
3

Theories invariant under affine current algebras

In addition to being conformal invariant, it was shown in Chapter 1 that the
theory of a free massless scalar field admits also affine algebra currents J(z)
and J̄(z̄) which are holomorphically and anti-holomorphically conserved, namely
∂̄J(z, z̄) = ∂J̄(z, z̄) = 0. The existence of these currents, as was the case with the
energy-momentum tensor, implies that the theory is invariant under an infinite-
dimensional group of transformations. Inspired by this invariance of the free
scalar theory we would like to identify and investigate field theories equipped with
an affine current algebra (ACA), which is often refered to as Kac–Moody algebra
or affine Lie algebra (ALA). Conformal field theories (CFT) are characterized by
the Virasoro anomaly, the set of primary fields and the corresponding structure
constants. It will be shown in this chapter that theories with ACA admit a
similar algebraic structure and moreover that they are necessarily also CFTs.
Thus every ACA theory will be characterized by the Virasoro anomaly as well
as its ACA analog, the ACA level. Primary fields that have been defined so far
via their operator product expansion (OPE) with the T (z) and T̄ (z̄) will have
to obey certain OPE also with currents J(z) and J̄(z̄). The zero modes of the
free scalar affine currents J0 and J̄0 (1.57) commute, namely, they generate an
abelian group. For theories with “ordinary” non-affine currents the generalization
of the abelian group to non-abelian ones led (in four dimensions) to the standard
model of the basic interactions and in fact to an enormously rich spectrum of
interesting theories. It is thus very natural to explore the generalization of the
abelian ACA to non-abelian affine current algebras. The investigation of two-
dimensional theories which are invariant under transformations generated by
such affine currents is the subject of this chapter. We start with a brief reminder
of the properties of finite dimensional Lie algebras.

The topics included in this chapter are covered in several books and review
papers. In particular we have made use of the famous review by Goddard and
Olive [111], and the book by Di Francesco, Mathieu and Senechal [77].

3.1 Simple finite-dimensional Lie algebras

Consider the Lie algebra G,

[Ta , T b ] = ifab
c T c , (3.1)
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40 Theories invariant under affine current algebras

associated with a group G, namely, the set Ta are the generators of the group
G.1 We will consider simple groups, namely those that do not contain invari-
ant subgroups. Denote the maximal set of commuting Hermitian generators by
Hi, i = 1, . . . , r so that

[Hi,Hj ] = 0 i, j = 1, . . . , r. (3.2)

This abelian subalgebra of G is referred to as the Cartan subalgebra. It can
be shown that any two such abelian subalgebras with generators Hi and H̃i

are conjugate under the action of the group, namely, H̃i = gHig−1 for some
g ∈ G. The dimension of the Cartan subalgebra, which is the maximal number
of commuting generators is defined as the rank of the algebra G, rank (G) = r.

A basis of the full algebra G constitutes Hi and the step operators or ladder
operators Eα defined by,

[Hi,Eα ] = αiEα , i = 1, . . . , r. (3.3)

The r-dimensional vector α is called a root associated with the step operator Eα .
The roots are real and up to multiplication with a scalar there is a single Eα

associated with α via (3.3). No multiple of a given root α is a root apart from
−α which is the root paired with E−α = Eα †. The number of roots is obviously
(dimG − rankG).

The rest of the algebra are the commutation relations [Eα,Eβ ] which follow
from the Jacobi identity,

[Hi, [Eα,Eβ ]] = (αi + βi)[Eα,Eβ ], (3.4)

so that if (αi + βi) 	= 0 and is not a root, then [Eα,Eβ ] = 0. If on the other hand
(αi + βi) is a root then [Eα,Eβ ] must be a multiple of Eα+β . If (αi + βi) = 0 it
follows that [Eα,E−α ] ∼ α ·H.

To summarize the full algebra reads,

[Hi,Hj ] = 0 i, j = 1, . . . , rank(G)
[Hi,Eα ] = αiEα α = 1, . . . , (dim G− rank(G))
[Eα,Eβ ] = ε(αβ)Eα+β if α + β is a root

=
2α ·H

α2 if α + β = 0

= 0 otherwise. (3.5)

This basis of the algebra is a modified version of the Cartan–Weyl basis. The
constants ε(αβ) can be chosen to be ±1 if all the root vectors have the same
length.

1 Finite-dimensional Lie algebra is covered in many books, for instance Cahn [54].
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3.1 Simple finite-dimensional Lie algebras 41

It is straightforward to realize that the triplet of generators Eα,E−α , and α ·H
α2

is isomorphic to J+ , J−, J3 of an SU(2) algebra, namely,[
α ·H
α2 , E±α

]
= ±E±α , [E+α , E−α ] = 2

α ·H
α2 . (3.6)

Consequently the eigenvalues of 2α ·H
α2 , just like those of 2J3 , are integers in any

unitary representation. The eigenvalues associated with each root β is given by
2α ·β
α2 ∈ Z. It is natural to define the notion of coroot α∧ = 2α

α2 .

3.1.1 The Weyl group

Consider a root β such that 2α · β/α2 	= 0 is its eigenvalue under the operation
of 2α ·H

α2 . There must be another step operator Eβ+mα which is a member of the
SU(2) multiplet with the opposite eigenvalue, namely,

2α · β/α2 + 2m = −2α · β/α2 . (3.7)

Then m = −2α · β/α2 , and

β + mα = β − 2
(α · β)α

α2 = β − (α∧, β)α ≡ σα (β) (3.8)

is a root for each pair of roots α and β; σα (β) is a reflection in the hyperplane
perpendicular to α. The set of these reflections that permute the roots, generate
a finite group W (G), the Weyl group of G.

3.1.2 Cartan matrix and Dynkin diagrams

It is convenient to define the notion of simple roots as follows. Select a rank(G)
dimensional basis of the roots that consists of α(i) , i = 1, . . . , rank(G) in such a
way that any root α can be written as,

α =
rank G∑

i

niα(i) , (3.9)

where the ni are integers which are either all ni ≥ 0 or all ni ≤ 0. In the former
case α is positive, while in the latter it is negative. This base is called the basis
of simple roots. Associated with the simple roots one defines the simple Weyl
reflections σα ( i ) that generate the entire Weyl group.

The scalar products of simple roots define the Cartan matrix as follows:

Aij =
2α(i) · α(j )

α2
(j )

. (3.10)

The Cartan matrix is a rank(G)× rank(G) matrix with integer components and
with diagonal elements which take the value of 2. The off diagonal elements are
either negative or vanishing.
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Fig. 3.1. Dynkin diagrams for all the simple Lie algebras.

It can be shown that the roots of a simple Lie algebra can have at most two
different lengths, a long root and a short one. The ratio between their lengths
are either 2 or 3. When all the roots have the same length the algebra is a simply
laced algebra. From the Cartan matrix Aij one can reconstruct a basis of simple
roots up to a scale and overall orientation. In fact constructing all the roots from
the simple roots, one finds that full information on G is encoded in Aij .

The information contained in the Cartan matrix Aij may be encoded in a
planar diagram, the Dynkin diagram. The construction of such a diagram is as
follows:

� To each simple root α(i) assign a node in the diagram.
� If a node represents a short root mark it by a black dot, and if a long one by
a white dot.

� Join the points α(i) and α(j ) by AijAji lines. For i 	= j, AijAji can take the val-
ues of 0, 1, 2, 3. In fact since AijAji = 4cos2θij , where θij is the angle between
the two roots, then orthogonal simple roots are not connected, and those with
an angle of 120, 135, 150 degrees are connected with one, two, or three lines.

� In some conventions one does not separate between black and white dots, but
rather one draws an arrow pointing from α(i) to α(j ) when α2

(i) > α2
(j ) .

The Dynkin diagrams for all simple Lie algebras are given in Fig. [3.1].
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3.1 Simple finite-dimensional Lie algebras 43

3.1.3 Highest weight states

We now consider finite-dimensional representations of G other than the adjoint
representation that has been analyzed so far, the latter being the same as the
generators. We can always choose a basis {|μ〉} for which,

Hi |μ〉 = μi |μ〉. (3.11)

The rank(G) dimensional vector μ of eigenvalues of the Cartan subalgebra gener-
ators is called the weight vector. A root is a weight of the adjoint representation.
In a similar manner to their action as roots, the triplet Eα,E−α and 2α ·H/α2

form an SU(2) algebra and hence {|μ〉} must be an SU(2) multiplet, and in
particular,

2α · μ/α2 ∈ Z, (3.12)

for any root α.
This property of any given weight defines a lattice ΛW (G), the weight lattice

of the algebra G. The weights associated with a representation must be mapped
into one another under the operation of σα and in fact the whole Weyl group.
One can choose a basis for the weight lattice ΛW (G) consisting of fundamental
weights λ(i) such that,

2λ(i) · α(j )/α2
(j ) = δij . (3.13)

Any weight λ can then be expanded as λ =
∑

niλ(i) with integer coefficients ni . If
all ni ≥ 0, the weight λ is called a dominant weight. Every weight can be mapped
into a unique dominant weight by action of the Weyl group. The dominant weight
ρ =

∑
i λ(i) , where i = 1, . . . , rankG, is characterized by ρ · α > 0 for any positive

α and ρ · α < 0 for any negative α. In fact ρ = 1/2
∑

α where the sum is over
all the positive roots.

For any given finite-dimensional representation of G one defines the highest
weight state |μ0〉 for which ρ · μ0 is the largest. Such a state is annihilated by all
the raising operators,

Eα |μ0〉 = 0, (3.14)

for every α > 0. All the states of a given irreducible representation can be built
by acting on the highest weight state with lowering operators, namely, each state
takes the form,

E−β1 . . . .E−βn |μ0〉. (3.15)

In fact every irreducible representation has a unique highest weight state |μ0〉 and
the other weights μ have the property that μ0 − μ is a sum of positive roots. The
highest weight state is a dominant weight. In the opposite direction for each dom-
inant weight there is a unique irreducible representation for which it is the highest
weight state. As was mentioned for the adjoint representation the weights are
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the roots so that the corresponding highest weight state is the highest root. The
difference between the highest root and any other root is a sum of positive roots.

We end this subsection with an example. Consider the SU(3) algebra. The
Cartan matrix for this algebra takes the form,(

2 −1
−1 2

)
. (3.16)

The simple roots are related to the fundamental weights as α(1) = 2λ(1) −
λ(2) and α(2) = −λ(1) + 2λ(2) . The scalar products between the fundamental
weights are (λ(1) , λ(1)) = (λ(2) , λ(2)) = 2/3 and (λ(1) , λ(2)) = 1/3, using the stan-
dard normalization of (α(i) , α(i)) = 2. The full Weyl group is given by W =
{1, σ1 , σ2 , σ1σ2 , σ2σ1 , σ1σ2σ1}. The action of the different elements of the Weyl
group on the two simple roots gives all roots.

The root system and the Weyl chambers are given in Fig. 3.2. The Weyl cham-
bers are separated by the dashed lines, and are specified here by the elements of
the Weyl group, with the latter denoted in the figure by si . The Weyl chambers
are defined by,

Cω = {λ|(ωλ, αi) ≥ 0, i = 1 . . . r}.

3.2 Affine current algebra

In the previous subsection we acquired a certain familiarity with the notions of
roots, highest weights, Cartan matrices, Dynkin diagrams etc., in the context of
a simple Lie algebra. As was explained in the introduction to this chapter, two-
dimensional CFTs are characterized by an extended algebraic structure, that of
affine Lie algebra.2 We now describe the basic properties of the affine Lie algebra
using the notions of the previous subsection.

2 Affine Lie algebras were introduced into the physics literature by Bardacki and Halpern in
[27]. Independently V. Kac [136] and R.V. Moody [164] introduced them in the mathematical
literature.
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3.2 Affine current algebra 45

The basic ALA is given by,

[Ja
m , Jb

n ] = ifab
c Jc

m+n + k̂mδabδm+n,0 , (3.17)

where the central element k̂ commutes with all the generators Ja
m , namely,

[Ja
m , k̂] = 0.
We now use a generalization of the Cartan–Weyl basis to the affine algebra as

follows:

[Hi
m ,Hj

n ] = k̂mδij δm+n,0

[Hi
m ,Eα

n ] = αiEα
m+n ,

[Eα
m ,Eβ

n ] = ε(αβ)Eα+β
m+n if α + β is a root

=
2
α2 (α ·Hm+n + k̂mδm+n ) if α + β = 0

= 0 otherwise.

[Hi
m , k̂] = [Eα

n , k̂] = 0. (3.18)

We have used the normalization (Hi,Hj ) = δij , (Eα,Eβ ) = 2
α2 δα+β , where

(X,Y ) denotes the Killing form, defined as the trace of the product in the adjoint
representation, Tr(adX, adY ). The hermiticity properties are,

Hi
m

†
= Hi

−m , Eα
m

† = E−α
−m , k̂† = k̂ (3.19)

Unlike the simple Lie algebra, here we have an r + 1 dimensional abelian sub-
algebra consisting of [H1

0 , . . . , Hr
0 , k̂]. With respect to these generators, Eα

m are
step operators,

[Hi
0 , E

α
m ] = αiEα

m [k̂, Eα
n ] = 0. (3.20)

Each of the eigenvectors (α1 , . . . , αr , 0) is infinitely degenerate since it is indepen-
dent of m. Moreover this abelian subalgebra is not maximal since [Hi

0 ,H
j
n ] = 0.

Thus one has to extend the algebra by adding a grading operator which can be
taken to be L0 such that,

[L0 , J
a
n ] = −nJa

n [L0 , k̂] = 0. (3.21)

Using the generators (Hi
0 , k̂,−L0) as in the Cartan subalgebra we have as the

step operators Eα
n corresponding to a root (α, 0, n) and Hi

n corresponding to
(0, 0, n).

The root system of ALA is thus infinite but spans an (r + 1) dimensional space.
We can divide the roots into positive and negative according to the following rule:

(α, 0, n) > 0 if n > 0, or if n = 0 and α > 0 (3.22)

The basis of the simple roots can therefore be taken as,

α(i) = (αi, 0, 0), 1 ≤ i ≤ r

α(0) = (−θ, 0, 1), (3.23)
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46 Theories invariant under affine current algebras

where αi is the basis of simple roots of the Lie algebra, and θ is the highest root.
Thus an arbitrary root of the ALA can be expressed as,

α =
r∑

i=0

niα(i) . (3.24)

It is positive if ni ≥ 0 and negative when ni ≤ 0, and these are the only two
posibilities.

3.2.1 Cartan matrix and Dynkin diagrams

The first step is to define the scalar product 〈X,Y 〉 which has to be symmetric
and obey the relation,

〈X, [Y,Z]〉+ 〈Y, [X,Z]〉 = 0

for X,Y, Z ∈ ĝ, the ALA. Upon using a convenient normalization one can bring
the basic scalar products to the following form,

〈Ta
m , T b

n 〉 = δabδm+n

〈Ta
m ,−L0〉 = 0

〈Ta
m , k̂〉 = 1

〈k̂, k̂〉 = 1

〈k̂,−L0〉 = 1

〈−L0 ,−L0〉 = 0. (3.25)

The last relation is actually a choice, following on from the invariance of the
algebra under a shift of L0 by a multiple of k̂. Here we use T instead of δ used
previously.

In the following Hermitian basis,

T i
0 ,

(T i
m + T i

−m )√
2

,
(k̂ − L0)√

2
,

(k̂ + L0)√
2

, (3.26)

the scalar product is Lorentzian since the norm of all the first three basis vectors
is +1 while that of (k̂+L0 )√

2
is −1.

The Lorentzian signature holds also for the Cartan sub-algebra (CSA) genera-
tors. One can define the scalar product of two vectors of simultaneous eigenvalues
of the CSA,

mi = (μi, μi
k , μi

−L0
), mj = (μj , μj

k , μj
−L0

)

to be,

mi ·mj = μi · μj + μi
k · μ

j
−L0

+ μi
−L0
· μj

k . (3.27)

In particular the scalar product of two roots,

ai = (αi, 0, ni), aj = (αj , 0, nj )
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is

ai · aj = αi · αj . (3.28)

The root that corresponds to Eα
n , a = (α, 0, n) has a norm a2 = α2 > 0 and hence

is referred to as a space-like root, whereas the root that is associated with Hi
n ,

nδ = (0, 0, n) has zero norm (light-like) and is orthogonal to all other roots. We
have used the “unit” of δ = (0, 0, 1).

The Cartan matrix of ĝ, which is an (r + 1)× (r + 1) matrix, is defined in a
similar way to one of the Lie algebra, namely,

Aij =
2a(i) · a(j )

a2
(j )

0 ≤ i, j ≤ r. (3.29)

We add to the Cartan matrix of the Lie algebra, the extra row and column Ai0

and A0i which can be found using (3.10) with α0 = −θ. Now from the definition
of the fundamental weight it follows that θ = −

∑r
i=0 A0iλi . Since θ is a long

root of g, namely, θ2 ≥ α2
(i) one gets that,

−Ai0 = 1 if A0i 	= 0

−Ai0 = 0 if A0i = 0, (3.30)

provided that θ is not itself a simple root, as happens for SU(2). The Dynkin
diagram of ĝ is obtained using that of g appended with an extra point that
corresponds to α0 connected by −A0i lines to the points a(i) . If −A0i > 1 an
arrow is drawn which points toward a(0) . We demonstrate the construction in
the following example:

ŜU(2) - There are only two simple roots a(0) = (−α, 0, 1) and a(1) = (α, 0, 0)
so that A0i = Ai0 = −2 and the Cartan matrix is(

2 −2
−2 2

)
. (3.31)

Thus, there are two roots of equal length connected by four lines with arrows
pointing in both directions to indicate that a2

(0) is equal to a2
(1) .

The Dynkin diagrams of the affine simple algebra are shown in Fig. 3.3. The
point that corresponds to α(0) is marked by a zero. The black dots relate to the
notion of twisted affine Lie algebra which we do not discuss here (see for example
[111]).

3.2.2 The Weyl group

The Weyl group of ĝ is defined in a similar way to that of g, namely it is generated
by reflections in the hyperplanes normal to a,

σa(b) = b− 2
(

b · a
a2

)
a = (σα (β), 0, na − 2

(
α · β
α2

)
nβ ), (3.32)
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Fig. 3.3. Dynkin diagrams for all the affine simple Lie algebras.

for a = (α, 0, nα ) and b = (β, 0, nβ ) a space-like root. Light-like roots are invari-
ant under such reflections σa(nδ) = nδ. In fact the Weyl group of ĝ is a semi-
direct product of the Weyl group of g and the coroot lattice of g which is the
lattice generated by the coroots αν = α

α2 . The coroots form the root system of
the Lie algebra dual to g obtained by interchanging the root lengths. The simply
laced algebras An,Dn ,En are obviously self-dual, as are F4 and G2 , whereas
Bν

n = Cn and Cν
n = Bn .

3.2.3 Highest weight representations

A highest weight state |μ̂0〉 is a state that is annihilated by all the raising oper-
ators for positive roots, namely,

Eα
0 |μ̂0〉 = E±α

n |μ̂0〉 = Hi
n |μ̂0〉 = 0, (3.33)

for n > 0, α > 0. The eigenvalue of this state is the highest weight vector μ̂0 =
(μi

0 , k, h) given by,

Hi
0 |μ̂0〉 = μi

0 |μ̂0〉, k̂|μ̂0〉 = k|μ̂0〉, L0 |μ̂0〉 = h|μ̂0〉. (3.34)

We can set h to zero as a matter of convention. A highest weight representation
is characterized by a unique highest weight state. To have a unitary highest
weight representation the following necessary and sufficient conditions have to
be obeyed:

2k

θ2 ∈ Z k ≥ θ · μ0 ≥ 0. (3.35)
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3.3 Current OPEs and the Sugawara construction 49

The non-negative integer 2k
θ2 is the level of the representation. Any state in

the representation is characterized by a weight vector μ̂ = (μi, k, h) such that
μ0 − μ is a sum of positive roots. Introduce now a set of fundamental weights
l(i) for ĝ, i = 0, . . . r, such that 2l(i) · a(j )/a2

(j ) = δij . The general solution of the
condition 2a · μ̂/θ2 ∈ Z, which is equivalent to the condition Eq. (3.35) for a =
a(0) = (−θ, 0, 1), now takes the form μ̂0 =

∑r
i=0 nil(i) , where ni are non-negative

integers, apart from the indeterminate component in the L0 direction. For l(i)
one finds,

l(i) =
(

λ(i) ,
1
2
miθ

2 , 0
)

l(0) =
(

0,
1
2
m0θ

2 , 0
)

, (3.36)

where m0 = 1 and where the integers mi are defined via θ/θ2 =∑r
i=0 miα(i)/α2

(i) . The corresponding level is given by,

level =
r∑

i=0

nimi. (3.37)

Level 1 representations are thus associated with highest weights l(i) with all
mi = 1. Those are indicated by open points in Fig. 3.3.

From the definition of mi it follows that,
r∑

i=0

Aijmj = 0. (3.38)

Since the Cartan matrix has the basic symmetry of the extended Dynkin dia-
gram, also the positions of the open dots have to preserve this symmetry. For
the classical groups Ar ,Br , Cr ,Dr the values of mi for the closed dots is 2. For
the exceptional groups the vector (m0 , . . . , mr ) is as follows

Ê6 (1, 1, 2, 2, 3, 2, 1)

Ê7 (1, 2, 2, 3, 4, 3, 2, 1)

Ê8 (1, 2, 4, 6, 5, 4, 3, 2, 1)

F̂ 4 (1, 2, 3, 2, 1)

Ĝ2 (1, 2, 1) (3.39)

3.3 Current OPEs and the Sugawara construction

In Section 1.8 for the free scalar theory it was shown that the OPE of two currents
J(z)J(w) takes the form of J(z)J(w) = 1

(z−w )2 + finite terms. This type of OPE,
which corresponds to the abelian ALA, is generalized following the discussion in
Section 3.2 to,

Ja(z)Jb(w) =
kδab

(z − w)2 + i
fab

c Jc(w)
(z − w)

+ finite terms. (3.40)
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We can now use the OPE to evaluate the infinitesimal transformation of the
current under ALA transformations,

δεJ
a(w) =

1
2πi

∮
w

dzεb(z)Jb(z)Ja(w)

=
1

2πi

∮
w

dzεb(z)
[

kδab

(z − w)2 + i
fab

c Jc(w)
(z − w)

]
= ifa

bcε
bJc − k∂εa . (3.41)

The same structure also holds for J̄a(z̄).
The OPE form of the ALA can be transformed into a commutator form of the

algebra. We introduce a Laurent expansion of the currents,

Ja(z) =
∑

n

Ja
n z−(n+1) Ja

n =
1

2πi

∮
dzznJa(z). (3.42)

Substituting the OPE into the expression of the commuation relation we indeed
find the ALA of (3.17), namely

[Ja
m , Jb

n ] = ifab
c Jc

m+n + k̂mδabδm+n,0 . (3.43)

In free scalar theory there are two “currents” which are holomorphically con-
served, J and T , and moreover the energy-momentum tensor is bilinear in J ,
as was shown in Section 1.5. We now elevate this special case into a general
construction of T for theories which admit ALA structure. The construction is
known as the Sugawara construction. One writes T as a normal ordered product
of the currents,

T (z) =
1
2κ

: Ja(z)Ja(z) : (3.44)

with a coefficient κ that has to be determined quantum mechanically. In fact,
one way to determine κ is by requiring that Ja is a primary field of weight 1,
namely,

T (z)Ja(w) =
Ja

(z − w)2 +
∂Ja(w)
(z − w)

. (3.45)

Using the OPE (3.40) and the relation −fab
c fc

bd = 2Cδa
d , where C is the dual

Coxeter number, we find that (k+C )
κ = 1 so that the form of the Sugawara con-

structed T is,

T (z) =
1

2(k + C)
: Ja(z)Ja(z) : (3.46)

Note that the Casimir of the adjoint is 2C. Note also that in Section 1.5, for the
free scalar case, we had a relative minus sign, due to a difference of factor i in
defining the currents there.

In the WZW models discussed in the next section, classically one has T with a
coefficient of 1

2k . It is thus clear that for those models quantum mechanically, due
to the double contraction, we get a finite renormalization of the level k → k + C.
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3.4 Primary fields 51

Here we have used currents which are in an orthonormal basis. If instead
we express the current in the Cartan–Weyl basis used in the previous sections,
the form of T in terms of the Cartan sub-algebra generators Hi and the step
operators Eα is,

T (z) =
1

2(k + C)

[
: Hi(z)Hi(z) : +

|α|2
2

(EαE−α + E−αEα )
]

. (3.47)

The OPEs (3.45) and (3.40) also enable us to determine c, the Virasoro
anomaly of the model, via the computation,

T (z)T (w) = T (z)
1

2(k + C)
: JaJa : (w)

=
1

(k + C)

{
Ja(z)Ja(w)

(z − w)2 +
∂Ja(z)Ja(w)

(z − w)

}
=

1
(k + C)

{
k(dim G)
(z − w)4 +

: JaJa : (w)
(z − w)2 +

1
2

∂ : JaJa : (w)
(z − w)

}
=

1
(k + C)

k(dim G)
(z − w)4 + 2

T (w)
(z − w)2 +

∂T (w)
(z − w)

. (3.48)

We thus read off the Virasoro anomaly

c =
kdim G

k + C
. (3.49)

The construction of T in terms of a normal ordered product of two currents
calls for combining together the ALA and the Virasoro algebra. Substituting into
(3.46) the mode expansions, of T (z) in terms of Ln and of J(z) in terms of Jn ,
one finds that,

Ln =
1

2(k + C)

∑
m

: Ja
n−m Ja

m : (3.50)

where here the normal ordering implies putting the currents with positive m to
the right. In fact normal ordering is required only for L0 .

Using this relation, we write down the full Virasoro algebra and ALA,

[Ln , Lm ] = (n−m)Ln+m +
c

12
(n− 1)n(n + 1)δ(n + m)

[Ln , Ja
m ] = −mJa

m+n

[Ja
m , Jb

n ] = ifab
c Jc

m+n + k̂mδabδm+n,0 . (3.51)

In mathematical terminology the Virasoro algebra belongs to the enveloping
algebra of the ALA.

3.4 Primary fields

Recall that the operators of any CFT were shown to be either Virasoro primaries
or descendants. The former were defined by their OPE with T . In a similar
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manner ALA primaries Φl,l̄(z, z̄) are defined via their OPE with J ,

Ja(z)Φl,l̄(w, w̄) =
Ta

l Φl,l̄(w, w̄)
(z − w)

J̄a(z)Φl,l̄(w, w̄) =
Ta

l̄
Φl,l̄(w, w̄)
(z̄ − w̄)

, (3.52)

where Ta
l , T a

l̄
are the matrix Ta in the l, l̄ representations, for the holomorphic

and antiholomorphic sectors, respectively. From here on we discuss only holo-
morphic properties. In terms of the Laurent components Ja

n the condition for a
primary field reads,

Ja
n Φl,l̄(0, z̄) = 0 for n > 0; Ja

0 Φl,l̄(z, z̄) = Ta
l Φl,l̄(z, z̄). (3.53)

In theories where the energy-momentum tensor can be constructed in a Sug-
awara construction it is easy to see that the ALA primaries are also Virasoro
primaries. Indeed, using (3.50) we see that Ln for n > 0 annihilates the ALA
primary. For L0 acting on the primaries we get,

L0Φl =
1

2(k + C)
Ja

0 Ja
0 Φl =

C2(l)
2(k + C)

Φl . (3.54)

Thus the primaries in theories equipped with the Sugawara construction, for
instance the WZW models that will be discussed in the next section, obey (3.53)
and also,

LnΦl,l̄(0, z̄) = 0 for n > 0; La
0Φl,l̄(z, z̄) =

C2(l)
2(k + C)

Φl,l̄(z, z̄). (3.55)

Recall that T is not a Virasoro primary but rather is a descendant of the identity
T (0) = L−2I. The same applies to J(z). From the mode expansion (3.42) it is
clear that,

Ja(0) = Ja
−1I. (3.56)

Note however that Ja(z) is a Virasoro primary. Apart from the distinguished
descendant J there are descendant operators of all the primaries. In fact all the
local operators can be written as,

Ja1
−n1

. . . JaN
−nN

J̄ ā1
−n̄1

. . . J̄
āN̄
−n̄ N̄

Φl,l̄(z, z̄), (3.57)

and in the case of a Sugawara construction all the operators are of the form,

L−m 1 . . . L−mM
L̄−m̄ 1 . . . L̄−m̄ M̄

Ja1
−n1

. . . JaN
−nN

J̄ ā1
−n̄1

. . . J̄
āN̄
−n̄ N̄

Φl,l̄(z, z̄). (3.58)

3.5 ALA characters

In Section 2.8 we introduced the notion of the Virasoro character (2.45) which
characterizes the structure of the Virasoro Verma module. In a complete analogy
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3.6 Correlators, null vectors and the Knizhnik–Zamolodchikov equation 53

let us now define a character of the CFT and ALA module λ̂ as follows:

χλ̂(zj , τ) = e−im λ̂ δT rλ̂ [e2πiτ L0 e−2πi
∑

j zj hj

], (3.59)

where mλ̂ , δ and hj are the generators of the Cartan subalgebra associated with
the group, and zj are complex numbers. The character can also be expressed in
terms of the generalized theta function Θλ̂ in the following form:

χλ̂(zj , τ) =

∑
w∈W ε(w)Θw (λ̂+ ρ̂)∑

w∈W ε(w)Θwρ̂
, (3.60)

where the sums are over the elements of the finite Weyl group, ε(w) = (−1)l(w )

with l(w) the length of w.
Rather than defining the generalized theta function for any ALA at any level,

we define here only the function for ŜU(2) level k. For this case we have,

Θ(k)
λ1

(z; τ ; t) = e−2πkt
∑
n∈Z

e−2πi[knz+ 1
2 λ1 z−kn2 τ−

λ 2
1 τ

4 k ]. (3.61)

with Θ(k)
λ1

(z; τ ; o) ≡ Θ(k − λ1 , λ1) (see [77] for details).
In terms of this function the character of ŜU(2)k takes the form,

χλ̂ =
Θ(k+2)

λ1 +1 −Θ(k+2)
−λ1 −1

Θ(2)
1 −Θ(2)

−1

, (3.62)

where λ̂ = [k − λ1 , λ1 ]. For the special point (z = 0, t = 0) the character
expressed in terms of q = e2πiτ reads,

χλ̂(q) = q
(λ 1 + 1 ) 2

4 (k + 2 ) − 1
8

∑
n∈Z [λ1 + 1 + 2n(k + 2)]qn [λ1 +1+(k+2)n ]∑

n∈Z [1 + 4n]qn [1+2n ] . (3.63)

For level one and for k = λ1 = 1 we get,

χλ̂(q) = q
5

2 4
(2− 4q + 8q5 − 10q8 + . . .)

(1− 3q + 5q3 − 7q6 + 9q10 + . . .)

= q
5

2 4 (2 + 2q + 6q2 + 8q3 + . . .). (3.64)

The content of the four first grades of the module [k − λ1 = 0, λ1 = 1] is
(1), (1), (3)⊕ (1), (3)⊕ 2(1), so that the number of the states in these different
grades is indeed 2,2,6 and 8 as in the expression of the character.

3.6 Correlators, null vectors and the
Knizhnik–Zamolodchikov equation

Correlators of Virasoro primaries were subjected to local and global Ward identi-
ties, (2.61) and (2.56), respectively. We now derive their ALA duals. Performing
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54 Theories invariant under affine current algebras

a group transformation of a given correlator,〈∮
dz

2πi
εa(z)Ja(z)φl1 (w1 , w̄1) . . . φln (wn, w̄n )

〉
=

n∑
i=1

〈
φl1 (w1 , w̄1) . . .

∮
dz

2πi
εa(z)Ja(z)φli (wi, w̄i) . . . φln (wn, w̄n )

〉

=
n∑

i=1

〈φl1 (w1 , w̄1) . . . δεφli (wi, w̄i) . . . φln (wn, w̄n )〉 . (3.65)

Now from the OPE (3.52) we know that δεφli (wi, w̄i) = εa(wi)Ta
li
φli (wi, w̄i).

Since this holds for arbitrary ε we can get a local form of the Ward identity in
the form,

〈Ja(z)φl1 (w1 , w̄1) . . . φln (wn, w̄n )〉 =
n∑

i=1

Ta
li

(z − wi)
〈φl1 (w1 , w̄1) . . . φln (wn, w̄n )〉 .

(3.66)
As for the global Ward identity, we use the fact that the correlator has to be
invariant under global g transformations (constant εa), namely,

δa
ε 〈φl1 (w1 , w̄1) . . . φln (wn, w̄n )〉 = 0,

leading to
n∑

i=1

Ta
li 〈φl1 (w1 , w̄1) . . . φln (wn, w̄n )〉 = 0. (3.67)

Null vectors of CFTs were found to be useful in Section 2.9, since they lead to
differential equations for certain correlators. In a similar manner one can write
down null vectors of ALA. In the context of the Sugawara construction, due
to the link between the Virasoro algebra generator T and the ALA generators
Ja , there are null vectors that combine generators from both infinite algebras.
We discuss now an important example of this class that leads to the Knizhnik–
Zamolodchikov equations. Consider, at Virasoro level one, the following null
vector,

|null> =
{

L−1 −
1

k + C
Ja
−1T

a
li

}
|Φli>. (3.68)

It is easy to see that this is indeed a null state, following (3.52). If we insert
the corresponding null operator into a correlation function of primary fields, like
<Φ1(z1) . . . null(zi) . . . Φn (zn )>, the latter must vanish and hence we get,⎧⎨⎩∂i −

1
k + C

∑
j �=i

T a
i T a

j

(zi − zj )

⎫⎬⎭ <Φ1(z1) . . . Φn (zn )> = 0. (3.69)
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In the derivation, we use,

<Φ1(z1) . . . Ja
−1Φi(zi) . . . Φn (zn )>

=
1

2πi

∮
zi

dz

z − zi
<Φ1(z1) . . . Ja(z)Φi(zi) . . . Φn (zn )>

=
1

2πi

∮
zi ,j �=i

dz

z − zi

∑
j �=i

T a
j

(z − zj )
<Φ1(z1) . . . Φj (zj ) . . . Φn (zn )>

=
∑
j �=i

T a
j

(zi − zj )
<Φ1(z1) . . . Φn (zn )> . (3.70)

For the case of four-point functions, as the correlator depends only on the cross-
ratio coordinate Z = z1 2 z3 4

z1 3 z2 4
, the partial differential equations reduce to an ordi-

nary differential equation. In Section 4.4 we will demonstrate a solution of the
Knizhnik–Zamolochikov equation for a four-point function.

3.7 Free fermion realization

In the previous chapter the theories of massless free Dirac and Majorana fermions
were analyzed as examples of CFTs. In particular it was shown that the Dirac
fermion admits an abelian ALA structure. It is thus natural to expect that the
theory of N fermions should be invariant under the transformations associated
with non-abelian ALAs.3 Indeed, it will be shown in this section that an ŜO(N)
ALA, and a Û(N) are the underlying algebraic structures of N free massless
Majorana fermions and N Dirac fermions, respectively. We start with the former
case.

3.7.1 Free Majorana fermions and ŜO(N)

Consider a generalization of the action given in Section 2.11 for N Majorana
fermions,

S =
1
8π

∫
d2z

N∑
i=1

{ψi∂̄ψi + ψ̃i∂ψ̃i}, (3.71)

where ψ and ψ̃ are left and right Weyl–Majorana fermions, respectively. Note
that this is possible in 2d, and in any other dimension that is 2 modulu 8. In 4d,
for example, we do not have a Weyl–Majorana fermion, as in the case of a single
Majorana fermion, due to the equations of motion,

ψ ≡ ψi(z) ψ̃ ≡ ψ̃i(z̄). (3.72)

3 The free fermion realization of ALA was presented for the first time in [27].
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56 Theories invariant under affine current algebras

However, unlike the case of a single fermion, here the action is invariant under
transformations associated with ŜO(N) affine algebra generated by the following
holomorphically (anti-holomorphically) conserved currents,

Ja(z) =
1
2
ψiT a

ijψ
j J̄a(z̄) =

1
2
ψ̃iT a

ij ψ̃
j , (3.73)

where Ta are SO(N) matrices which can be expressed as,

Ta
ij ≡ t

(kl)
ij = i(δk

i δl
j − δk

j δl
i). (3.74)

The coefficients (halfs) are not determined by the Noether procedure, but are
chosen in a manner that will be explained below.

The Ta
ij matrices obey the relations,

Tr[TaT b ] = 2δab∑
a

T a
ijT

a
kl = −δik δj l + δilδjk∑

ab

fabcfabd = 2(N − 2)δcd . (3.75)

The anticommutation relation and the OPE generalize in an obvious way those
of the single Majorana fermion, namely,

{ψi(x0 , x1)ψj (y0 , y1)}|x0 =y0 =
1
2
δij δ(x1 − y1) (3.76)

and

ψi(z)ψj (w) =
δij

z − w
ψ̃i(z)ψ̃j (w) =

δij

z̄ − w̄
. (3.77)

Now using this OPE one can derive the OPE of two currents and verify that
they take the form of (3.40),

Ja(z)Jb(w) =
1
4

: ψi(z)Ta
ijψ

j (z) :: ψk (w)T b
klψ

l(w) :

=
1
4
Ta

ijT
b
kl

[
−
(

: ψi(z)ψk (w) : +
δik

z − w

)
ψj (z)ψl(w)

+
(

: ψi(z)ψl(w) :
δil

z − w

)
ψj (z)ψk (w)

]
=

1
4
Ta

ijT
b
kl

1
z − w

[−δik : ψj (z)ψl(w) : +δil : ψj (z)ψk (w) : +δjk : ψi(z)ψl(w) :

− δjl : ψi(z)ψk (w) :] +
1
4
Ta

ijT
b
kl

1
(z − w)2

[
−δik δj l + δilδjk

]
. (3.78)

By expanding the fields that are functions of z around w and using the relations
above one finds that indeed the OPE of the two currents take the form of (3.40),
namely,

Ja(z)Jb(w) =
1δab

(z − w)2 +
fab

c Jc(w)
(z − w)

+ finite terms (3.79)

It is thus clear that this is a realization of an ŜO(N) ALA of level k = 1.
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The Noether currents associated with the conformal transformations, the
energy-momentum tensor T (T̄ ) is just the sum of T (T̄ ) associated with each
one of the N Majorana fermions, hence,

T (z) = −1
2

∑
i

: ψi∂ψi : T̄ (z̄) = −1
2

∑
i

: ψ̃i ∂̄ψ̃i : . (3.80)

Since the Virasoro anomaly of a single Majorana fermion is c = 1
2 it is clear that

the theory of N fermions has c = N
2 .

In Section 2.12 it was shown that T of a Dirac fermion could be transformed
into a Sugawara form, T (z) = − 1

2 : J(z)J(z) :, where J(z) was the U(1) current.
Since we will show below that the Sugawara form is the underlying structure of
the important class of WZW models, it is a natural question to ask whether also
in the present case for the N fermions T can be put into a Sugawara construction.

Now, using the expression for the Virasoro anomaly for a theory with ŜO(N)1 ,
we find, as we saw before, that,

c =
dimG

k + C
=

1
2 N(N − 1)
1 + (N − 2)

=
N

2
. (3.81)

3.7.2 Primary fields

Similarly to the case of a single Majorana field, the OPE of T (z)ψi(w) is,

T (z)ψi(w) =
1
2

ψi

(z − w)2 +
∂ψi

z − w
, (3.82)

which implies that ψi are N primary fields of conformal dimensions ( 1
2 , 0), and

similarly ψ̃i has dimension (0, 1
2 ).

Is the primary field Φ(1/2,1/2)(zz̄) = ψ(z)ψ̃(z̄) the only primary operator (in
addition to the identity operator that corresponds to the vacuum state)? For the
primaries of the ALA ŜO(N)1 we find (see (2.13)) that there is also one primary
operator with dimension N

16 for odd N , and two primary operators for even N .
These additional primaries transform in the spinor representation of ŜO(N)1 .

Can one construct these primaries in terms of the fermionic fields ψ and ψ̃ ?
The situation here is similar to the one in the Ising model. In fact, using the spin
operator σ(z, z̄) or its dual, one indeed gets from the N independent Majorana
fermion theories, the dimension N

16 and the number of degrees of freedom 2N ,
which are identical to the dimension of the spinor representation.

So far we have shown the free fermion construction of ŜO(N)1 , namely, of
the ALA at level 1. We would now like to investigate the possibility of having
free fermion realization also to the affine Lie algebra at higher levels. Going
through our previous derivation it is clear that the ALA structure of the OPE
of two currents (3.40), applies to fermions at any representation. For a given
representaion ρ the corresponding level k is determined from the first term on
the right-hand side, namely Tr(TaT b) = 2kδab . Now since for a representation ρ,
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Tr(Ta
ρ T b

ρ ) = 2D2(ρ)δab where D2(ρ) is the Dynkin index of the representation,
it is clear that free fermions constitute a realization of ŜO(N) at level D2(ρ).

3.8 Free Dirac fermions and the Û(N)

Consider the theory of N Dirac fermions described by the following action,

S =
1
4π

∫
d2z{ψi†∂̄ψi + ψ̃i†∂ψ̃i}. (3.83)

In terms of symmetries, the difference between this theory and the one of a single
Dirac fermion, is that now there is an invariance under U(N) left holomorphic
and right anti-holomorphic transformations, namely,

ψ → ψ′ = g(z)ψ ψ̃ → ψ̃′ = ḡ(z̄)ψ̃, (3.84)

where g(z), ḡ(z̄) ∈ U(N). The associated holomorphic currents are given by,

Ja = ψi†Taj
i ψj J = ψi†ψi, (3.85)

where J is the U(1) current, Ja(z) are the SU(N) currents and Taj
i are matrices

in the adjoint of SU(N), that obey

Tr[TaT b ] = δab∑
a

T a
ijT

a
kl = δilδjk −

1
N

δij δkl∑
ab

fabcfabd = Nδcd. (3.86)

Using the OPEs of the fermions, it is straightforward to realize that the cur-
rents indeed constitute the OPEs that correspond to a Û(N) of level k = 1,

Ja(z)Jb(w) =
1δab

(z − w)2 +
fab

c Jc(w)
(z − w)

+ finite terms

J(z)J(w) =
1

(z − w)2 + finite terms

Ja(z)J(w) = finite terms. (3.87)

Similar to the case of Majorana fermions, the Noether current T is given by,

T (z) = T (z)U (1) + T (z)SU (N ) = −1
2
[ψi†∂ψi − ∂ψi†ψi ], (3.88)

and can be reexpressed in terms of a Sugawara form,

T (z)U (1) =
1

4N
: ψ†i

ψiψ
†j

ψj :

T (z)SU (N ) =
1

2(N + 1)

∑
a

: ψ†i
T aψiψ

†j
T aψj : . (3.89)
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Since a Dirac fermion has a c = 1 Virasoro anomaly, it is clear that the theory of
N Dirac fermions has c = N . This is also the outcome of the Virasoro anomaly
associated with the Sugawara form as follows,

cU (1) + cSU (N ) = 1 +
N 2 − 1
N + 1

= N. (3.90)
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