table 1 are on very different
scales. For the purpose of visualisation, we standardise them to have mean zero and variance one. Details
of the standardisation procedure can be found in the supplementary material.

Variable x10 is a categorical variable representing the urban–rural class of an LSOA and taking one
of five values listed in Table 2.

In summary, the socio-economic characteristics of any neighbourhood are given as a vector taking
values in the K = 12 dimensional space

L0 =R
9 × {1, . . . , 5} × [0, 1]2. (2.3)

Note, that our urban–rural class indicator x10 distinguishes between urban conurbation in London
and outside London. We have introduced that distinction as we found in previous research that mortality
rates in London are rather different from mortality rates in other parts of England, see Cairns et al.
(2021) and Wen (2022).

It is to be expected that the covariates in Table 1 are correlated. We report the empirical correlations
in Table 3. We observe in Table 3 that there are some strong correlations, but we argue that none of
the observed correlations is so strong that a variable should be removed. The few strong correlations
we observe might be seen as problematic for parametric models as the parameters for individual
covariates might not be identifiable when one variable can act as a proxy for another variable. However,
since we have 32,844 observations, the inclusion of highly correlated variables is still meaningful and

1For the calculation of the expected number of deaths, we assume that for each age and calendar year (and sex) the number of
deaths in any LSOA has a distribution such that the expectation is given by mitaEita. The two most prominent examples for such
distributions used for the number of deaths are the Poisson distribution and the negative binomial distribution. Without further
information about LSOAs, we set mita = mb

ta.
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Table 1. Predictive variables used in our study to model the relative mortality risk, R0.
Variables x1, . . . , x9 are standardised using a N(0,1) distribution function, x11 and x12 take
values in [0, 1] and x10 is a categorical variable taking one of five values explained in
Table 2.

Predictive
variable Description
x1 Old-age income deprivation
x2 Employment deprivation (i.e. unemployment)
x3 Proportion of the age-65+ population with no qualifications
x4 Crime rate
x5 Average number of bedrooms
x6 Proportion of the population born in the UK
x7 Wider barriers to housing (affordability, homelessness)
x8 Employment/occupation: proportion in a management position
x9 Proportion working more than 49 h per week (ages 16–74)
x10 Urban–rural classification
x11 Proportion of population aged 60+ in a care home with nursing care
x12 Proportion of population aged 60+ in a care home without nursing care

Table 2. Five categories for the urban–rural class (predictive variable
X10).

Urban/Rural (UR) class Definition
1 Urban conurbation (except London)
2 Urban city and town
3 Rural town and village
4 Rural hamlet and isolated dwellings
5 Urban conurbation (in London)

Table 3. Correlations between the covariates, see Table 1 for details about the covariates.
Empirical correlations have been calculated using all LSOAs in England and Wales regard-
less of their urban–rural classification. Note that x10 (urban–rural classification) is not included
in the table.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x11 x12

x1 1 0.79 0.73 0.62 –0.7 –0.26 0.7 –0.69 –0.53 0.02 0.05
x2 0.79 1 0.77 0.57 –0.58 0.05 0.47 –0.8 –0.61 0 0.05
x3 0.73 0.77 1 0.47 –0.5 0.1 0.4 –0.83 –0.66 0.02 0.04
x4 0.62 0.57 0.47 1 –0.53 –0.34 0.61 –0.46 –0.38 –0.01 0.04
x5 –0.7 –0.58 –0.5 –0.53 1 0.21 –0.63 0.43 0.37 0 –0.03
x6 –0.26 0.05 0.1 –0.34 0.21 1 –0.59 –0.1 –0.01 –0.02 0.01
x7 0.7 0.47 0.4 0.61 –0.63 –0.59 1 –0.41 –0.28 0 0.01
x8 –0.69 –0.8 –0.83 –0.46 0.43 –0.1 –0.41 1 0.7 0.03 0
x9 –0.53 –0.61 –0.66 –0.38 0.37 –0.01 –0.28 0.7 1 0.02 0.02
x11 0.02 0 0.02 –0.01 0 –0.02 0 0.03 0.02 1 0.06
x12 0.05 0.05 0.04 0.04 –0.03 0.01 0.01 0 0.02 0.06 1

https://doi.org/10.1017/asb.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.12


290 Jie Wen et al.

significantly improves the fit. Additionally, in the random forest (RF) algorithm each decision only
depends on one variable, and therefore this algorithm still works effectively when correlations are
high – that is one of the reasons for choosing the RF estimator.

We would also argue that there is no surprise in the correlation table: for example x1 is positively
correlated with x2, but negatively correlated with x5 and x8 meaning that the higher the level of income
deprivation, the higher the level of employment deprivation and the smaller are the houses, and the fewer
are working in management positions. For completeness, we also report correlation tables for individual
urban–rural classes in the supplementary material published online. The general conclusions from those
tables are similar to those obtained from correlations across all LSOAs. However, correlations with the
more-minor variables x3 to x9 do vary more between different urban–rural classes.

3. The Longevity Index for England (LIFE)
As mentioned above, our aim in this paper is to construct an index that will explain the expected relative
mortality risk in any neighbourhood based on the socio-economic characteristics of that neighbourhood.
We call this index the Longevity Index for England, hereafter, the “LIFE index”.

3.1. Modelling relative mortality risk
As a starting point, we model the conditional expectation of the relative mortality risk R0 given
characteristics x:

f (x) :=E[R0|x] for any x ∈ L0 (3.1)
where x = (x1, . . . , xK) is the vector of predictive socio-economic variables taking values in a
K-dimensional space L0 of possible realisations of Xi. For the 12 variables in our empirical study, (see
Table 1) L0 is the 12-dimensional space defined in (2.3).

To estimate the regression function f , we will use a supervised machine learning algorithm called
a RF, and we will denote this estimator of f by f̂ RF. Details of the estimation procedure are given in
Section 4. Let us mention that other estimators for f could be used. For example, Wen (2022) compares
the RF estimator with a local linear regression estimator.

3.2. Care homes
When we construct the LIFE index as an estimator for the relative risk in any LSOA, we need to take
into account that in our sample of LSOAs there are some with care homes and some without care homes.
Clearly, if a significant proportion of individuals in any LSOA are living in a care home, then this will
increase the mortality rate in that LSOA and, therefore, increase the relative risk. However, this does not
then properly reflect the main socio-economic characteristics of the LSOA (x1, . . . , x10).

To offset this effect when constructing the LIFE index in the next section, we will make assumptions
about the proportion of people living in a care home for any LSOA rather than using the actual proportion
of people living in care homes in that LSOA. In other words, we are trying to answer the question: What
would be the relative risk of dying in LSOA i if we kept all socio-economic variables to the values
observed in that LSOA, but changed the proportion of people living in care homes to the average for the
whole of England, or to some other chosen value.

3.3. The LIFE index
Based on the discussion so far, we now define our Longevity Index for England as the value of f for
specific neighbourhoods using the socio-economic characteristics of this neighbourhood but replacing
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the proportion of people living in care homes with the average for the whole of England. More precisely,
we define the LIFE index for LSOA i as

Ri = f (X̃i) with X̃i =
(
Xi,1, . . . , Xi,9, Xi,10, X̄11, X̄12

)
(3.2)

where X̄11 and X̄12 denote the average values of the proportion of an LSOA’s population living in care
homes with nursing and care homes without nursing, respectively. In replacing the true with the mean
values of X̄11 and X̄12, it is helpful to note from Table 3 that x11 and x12 have a very low correlation with
other socio-economic variables. First, this implies that care homes are not concentrated in neighbour-
hoods with particular socio-economic characteristics. Second, the lack of correlation means that when
we replace Xi,11 and Xi,12 with their mean values, we do not need to alter the values of other predictive
variables to compensate: that is, the presence of a care home does not artificially inflate or deflate an
LSOA’s other socio-economic, predictive variables.

Note that the index could be constructed with other adjustments to the care home variables. For
example, we could choose to calculate the index based on setting Xi,11 = Xi,12 = 0. That would also be a
good choice to model the relative mortality risk of the popoulation not living in care homes. However,
we prefer the setting in (3.2) as we will use the index to calculate life expectancies as a function of socio-
economic characteristics. Setting Xi,11 = Xi,12 = 0 would implicitly assume that no individuals will ever
be in a care home, which is, of course, not reasonable. Additionally, base mortality mb

ta incorporates
excess care home deaths, and so we prefer to reflect this also in the index values.

Let us mention that our index is based on the conditional expectation in (3.1) and therefore, we
can calculate the relative risk of dying for any values of the socio-economic variables, they do not
need to be those observed in a specific LSOA. In other words, we can calculate the LIFE score for
fictional neighbourhoods with specified socio-economic characteristics. This allows us to investigate
how sensitive the relative mortality risk is with respect to changes in certain socio-economic variables.
We will return to that point in Section 8.

From the construction of the LIFE index in (3.2), it is clear that the index is not explicitly age spe-
cific. Instead, it is an index summarising the socio-economic characteristics of all members of a small
community regardless of their age. However, the LIFE index relies on an estimate of the relative risk
function f in (3.2) that links socio-economic characteristics to death rates. The age range for death counts
and exposures used to estimate the function f will of course have an impact on the obtained LIFE index
values. We will investigate this further in Section 5.

4. Estimating the relative risk using the RF algorithm
As mentioned in Section 3, we can use a wide variety of nonparametric estimators for the regression
function f in (3.1). In this study, we will use the RF algorithm. As this estimation step is at the heart of
our index construction, we will explain our approach in detail.

4.1. Overview
Our RF algorithm consists of three stages. For each stage, we use R (R Core Team, 2021) and the R
package randomForest (Liaw and Wiener, 2002).

4.1.1. Stage 1
The purpose of the first stage is exclusively to choose certain hyperparameters – we provide more details
about the hyperparameters below. For this stage, we split (randomly) our data set, S = {1, . . . , N}, into
two disjoint subsets:

• the training set, S train ⊂ S contains LSOAs used to “train” our model, that is, to choose optimal
parameters determining f̂ RF, see below for details; and

https://doi.org/10.1017/asb.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.12


292 Jie Wen et al.

• the validation set, S val ⊂ S is the set of LSOAs used for model validation. In the first stage,
data in the validation set are used for selecting hyperparameters; again, we explain details
below.

Note that S train ∩ S val = ∅ and S train ∪ S val = S . The parameter optimisation for the observations in the
training set is repeated for each possible choice of hyperparameters. We then select hyperparameters for
which f̂ RF produces the best fit for the observations in the validation set, and those values are then fixed
for the hyperparameters in the second stage.

4.1.1. Stage 2
In the second stage, we split our complete data set again into two subsets allocating LSOAs randomly
(and independent of the allocation in the first stage) to either:

• the training set, S train ⊂ S containing LSOAs used to choose optimal parameters determining
f̂ RF using the optimal hyperparameters determined in stage one; or

• the test set, S test ⊂ S which is a subset of LSOAs that are only used for evaluating how good
our estimated function f̂ RF (fitted to data in S train) can predict the relative risk in out of sample
LSOAs.

Using the values for the hyperparameters obtained in the first stage, we fit our estimator f̂ RF to the
observations in our new training set and evaluate the goodness-of-fit using the test set.

So, both stages follow the same idea, but in the first we refit f̂ RF to the stage-one training set many
times to choose optimal hyperparamters, while in stage two f̂ RF is fitted to the stage-two training set only
once to assess the out-of-sample goodness-of-fit.

In this paper, we split the set of all N = 32, 844 LSOAs into two equally sized disjoint sets to obtain
a training set and a validation or test set in the two stages.

4.1.3. Stage 3
In the final stage of the estimation procedure, we run the RF algorithm with all chosen hyperparameters
for the full set of N = 32, 844 LSOAs to produce the final estimate of the regression function f in (3.1)
and obtain the LIFE index values from (3.2).

4.2. Fitting a single tree
A RF consists of B > 1 regression trees also known as decision trees. We will here briefly discuss how
each tree is constructed as a crude estimator of the regression function f in (3.1). In the next section, we
will then turn to combining many trees into a RF.

For fitting an individual tree with index b ∈ {1, . . . , B}, we only use a subset Sb of the LSOAs in the
training set S train in both stages. The procedure for growing a tree is the same for stages one and two. The
choice of Sb is explained in Section 4.3.

Constructing an individual tree is an iterative procedure. We start with defining our initial estimator
f̂ (b)
0 as the average of all observed values of the relative risk R0 of the LSOAs in the set Sb, that is,

f̂ (b)
0 (x) = 1

|Sb|
∑
i∈Sb

R0
i for all x ∈ L0

where |Sb| is the size of the data set Sb.
In the next step, we choose one explanatory variable, say xk∗ , and a level l∗, and split the initial node

L0 into the two disjoint subsets:
Lb

1,1 = {x ∈ L0 : xk∗ < l∗} (4.1)

https://doi.org/10.1017/asb.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.12


ASTIN Bulletin 293

Lb
1,2 = {x ∈ L0 : xk∗ ≥ l∗} (4.2)

This procedure is now repeated but, in addition to choosing an explanatory variable xk∗ and a threshold
level l∗, we also choose one of the sets (nodes) Lb

1,1 and Lb
1,2 which we then split in the next step.

Starting with s = 1 and the two nodes defined in (4.1) and (4.2), we now apply the following iterative
procedure:

• Choose one subset Lb
s,j∗ (j∗ ∈ 1, . . . , s + 1) out of the s + 1 subsets formed by the first s splits.

Also, choose an explanatory variable xk∗ and a threshold l∗

• Split Lb
s,j∗ into two subsets and leave all other subsets unchanged.

With this procedure, we have the following nodes available after s + 1 splits:

Lb
s+1,j = Lb

s,j for j = 1, . . . , s + 1, j 
= j∗ (4.3)

Lb
s+1,j∗ = {x ∈ Lb

s,j∗ : xk∗ < l∗} (4.4)

Lb
s+1,s+2 = {x ∈ Lb

s,j∗ : xk∗ ≥ l∗} (4.5)

Equation (4.3) states that split s + 1 does not affect any nodes other than Lb
s,j∗ . Equations (4.4) and

(4.5) mean that all LSOAs with characteristics x in node Lb
s,j∗ for which xk∗ ≥ l∗ are put into a new node

Lb
s+1,s+2 so that only those LSOAs with characteristics in Lb

s,j∗ and xk∗ < l∗ remain in that node and are
then contained in Lb

s+1,j∗ after s + 1 splits.
We now define the estimator f̂ (b)

s (x) of the regression function f in (3.1) obtained from one tree b after
splitting L0 into s + 1 nodes as

f̂ (b)
s (x) =

s+1∑
j=1

rjI(x∈Lb
s,j)

where rj is the average observed relative risk R0 for LSOAs Xi in node j, that is,

rj = 1∑N
i=1 I(Xi∈Lb

s,j)

N∑
i=1

I(Xi∈Lb
s,j)

R0
i for all j = 1, . . . , s + 1.

As explained above, for each new split, we need to choose an existing node Lb
s,j∗ , an explana-

tory variable xk∗ and a threshold l∗. Those are chosen such that the fit of the new estimator f̂ (b)
s+1(x) =

f̂ (b)
s+1 (x; j∗, xk∗ , l∗) to the observed values of the relative risk, R0

i for i ∈ Sb, is optimised. More specifically,
our choice minimises the residual sum of square

RSSb
s ( j, xn, l) =

∑
i∈Sb

(
R0

i − f̂ (b)
s+1 (Xi; j, xn, l)

)2

(4.6)

(
j∗, n∗, l∗

)b

s
= argmin

j,n,l
RSSb

s ( j, xn, l) (4.7)

Within the RF algorithm, for each split, rather than optimise over all K = 12 of the predictive variables,
we optimise over a subset of m variables. This subset is chosen randomly for each new split (see, for
example, James et al., 2013). The purpose of this is to increase the variability and reduce the correlation
between individual trees. Without restricting the set of variables we find that trees are very similar. The
parameter m is a hyperparameter, and we explain its choice in Section 4.4.

Finally, we stop splitting nodes further as soon as any obtained node contains less than M observa-
tions where M is another hyperparameter. In our empirical study, we choose M = 200 as that choice
achieves a good balance between goodness-of-fit and overfitting. Díaz-Uriarte and Alvarez de Andrés
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Figure 1. The values of the piecewise constant regression tree f̂ (b)
5 (x) in (4.8) after five splits. Blue solid

lines show the boundaries of the six nodes. Red numbers are the estimated relative risk for all LSOAs
in each of the those nodes. Each of the gray dots represents the observed values of old-age income
deprivation and employment deprivation for a single LSOA in the training set for this example.

(2006) provide a general discussion of the minimum node size M, principles of choosing it, and exam-
ples on its potential impact on the model performance and computation time. Wen (2022) has a more
detailed discussion around M in the specific context of modelling relative mortality risk at neighbour-
hood level using the RF algorithm, including its impact on the complexity of underlying trees and the
standard deviation of the outcomes produced by individual trees. Although the model’s out of sample
performance does not appear to be very sensitive to the choice of M, choosing M to be 200 rather than,
say, 5 or 50 significantly saves computation time without sacrificing the predictive power of the RF
estimator in our application.

In Figure 1, we illustrate the construction of one tree using our data set of LSOAs. In this example,
only two variables are considered for potentially splitting nodes: old-age income deprivation, x1 and
employment deprivation, x2. In total, s = 5 splits have been performed leaving us with s + 1 = 6 nodes,
and our estimator for f is given by

f̂ (b)
5 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.7117 for x ∈ Lb
5,1 = {x : x1 < −0.418}

0.9830 for x ∈ Lb
5,2 = {x : − 0.418 ≤ x1 < 0.351}

1.2070 for x ∈ Lb
5,3 = {x : 0.351 ≤ x1 < 1.06 and x2 < 0.701}

1.4470 for x ∈ Lb
5,4 = {x : 0.351 ≤ x1 < 1.06 and 0.701 ≤ x2}

1.5660 for x ∈ Lb
5,5 = {x : 1.06 ≤ x1 and x2 < 1.441}

1.8750 for x ∈ Lb
5,6 = {x : 1.06 ≤ x1 and 1.441 ≤ x2}

(4.8)

In Figure 2, we show the order of the performed splits: the first three splits are all based on x1 (old-
age income deprivation). Only after three splits using x1, two of the obtained nodes are split using x2

(employment deprivation). This clearly shows, that for this example x1 has a higher explanatory power
than x2 since splitting the early nodes in our tree according to the old-age income deprivation score
reduces the residual sum of squares RSS more than early splits with respect to employment deprivation
would achieve.

https://doi.org/10.1017/asb.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.12


ASTIN Bulletin 295

Figure 2. A graphical representation of our example regression tree f̂ (b)
5 (x) in (4.8), and the residual

sum of squares, RSSb
s (4.6) as a function of the number of splits s for this tree.

To illustrate this specific example further, we also report the residual sum of squares, RSSb
s , in

Figure 2. As expected, we find that the early splits result in the greatest reduction of RSSb
s .

4.3. Many trees form a RF
Having seen how an individual regression tree is fitted to observations in a set Sb, we now turn to
describing how we choose the sets Sb and how we combine many trees to obtain our final estimator f̂ RF

for the regression function f in (3.1).
For each tree b ∈ {1, . . . , B}, the set Sb is obtained by (see, for example, James et al., 2013)

1. sampling randomly with replacement from the training data set S train to obtain a sample of the
same size as S train, and then

2. removing all duplicates from that sample.2

Repeating this procedure B times, we obtain B subsets Sb ⊆ S train of the training data set.
To introduce more randomness in the construction of the RF estimator f̂ RF we also, as remarked before,

restrict the predictive variables considered at each split in any individual tree. Rather than choosing a
predictive variable xk out of all p variables when minimising the residual sum of squares RSSb

s in (4.6),
we follow James et al. (2013) and choose xk from a subset of m predictive variables. As mentioned in
Section 4.2, this subset of predictive covariates is randomly chosen for each split within each tree.

So, each tree b = 1, . . . B is fitted to a randomly chosen subset Sb of observations from the training
data set, and RSSb

s is optimised with respect to m randomly chosen predictive variables. In this way, we
obtain a total of B regression functions f̂ (b). The number m of predictive variables considered for each
split of nodes is a hyperparameter and will be chosen in stage one using cross-validation. As mentioned
earlier, m is then fixed in stage two.

Our final RF estimator f̂ RF for the regression function f in (3.1) is obtained by taking the average over
all individual regression trees f̂ (b), that is,

f̂ RF(x) = 1

B

B∑
b=1

f̂ (b)(x) for any x ∈ L0 (4.9)

2If we generate a random sample of size n with replacement from a set also of size n, and then remove duplicates, we are left
with a sample with a random size and mean size equal to n(1 − n−1)2 ≈ n(1 − e−1) ≈ 0.632n.
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Figure 3. Validation MSE calculated following (4.10) and over LSOAs in the validation set Sva, of a
random forest model trained using the relative risk of England males aged 70–79, and with different
numbers of trees B (left plot, with m set as 4) and different numbers of variables considered per split m
(right plot, with B set as 2500). The 12 predictive variables outlined in Table 1 are used.

Note that f̂ RF is piecewise constant over the full range of values of x ∈ L0 as it is an average over
a finite number of piecewise constant regression tree functions f̂ (b). However, f̂ RF can take many more
values compared to any individual tree f̂ (b).

4.4. Hyperparameter selection (stage 1)
With the minimum node size, M = 200, fixed, the regression function f̂ RF in (4.9) will depend on two
further hyperparameters: the number m of predictive variables considered for each split, and the number
of trees, B. Both of those parameters need to be chosen. One could argue that we can also choose the
size N train of the training set S train, but, for simplicity, we choose that set to include half of the available
observations with the other half being included in the validation set S val in stage one. For the N = 32, 844
LSOAs in our empirical study, we clearly have that both sets include N train = Nval = 16, 422 LSOAs.

The hyperparameters B and m are chosen in stage one in the following way: we fit f̂ RF = f̂ RF
B,m to the

data in the training set using different values for B and m. For each combination (B,m) considered, we
then evaluate the fit of the obtained estimate f̂ RF

B,m to the data in the validation set using the mean squared
error as criterion.

MSE(B, m) = 1

Nval

∑
i∈Sval

(
R0

i − f̂ RF
B,m(Xi)

)2

f̂ RF
B,m(Xi)/D̂0

i

= 1

Nval

∑
i∈Sval

(
Di − D̂RF

i

)2

D̂RF
i

(4.10)

where Di = R0
i D̂0

i = ∑
t,a Dita is the observed total number of deaths across all ages a and years t in LSOA

i, and D̂RF
i = f̂ RF

B,m(Xi)D̂0
i is the expected total number of deaths adjusted with the fitted relative risk f̂ RF

B,m(Xi)
for LSOA i.

In Figure 3, we plot MSE(B, m) in (4.10) for different values of B (with m = 4) and different values
of m (with B = 2500). The figure shows that the out-of-sample performance of the RF is not worsening
as more trees are grown, and we choose B = 2500 as we think this will be a good compromise between
computational effort and goodness-of-fit. However, we find that considering m = 4 predicative variables
in (4.6) leads to the smallest mean squared error.

Table 4 summarises our choice of hyper-parameters.

4.5. Goodness-of-fit (stage 2)
In order to assess the out-of-sample performance of the proposed RF estimator applied to the mortality
data for the 32,844 LSOAs, we move on to stage two as mentioned in Section 4.1.
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Table 4. Settings of the final random forest model we use for creating the
mortality index for England males.

Parameter/hyperparameter Notation Value
Number of trees B 2500
Total number of variables p 12
Number of variables to consider per split m 4
Minimum size of terminal nodes (floor) M 200

Table 5. Test set MSE of the proposed random forest model fitted to three ran-
domly chosen training sets (rounds) for data from different age groups. The
applied hyperparameters are listed in Table 4.

Age Round 1 Round 2 Round 3 Overall
60–69 1.273 1.253 1.299 1.275
70–79 1.686 1.689 1.688 1.688
80–89 2.799 2.744 2.935 2.826

To this end, we randomly split the set of all 32,844 LSOAs into two equally sized subsets: the training
set S train (different from before) and the test set S test. The training set S train chosen at this stage is a random
sample of S and independent of the training set chosen in stage 1. The sets S train and S test are disjoint and
S train ∪ S test = S . We then construct an estimator f̂ RF using the data in S train and the hyper-parameters in
Table 4. To quantify the goodness-of-fit of the obtained estimator f̂ RF, we evaluate its out-of-sample fit
to data in the test set by calculating the mean squared error as in (4.10) but now considering LSOAs in
the test set rather than the validation set, that is,

MSEtest = 1

N test

∑
i∈S test

(
R0

i − f̂ RF(Xi)
)2

f̂ RF(Xi)/D̂0
i

(4.11)

Clearly, the realised values of MSEtest will depend on the randomly chosen LSOAs in S train and S test. To get
an idea of how sensitive the results are to the randomised choice of S train and S test, we calculate MSEtest for
three different splits (rounds) of our data into training and test sets. The results are provided in Table 5
for data based on different age ranges. We find that there is not much variation in the values of MSEtest

between rounds. We also see that the goodness-of-fit of f̂ RF is much better when it is estimated from
mortality data at younger ages.

4.6. Robustness
The rather small variation of the test set MSEs over different randomly chosen training sets in Table 5 is
an indication that the fitted relative risk, and therefore the LIFE index, is a robust estimator of the true
underlying relative mortality risk. To investigate robustness further we now split the annual data for the
observation period 2001–2018 into two subsets: data for even years 2002, 2004, . . . and data for odd
years 2001, 2003, . . . This split leaves us with two subsets each consisting of nine years of observations.
We chose to split the observation period in this way to avoid any impact of potential trends in the relative
mortality risk over time.

We now apply the above methods to obtain estimates f̂ RF(x) with data from only one of the two
observation subsets and then compare the results.

We present scatter plots of the estimated values of f̂ RF(x) based on odd years (horizontal axis) and
even years (vertical axis) using mortality data for different age ranges in Figure 4. The plots clearly

https://doi.org/10.1017/asb.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.12


298 Jie Wen et al.

Figure 4. Estimated relative risk over 16,422 LSOAs in S te by the random forest model trained using
LSOAs in S tr and relative risks of the two year groups, R0,odd and R0,even. x-axis: model trained with odd
years; y-axis: model trained with even years. Left to right: relative risk of age 60–69, 70–79 and 80–89.

Figure 5. Percentiles of LIFE index values Ri compared between indices estimated from different age
groups over all 32,844 LSOAs. Left: 60–69 versus 70–79; Middle: 60–69 versus 80-89; Right: 70–79
versus 80–89.

show that the estimated values of the relative risk for individual LSOAs are very similar when mortality
data from different years are used, in particular, there seems to be no systematic differences – this is
further evidence that the results of our RF estimator are robust. Any variation we see is most likely due
to sampling variation in the deaths counts rather than systematic differences.

4.7. Final index values (stage 3)
The hyperparameters have been chosen in stage 1 and goodness-of-fit and robustness assessed in stage
2, and it has been concluded that the RF algorithm has produced a good estimate of f with the chosen
parameters. In the final stage, we simply rerun the RF algorithm but, instead of using only half of the
data, we use the full set of 32,844 LSOAs.

5. Fitting the LIFE index to different age groups
As mentioned in Section 3.3, the LIFE index is not directly age specific. However, its estimated values
depend upon the specified age range, A, and the index values obtained can be assumed to apply to either
the whole of that age range or to the midpoint of that range.

To investigate the effect of different age groups on the estimated LIFE index value, we compare index
values obtained from fitting f̂ RF(x) to mortality data for three age groups: 60–69, 70–79 and 80–89. We
report Q–Q-plots of the obtained index values Ri (Equation (3.2)) for all 32,844 LSOAs in Figure 5.

Figure 5 shows a very strong dependency between the LIFE index for age groups 60–69 and 70–79
(left-hand plot). This dependency is slightly weaker when we compare the age group 80–89 with the
younger ages (a greater spread of points in the middle and right hand plots) but the dependency is still
strong. Wen (2022) found similar results for an index constructed using local linear regression.
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Table 6. Spearman’s rank correlation of IMD and LIFE index values. The LIFE index
has been fitted to the mortality experience in different age groups.

Age group 40–49 50–59 60–69 70–79 80–89
Correlation with IMD 0.941 0.932 0.917 0.896 0.836

Figure 6. Cumulative distribution function of the LIFE scores for all 32,844 LSOAs fitted to mortality
data for different age groups.

Empirical distributions of the Ri are plotted in Figure 6 for different age groups. We can see that
variation in relative mortality risk is greater for younger ages than older ages, an observation that is
consistent with previous research on socio-economic variation in mortality in various populations (see,
for example, Mackenbach et al., 2003; Mackenbach et al., 2015; Chetty et al., 2016; Wen et al., 2020
and Wen et al., 2021 and references therein).

6. The LIFE index versus the IMD
The IMD is published by the Department for Communities and Local Government in the UK (Smith
et al., 2015). The IMD is designed as a general measure for deprivation. The LIFE index on the other
hand has been produced specifically as a measure of mortality deprivation with the aim to predict mor-
tality differences between LSOAs. We would expect the two indices to have a highrank correlation. To
check this hypothesis, we plot the LIFE index values fitted to mortality data for ages 40–49, 60–69 and
80–89 versus the IMD scores in Figure 7. We also report Spearman’s rank correlations between the
LIFE index fitted to different age ranges and the IMD scores in Table 6.

We find that the rank correlation is indeed high, in particular, when the LIFE index is fitted to mor-
tality data at younger ages, see Table 6. We also observe in Figure 7 that there is a strong dependency
between the scores of the two indices, but that there are some outlier LSOAs with a rather low IMD
score (little deprivation) and a rather high relative mortality risk.

We did consider the outlier LSOAs, for example, for ages 60–69 in some detail. Individual predictive
variables for these LSOAs tended to be towards the tails of the data but not too extreme, but, in higher
dimensions, the vectors Xi for these LSOAs were clearly positioned around the fringes of the cluster
of observations for the 32,844 LSOAs. As with most regression methods, estimates at the edges of a
dataset do carry higher levels of uncertainty than estimates in the middle of the dataset.
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Figure 7. Scatterplot of LIFE index versus IMD. The LIFE index is based on an estimated relative
mortality risk fitted to mortality data for ages 40–49 (top left), 60–69 (top right) and 80–89 (bottom).
Colour indicate the urban–rural class of an LSOA: conurbations (black), cities/towns (red), villages
(green), rural areas (dark blue) and London (light blue).

The colouring of the dots in Figure 7 reveals how significantly the inclusion of urban–rural class has
impacted on estimates of the relative risk compared to the IMD, particularly ages 40–49 and 60–69. In
the upper plots, the dark blue dots representing very rural areas are mostly shifted to the left of the main
diagonal. This indicates that the inclusion of urban–rural class in the RF model estimates significantly
lower mortality in these rural areas than would be suggested by the IMD, which takes no explicit account
of urban–rural class. Indeed the IMD includes a subdomain called geographical barriers which counts
greater distance to services as meaning an area is more deprived. But in mortality terms (at least at the
macro scale) the opposite is true: larger, more-rural or otherwise less-dense LSOAs have lower mortality
even though one has to travel further for essential services.

The RF model also predicts lower mortality for London (light blue dots) than the IMD predicts. In
this case, the reason is less clear but needs further investigation: what is missing in the IMD that is to
the advantage of London and to the disadvantage of other areas, particularly other conurbations and
cities.

7. Distribution of low- and high-risk groups across urban–rural classes
In this section, we investigate if there are differences between urban–rural classes in the number of low-
and high-risk mortality populations. More specifically, we denote by qR

α
the empirical α-quantile of the

https://doi.org/10.1017/asb.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.12


ASTIN Bulletin 301

Table 7. Distribution of LSOAs across urban–rural classes for different subpopulations. The numbers
in brackets refer to the proportion (in %) of all LSOAs in a group that fall within an urban–rural class.
The subpopulation groups are defined in (7.1). See Table 2 for the definition of urban–rural classes.

Relative risk Rk fitted to ages 60–69

UR class All LSOAs Gl
0.05 Gu

0.05 Gl
0.5 Gu

0.5

1 7921 220 (2.8) 944 (11.9) 2681 (33.9) 5240 (66.2)
2 14,515 734 (5.1) 610 (4.2) 7205 (49.6) 7310 (50.4)
3 3056 162 (5.3) 8 (0.3) 2216 (72.5) 840 (27.5)
4 2542 326 (12.8) 0 (0.0) 2444 (96.1) 98 (3.9)
5 4810 201 (4.2) 81 (1.7) 1876 (39.0) 2934 (61.0)

Total 32,844 1643 (5.0) 1643 (5.0) 16,422 (50.0) 16,422 (50.0)

Relative risk Rk fitted to ages 80–89

1 7921 223 (2.8) 597 (7.5) 2558 (32.3) 5363 (67.7)
2 14,515 657 (4.5) 768 (5.3) 6979 (48.1) 7536 (51.9)
3 3056 129 (4.2) 86 (2.8) 1863 (61.0) 1193 (39.0)
4 2542 111 (4.4) 32 (1.3) 1926 (75.8) 616 (24.2)
5 4810 523 (10.9) 160 (3.3) 3096 (64.4) 1714 (35.6)

Total 32,844 1643 (5.0) 1643 (5.0) 16,422 (50.0) 16,422 (50.0)

estimated relative risk R0 in all LSOAs, and we then define four groups of LSOAs: the lower 5% and
50% quantile groups, and the upper 5% and 50% quantile groups,

Gl
α

:=
{

k : R0
k < qR

α

}
and Gu

α
:=

{
k : R0

k > qR
1−α

}
for α = 0.05, 0.5 (7.1)

where qR
α

is the empirical α quantile of the fitted values R0
k .

Table 7 shows how urban–rural classes are distributed in each of those groups.
An interesting result in Table 7 is that out of the 2542 LSOAs that are classified as rural hamlets and

isolated dwellings (urban–rural class 4) none can be found in the high-risk group Gu
0.05 when the relative

risk is fitted to mortality data for ages 60–69. Similarly, only eight of the 3056 LSOAs in urban–rural
class 3 are found in the high-risk group. On the other hand, 11.9% of large conurbations outside London
made it into the top 5% risk group while only 1.7% of LSOAs in London are in that group. The data in
Table 7 clearly show the strong impact that the urban–rural class has on the estimated relative mortality
risk of an LSOA with the general conclusion that LSOAs in large cities tend to have a higher mortality
risk than LSOAs in rural areas. London is an exception for the very high-risk group but we also find that
more than half (61%) of LSOAs in London have a mortality risk greater than the median for England.

The picture changes slightly when we consider the oldest age group, 80–89, in our data set. However,
the general conclusion seems to be unchanged: large cities have higher mortality than rural areas.

8. Impact of specific variables
Since the LIFE index is based on a non-parameteric estimator of the regression function f in (3.1),
it is not straightforward to assess the impact of specific variables on the index value from the sign or
magnitude of specific parameters as is often possible for parametric regression models. Instead, we
study the values of f̂ RF(x) for a certain range of covariate values where we vary only some variables
while leaving others constant.
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In Wen (2022), it was found that employment and old-age income deprivation are two of the most
significant predictors of mortality rates. We therefore focus on those two variables first. We also include
here x6 – the proportion of an LSOA’s population born in the UK – as an example of a less important
variable. Figure 8 shows the fitted relative mortality risk as a function of those three covariates. In each of
the plots, all variables except the variable on the horizontal axis have been set to their median calculated
across all LSOAs. More specifically, for the first row in Figure 8 (old-age income deprivation) the value
shown for LSOA i is calculated as

f
(
Xi,1, X50

2 , . . . , X50
11 , X50

i,12

)
(8.1)

where x50 denotes the empirical 50% quantile of covariate x. We use a similar approach for X2 and X6.
This allows us to zoom in on the specific effect of one variable.

We can clearly see that old-age income deprivation and employment deprivation have a similar effect
on the risk of dying with high levels of deprivation associated with high levels of mortality. However,
comparing the range of risk values (y-axis), we find that income deprivation is a much better variable
than employment deprivation to distinguish between low- and high-risk LSOAs. This is particularly
true when data for ages 60–69 are used to fit the relative risk function. Not surprisingly, old-age income
deprivation is still a good variable to explain differences at the older ages 80–89, but employment in an
LSOA has little explanatory power for mortality differences in that age group.

Turning to x6 – the proportion of the population born in the UK – this variable has very limited
explanatory power (a narrow range of relative risk values) when all other variables are set to the median.
Nevertheless, Wen (2022) has found that it is a variable that helps the RF algorithm to better predict
observed mortality risk. While we find that higher numbers of UK-born residents seems to slightly
increase mortality in an LSOA, this effect is relatively small. We also observe in Figure 8 that the
relative risk is below one for all LSOAs. This is clearly a consequence of setting all other covariates to
the median. The relative risk values and our conclusions about x6 might change when other covariates
are set to different values rather than the median. Our proposed non-parametric estimation of the
relative risk would allow for such more detailed empirical studies but that is beyond the scope of this
paper. Also of note is the fact that the steep portion of both plots for x6 is well to the left of the median
(x6 = 0). A potential reason for this is how x6 interacts with other predictive variables. It is only for the
20% lowest where there is a significant dependency between x6 and other predictive variables. For the
upper 80% of the distribution of x6, there is very little dependency with other variables.

Finally, we conclude from Figure 8 that the impact of the three considered variables is comparable
in all five urban–rural classes.

The LIFE index has been constructed by keeping all variables at their observed levels except the
proportion of residents living in care homes, x11 and x12, see Section 3.3 for details. To investigate further
the impact of the three variables, we now plot the values of the LIFE index for all LSOAs as a function
of one covariate in Figure 9.

We find in Figure 9 that, as expected, there is a lot more fluctuation when the variability from other
covariates is not removed as in Figure 8. We can see that old-age income deprivation has the strongest
correlation with estimated relative mortality risk followed by employment deprivation and, finally, there
is no clear pattern linking the population born in the UK to the relative risk. In each plot, the colour of
each point shows the urban–rural class. We can see that a London-effect is clearly visible: London has
lower mortality as seen from the plot on the top left, and London has also a relatively large population
of people born abroad which is clearly visible in the lower plot.

Finally, we consider the joint impact of two variables on the LIFE index. In Figure 10, we show
heat plots of LIFE index values for ages 60–69 as functions of old-age income deprivation, x1, and
employment deprivation, x2. All variables x3, . . . , x9, x11 and x12 are set to their median and the three
panels show urban–rural classes 1, 4 and 5 from left to right. It is notable that, in all three cases, for
less-deprived LSOAs, the divisions between bands of colour are nearly vertical indicating that old-age
income deprivation is the main driver of the LIFE index out of the two variables. However, as we move
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Figure 8. Estimated relative risk as a function of income deprivation at old age (first row), employment
deprivation (second row) and the proportion of the population born in the UK (third row). In each case,
other covariates (except the urban–rural classification) are fixed to their median across all LSOAs.
The index is fitted to mortality data for ages 60–69 (left column) and ages 80–89 (right column), and
urban–rural classes are colour coded.
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Figure 9. LIFE index scores as a function of income deprivation at old age (top left), employment
deprivation (top right) and the proportion of the population born in the UK (bottom). In contrast to
Figure 8, all covariates other than care home populations, x11 and x12, have been left at their observed
values. The index is fitted to mortality data for ages 60–69, and urban–rural classes are colour coded.

up, the divisions between colour bands gradually tilts indicating that there is more of a balance between
the two measures of deprivation in terms of their impact on the LIFE index. This then gives a good
indication of how the non-linear RF algorithm is easily able to pick up changes in the impact of different
variables as we move across the dataset.

9. Deciles of the LIFE index
9.1. Relative risk in different deciles
With the proposed LIFE index, we can also zoom in on specific populations identified by their mortality
risk. For example, Figure 11 shows the LIFE index values where we only consider the 10% of LSOAs
with the lowest relative risk (left plot) and the 10% of LSOAs with the highest relative risk (right plot).

More specifically, we introduce a decile function g which identifies the decile k for any LSOA i with
g(i) = k for k ∈ {1, . . . , 10}. The 10% of LSOAs with the highest mortality risk are LSOAs i with g(i) = 1
and the LSOAs with the lowest relative risk have g(i) = 10.

The plots in Figure 11 clearly show that in both subpopulations the most important variable to explain
mortality differences is old-age income deprivation while employment deprivation has less impact.
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Figure 10. Heatmaps of LIFE index values as a function of income deprivation at ages 65+ and employ-
ment deprivation. All other variables are fixed to the median. The left panel shows LSOAs in urban–rural
class 1 (7921 LSOAs), the middle plot shows results for 2542 LSOAs in class 4 (isolated dwellings) and
the right plot is for the 4810 LSOAs in London. The LIFE index is fitted to mortality data for ages 60–69.

Figure 11. Heatmaps of observed relative risk values as a function of income deprivation at ages 65+
and employment deprivation. All other variables are unchanged. The LIFE index is fitted to mortality
data for ages 60–69. In the left plot, only LSOAs with g(i) = 1 (highest relative risk) are shown, and for
the right plot, only LSOAs with g(i) = 10 (lowest) are used.

9.2. Explanatory power of the LIFE index
The LIFE index has been constructed with the aim to explain the mortality risk in an LSOA based on
socio-economic variables. Therefore, the question arises whether the LIFE index can indeed differentiate
between high and low mortality areas. Or, in other words, are the socio-economic variables and the
constructed index able to predict the relative mortality risk in an LSOA. To investigate this, we calculate
age standardised mortality rates (ASMR) and ADSMR.

The ASMR for any population in year t is calculated as follows:

ASMRgt =
∑

a∈X mgtaEs
a∑

a∈X Es
a

(9.1)

where X refers to the age range used and mgta = Dgta/Egta is the crude death rate for the underlying
population g in year t for age a. The standard population Es

a used in our study is the European Standard
Population3 (ESP) in 2013.

To investigate how well the LIFE index can distinguish between different levels of mortality, we
split the set of all LSOAs into 10 deciles as described above and plot the ASMRs for each decile over

3Report on ESP 2013 is available at: https://ec.europa.eu/eurostat/documents/3859598/5926869/KS-RA-13-028-EN.PDF/
e713fa79-1add-44e8-b23d-5e8fa09b3f8f, downloaded 24 June 2019.
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Figure 12. ASMR by deprivation decile based on IMD scores (left) and LIFE scores (right) (log scale).
The LIFE index and the ASMRs have been calculated for age groups 60–69 and 80–89. Similar figures
for other age groups can be found in the supplementary material published online.

time. We then compare our results to ASMRs calculated for deciles obtained from the Index of Multiple
Deprivation (IMD), see Wen et al. (2021). The results are shown in Figure 12.

We can see in Figure 12 that the 10 deciles obtained from either index, LIFE or IMD, produce very
different mortality rates. The figure also shows that the LIFE index leads to a wider spread of mortality
rates meaning that it is better than the IMD in identifying low and high mortality on the basis of socio-
economic variables. However, we must keep in mind that the IMD was not designed to predict mortality
while the LIFE index was chosen to do so. We also find that both indices show a widening of the mortality
gap, the difference between rates for the most deprived as compared to the least deprived. For the IMD,
we discussed this issue in detail in Wen et al. (2021).

9.3. Explaining regional differences
While the LIFE index only uses information about socio-economic covariates, including an urban–rural
class, to predict the relative mortality risk in an LSOA, it might be that LSOAs in different regions in
England have different mortality rates although they have the same socio-economic characteristics.

To investigate this question further, we group all LSOAs into nine geographical regions. Table 8 lists
the regions and shows the percentage of a region’s LSOAs that belong to the risk groups defined in
Section 7 for the LIFE index fitted to ages 60–69.
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Table 8. Distribution of LSOA into regions for different subpopulation classes. The LIFE index
has been fitted to ages 60–69.

Region All LSOAs Gl
0.05 Gu

0.05 Gl
0.5 Gu

0.5

East 3614 197 (5.4) 59 (1.6) 2198 (60.8) 1416 (39.2)
East Midlands 2774 69 (2.5) 103 (3.7) 1442 (52.0) 1332 (48.0)
London 4835 205 (4.2) 81 (1.7) 1895 (39.2) 2940 (60.8)
North East 1657 35 (2.1) 180 (10.9) 557 (33.6) 1100 (66.4)
North West 4497 114 (2.5) 556 (12.4) 1832 (40.7) 2665 (59.3)
South East 5382 616 (11.4) 76 (1.4) 3531 (65.6) 1851 (34.4)
South West 3281 179 (5.5) 75 (2.3) 2040 (62.2) 1241 (37.8)
West Midlands 3487 107 (3.1) 234 (6.7) 1482 (42.5) 2005 (57.5)
Yorkshire 3317 121 (3.6) 279 (8.4) 1445 (43.6) 1872 (56.4)
Total 32,844 1643 (5) 1643 (5) 16,422 (50) 16,422 (50)

Figure 13. ASMRs by region for mortality data for ages 60–69 and 80–89 (log scale). Similar figures
for other age groups can be found in the supplementary material published online.

The table shows that 12.4% of the LSOAs in the North West of England belong to the group of
LSOAs with the 5% highest mortality risk, closely followed by the North East. The lowest LIFE scores
are observed in the South East with 11.4% of those LSOAs belonging to the 5% English LSOAs with
the lowest mortality risk. The results for other age groups are very similar, and, therefore, not reported
in this paper.

To obtain a more detailed picture of the regional differences, we consider age standardised mortality
rates. The ASMRs by region for age 60–69 and 80–89 can be seen in the Figure 13. We find that there are
apparently substantial inequalities between regions, but how much of that can be explained by differences
in the socio-economic mix of the nine regions?

To address this question, we propose using what we call the Age and Deprivation Standardised
Mortality Rate, ADSMR. In the same way that the basic ASMR removes differences between pop-
ulations that have different age profiles, the ADSMR is designed to remove the impact of different
deprivation profiles. Thus, the ADSMR in region r in year t is defined as

ADSMRrt = 1

10

10∑
k=1

ASMRrkt (9.2)

where ASMRrkt is the ASMR in year t of all LSOAs in region r and index decile k. Deciles are formed
on the basis of the LIFE index values as described above, and, for comparison, on an IMD basis.

https://doi.org/10.1017/asb.2023.12 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.12


308 Jie Wen et al.

Figure 14. ADSMRs on the basis of IMD deciles (left) and LIFE deciles (right) where mortality data
for different age groups have been used (log scale). Similar figures for other age groups can be found in
the supplementary material published online.

Assuming that all mortality differences are explained by the LIFE (or IMD) index based on socio-
economic variables, the ADSMRs should be the same for different regions (since ASMRrkt would be
independent of r). In Figure 14, we plot ADSMRrt for the nine regions where deciles have been obtained
from using the IMD (left plots) and the LIFE index (right plots).

We clearly see that the purpose built LIFE index is better suited to explain mortality differences
between regions, resulting in much smaller differences in the ADSMR between the regions than the
IMD-based ADSMR. While this is true for both age ranges (and other ranges as shown in Figures pub-
lished online in the supplementary material), it is for the oldest age group 80–89 that the LIFE index
can explain most of the differences between regions – the ADSMRs in the bottom right plot are much
more similar than in the bottom left plot. This can also be observed for age group 70–79, see the online
supplementary material for the relevant graphs. The reason for the much better ability of the LIFE index
to explain differences between regions for higher age groups as compared to the IMD might be the inclu-
sion of old-age income deprivation in the LIFE index rather than general income deprivation (which is
one of the domains of deprivation used for the IMD).

Another interesting feature we observe in Figure 14 and similar figures in the online supplemen-
tary material are the mortality improvement rates in London which seem to be much greater than in
other regions. Considering the oldest age group 80–89 and measuring deprivation using the IMD sug-
gests that mortality in London improved significantly more than in other areas even after accounting for
deprivation and that this improvement continued after 2011 when other regions have experienced no
or little improvements. However, measuring deprivation using the LIFE index changes this conclusion.
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The ADSMRs for the nine regions are very close together, and there is no London-effect visible for this
age range.

10. Summary and conclusion
We have introduced a new mortality index, the LIFE that uses socio-economic characteristics to explain
mortality rates in individual LSOAs. The LIFE index is constructed by first modelling the relationship
between mortality and explanatory variables as a non-parametric function and estimating that function
using the RF method. In a second step, the resulting regression function is adjusted to account for inflated
death counts in LSOAs with care homes so that the LIFE index is a good representation of the general
population.

Using the RF estimator of the relationship between socio-economic variables and relative mortality
risk, we are able to study the impact of specific variables in isolation. While we have only reported
results for three covariates in this paper, the proposed method allows for a much more detailed analysis.
However, our empirical results indicate that of all the covariates considered it is old-age income depri-
vation which has the highest explanatory power for mortality differences between LSOAs – the higher
old-age income deprivation the higher are the mortality rates in an LSOA.

While studying the impact of individual variables helps to understand to some extent how the LIFE
index allocates scores to LSOAs with certain characteristics, the impact of individual factors is still not
as clear as it is in parametric models. A careful analysis of the sensitivity of the LIFE index scores with
respect to changes in certain factors could serve as a first step in the development of a parametric (or
semiparametric) regression model in which estimated parameters have a clear interpretation.

Comparing the LIFE index with the widely used English Index of Multiple Deprivation shows that
the LIFE index is better able to explain regional variations in mortality with deprivation measures than
the IMD. However, keeping in mind that the IMD has not been constructed with reference to relative
mortality risk, we find that it actually is a good predictor for mortality differences. Nevertheless, for any
application with the goal of explaining mortality differences between different geographic locations in
England the LIFE index is more suitable than the IMD.

The proposed LIFE index could be further improved in different directions. Other covariates could,
of course, be considered. One LSOA-specific covariate that might be important is the average age in an
LSOA within a given age band (e.g. 60–69). The construction of the relative risk takes the age structure
of LSOAs into account (both expected and observed deaths are age dependent). However, it might be
that certain covariates have different effects in LSOAs with higher or lower average age. This is different
from considering different age ranges for fitting the relative risk to observed covariates.

Another extension of our index would be to make it time dependent. However, that would require the
measurement of the LSOA-specific relative risk for individual calendar years, which would increase the
variance of the observed relative risk substantially.

Acknowledgements. This work forms part of the research programme “Modelling, Measurement and Management of Longevity
and Morbidity Risk” funded by the Actuarial Research Centre of the Institute and Faculty of Actuaries, the Society of Actuaries
and the Canadian Institute of Actuaries. The authors gratefully acknowledge feedback from the respective steering and oversight
groups.

This study is also part of the research programme at the Research Centre for Longevity Risk – a joint initiative of NN Group
and the University of Amsterdam, with additional funding from the Dutch government’s Public Private Partnership programme.

Supplementary Material. To view supplementary material for this article, please visit http://doi.org/10.1017/asb.2023.12.

References
Bennett, J.E., Li, G., Foreman, K., Best, N., Kontis, V., Pearson, C., Hambly, P. and Ezzati, M. (2015) The future of life expectancy

and life expectancy inequalities in England and Wales: Bayesian spatiotemporal forecasting. Lancet, 386(9989), 163–170.
Bjerre, D.S. (2022) Tree-based machine learning methods for modeling and forecasting mortality. ASTIN Bulletin: The Journal

of the IAA, 52(3), 765–787.

https://doi.org/10.1017/asb.2023.12 Published online by Cambridge University Press

http://doi.org/10.1017/asb.2023.12
https://doi.org/10.1017/asb.2023.12


310 Jie Wen et al.

Breiman, L. (2001) Random forests. Machine Learning, 45(1), 5–32.
Cairns, A.J.G., Kallestrup-Lamb, M., Rosenskjold, C.P.T., Blake, D. and Dowd, K. (2019) Modelling socio-economic differences

in the mortality of Danish males using a new affluence index ASTIN Bulletin, 49, 555–590.
Cairns, A.J.G., Kleinow, T. and Wen, J. (2021) Drivers of mortality: Risk factors and inequality. Working Paper, Heriot-Watt

University. http://www.macs.hw.ac.uk/ndrewc/ARCresources/LIFEapp/LocalLinearRegression20210607.pdf
Chetty, R., Stepner, M., Abraham, S., Lin, S., Scuderi, B., Turner, N., Bergeron, A. and Cutler, D. (2016) The association between

income and life expectancy in the United States, 2001-2014. JAMA, 315(16), 1750–1766.
Díaz-Uriarte, R. and Alvarez de Andrés, S. (2006) Gene selection and classification of microarray data using random forest. BMC

Bioinformatics, 7(1), 3.
Hong, W.H., Yap, J.H., Selvachandran, G., Thong, P.H. and Son, L.H. (2021) Forecasting mortality rates using hybrid lee–carter

model, artificial neural network and random forest. Complex & Intelligent Systems, 7(1), 163–189.
James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013) An Introduction to Statistical Learning. New York, Heidelberg,

Dordrecht, London: Springer Press.
Levantesi, S. and Nigri, A. (2020) A random forest algorithm to improve the lee–carter mortality forecasting: Impact on q-forward.

Soft Computing, 24(12), 8553–8567.
Levantesi, S. and Pizzorusso, V. (2019) Application of machine learning to mortality modeling and forecasting. Risks, 7(1), 26.
Liaw, A. and Wiener, M. (2002) Classification and regression by RandomForest. R News, 2(3), 18–22. https://CRAN.R-

project.org/doc/Rnews/
Lyu, P., Li, J.S.-H. and Zhou, K.Q. (2022) Socioeconomic differentials in mortality: Implications on index-based longevity hedges.

Scandinavian Actuarial Journal, 1–29. https://doi.org/10.1080/03461238.2022.2104131
Mackenbach, J.P., Bos, V., Andersen, O., Cardano, M., Costa, G., Harding, S., Reid, A., Hemström, O., Valkonen, T. and Kunst,

A.E. (2003) Widening socioeconomic inequalities in mortality in six Western European countries. International Journal of
Epidemiology, 32(5), 830–837.

Mackenbach, J.P., Kulhánová, I., Menvielle, G., Bopp, M., Borrell, C., Costa, G., Deboosere, P., Esnaola, S., Kalediene, R.,
Kovacs, K., Leinsalu, M., Martikainen, P., Regidor, E., Rodriguez-Sanz, M., Strand, B.H., Hoffmann, R., Eikemo, T.A.,
Östergren, O., Lundberg, O. and Eurothine and EURO-GBD-SE consortiums (2015) Trends in inequalities in premature mor-
tality: A study of 3.2 million deaths in 13 European countries. Journal of Epidemiology and Community Health, 69(3), 207–17;
discussion 205–6.

Mayhew, L., Harper, G. and Villegas, A.M. (2020) An investigation into the impact of deprivation on demographic inequalities
in adults. Annals of Actuarial Science, 14(2), 358–383.

R Core Team (2021) R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna,
Austria. https://www.R-project.org/

Raleigh, V.S. and Kiri, V.A. (1997) Life expectancy in england: Variations and trends by gender, health authority, and level of
deprivation. Journal of Epidemiology & Community Health, 51(6), 649–658. https://jech.bmj.com/content/51/6/649

Smith, T., Noble, M., Noble, S., Wright, G., McLennan, D. and Plunkett, E. (2015) The English indices of deprivation 2015.
Research Report, Department for Communities and Local Government.

Villegas, A.M. and Haberman, S. (2014) On the modeling and forecasting of socioeconomic mortality differentials: An application
to deprivation and mortality in england. North American Actuarial Journal, 18(1), 168–193.

Wen, J. (2022) Multi-population and factor-based mortality analytics. Ph.D. Thesis, Heriot-Watt University, Edinburgh.
http://hdl.handle.net/10399/4554

Wen, J., Cairns, A.J.G. and Kleinow, T. (2021) Fitting multi-population mortality models to socio-economic groups. Annals of
Actuarial Science, 15(1), 144–172.

Wen, J., Kleinow, T. and Cairns, A.J.G. (2020) Trends in Canadian mortality by pension level: Evidence from the CPP and QPP.
North American Actuarial Journal, 24, 533–561.

Woods, L.M., Rachet, B., Riga, M., Stone, N., Shah, A. and Coleman, M.P. (2005) Geographical variation in life expectancy at
birth in england and wales is largely explained by deprivation. Journal of Epidemiology & Community Health, 59(2), 115–120.

https://doi.org/10.1017/asb.2023.12 Published online by Cambridge University Press

http://www.macs.hw.ac.uk/ndrewc/ARCresources/LIFEapp/LocalLinearRegression20210607.pdf
https://CRAN.R-project.org/doc/Rnews/
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1080/03461238.2022.2104131
https://www.R-project.org/
https://jech.bmj.com/content/51/6/649
http://hdl.handle.net/10399/4554
https://doi.org/10.1017/asb.2023.12

	Introduction
	Data
	Mortality data and relative risk
	Socio-economic characteristics

	The Longevity Index for England (LIFE)
	Modelling relative mortality risk
	Care homes
	The LIFE index

	Estimating the relative risk using the RF algorithm
	Overview
	Stage 1
	Stage 2
	Stage 3

	Fitting a single tree
	Many trees form a RF
	Hyperparameter selection (stage 1)
	Goodness-of-fit (stage 2)
	Robustness
	Final index values (stage 3)

	Fitting the LIFE index to different age groups
	The LIFE index versus the IMD
	Distribution of low- and high-risk groups across urban"2013`rural classes
	Impact of specific variables
	Deciles of the LIFE index
	Relative risk in different deciles
	Explanatory power of the LIFE index
	Explaining regional differences

	Summary and conclusion

