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ON SEPARABLE A1
-FORMS

AMARTYA KUMAR DUTTA

Abstract. We show that for any field k, separable A
1-forms over commutative

k-algebras are trivial.

Introduction

Suppose that k is a field and A a commutative k-algebra. An A-algebra

B is said to be an A
1-form over A (with respect to k) if B ⊗k k is a

polynomial ring in one variable over A⊗k k, where k denotes the algebraic

closure of k. It is well-known that if k is a perfect field then any A
1-form

over k is a polynomial ring in one variable over k (see Lemma 5 below).

This need not be true if k is not perfect. In [BD, 3.7], it was shown that if A

is a noetherian normal k-domain over a perfect field k and B is an A
1-form

over A (with respect to k) then B is A-isomorphic to the symmetric algebra

of an invertible ideal of A. In this paper we show that this result can be

extended to any commutative k-algebra A. More precisely, we prove the

following:

Theorem. Let k be a field, A a commutative k-algebra and L a sep-

arable field extension of k. Let B be an A-algebra such that B ⊗k L is

isomorphic to the symmetric algebra of a finitely generated rank one pro-

jective module over A⊗k L. Then B is isomorphic to the symmetric algebra

of a finitely generated rank one projective module over A.
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Main Theorem

We first fix some notations and terminology. Throughout this paper

all rings will be assumed to be commutative with unity. For a ring R, R[n]

denotes a polynomial ring in n variables over R and R∗ the group of units

of R.

A finitely generated flat A-algebra B is said to be an A
n-fibration if

BP /PBP = (AP /PAP )[n] for all P ∈ SpecA. An A-algebra B is said to

be locally A
n if BP = AP

[n] for each maximal ideal P of A. By a result

of Bass-Connell-Wright [BCW, 4.4], a finitely presented locally A
n-algebra

is isomorphic to the symmetric algebra of a finitely generated projective

A-module of rank n.

If k is a field with algebraic closure k, then a k-algebra L is said to

be separable if L⊗k k is a reduced ring. If a field extension L over k has a

separating transcendence basis then it is a separable k-algebra. For further

details on separability, see [M].

We first prove a few technical lemmas.

Lemma 1. Let k be a field, A a k-algebra and L a field extension of

k. If B is an A-algebra such that B ⊗k L is finitely presented over A⊗k L,

then B is finitely presented over A.

Proof. It is enough to assume that A ↪→ B (and hence A ⊗k L ↪→

B⊗k L). Let B⊗k L = (A⊗k L)[x1, . . . , xm]. Let xi =
∑

j(bij ⊗αij), where

bij ∈ B and αij ∈ L for all i, j. Then B1 = A[{bij}i,j ] ↪→ B and the induced

map B1 ⊗k L ↪→ B ⊗k L is clearly an isomorphism. As L is faithfully flat

over k, it follows that B = B1. Thus B is finitely generated over A, say,

generated by r elements.

Let φ be a surjection A[X1, . . . ,Xr] → B and I = Kerφ. Then I ⊗k L

is the kernel of the induced surjection

φL : (A⊗k L)[X1, . . . ,Xr] → B ⊗k L,

and hence is finitely generated. Let I ⊗k L = (f1, . . . , fm) where fi =
∑

j(aij ⊗ βij), where aij ∈ I and βij ∈ L for all i, j. Let J be the ideal

in A[X1, . . . ,Xr] generated by the aij’s. Then J ⊆ I and J ⊗k L = I ⊗k L.

Therefore, L being faithfully flat over k, we have J = I showing that I is

finitely generated. Thus B is finitely presented over A.
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Lemma 2. Let k be a field, A a k-algebra, L a field extension of k and

M a finitely generated projective module over A ⊗k L. Then there exists a

subfield K of L which is finitely generated over k and a finitely generated

projective module N over A ⊗k K such that N ⊗K L ∼= M as (A ⊗k L)-

modules.

Proof. Let AL = A ⊗k L. Let M be a direct summand of a free AL-

module F of rank m with basis {e1, . . . , em}. The projection map φ : F →

M defines an idempotent AL-endomorphism of F . Let

φ(ei) =
∑

1≤j≤m

(

∑

r

(aijr ⊗ αijr)

)

ej ,

where aijr ∈ A and αijr ∈ L. Let K = k({αijr}i,j,r) and AK = A ⊗k K

(identified with its image in AL). Let E be the free AK -module with basis

{e1, . . . , em}, considered as a subgroup of F . Let ψ = φ |E and N = ψ(E).

Then ψ is an idempotent AK -endomorphism of E so that N is a finitely

generated projective AK-module. Since E ⊗K L = F , it follows that N ⊗K

L = M .

Lemma 3. Let k be a field, A a k-algebra and L a field extension of k.

If C and D are finitely generated A-algebras such that C ⊗k L ∼= D⊗k L as

(A⊗kL)-algebras, then there exists a subfield K of L such that K is finitely

generated over k and C ⊗k K ∼= D ⊗k K as (A⊗k K)-algebras.

Proof. Let C = A[c1, . . . , cm] and D = A[d1, . . . , dn]. Suppose that φ :

C⊗kL → D⊗kL is an (A⊗kL)-isomorphism. Let φ(ci⊗1) =
∑

j(bij ⊗βij),

where bij ∈ D, βij ∈ L and let φ−1(di ⊗ 1) =
∑

j(aij ⊗ αij), where aij ∈ C,

αij ∈ L. Let K be the subfield of L generated by k, {αij}i,j and {βij}i,j .

Identify C ⊗k K and D ⊗k K with their images in C ⊗k L and D ⊗k L

respectively. Now it is easy to see that the restriction of φ to C ⊗k K

induces an (A⊗k K)-isomorphism C ⊗k K → D ⊗k K.

Lemma 4. Let C be a ring, D a finitely generated C-algebra and S a

multiplicatively closed set in C whose elements are non-zero divisors in C.

Suppose that there exists a finitely generated projective S−1C-module P such

that S−1D ∼= SymP as S−1C-algebras. Then there exists an element f ∈ S

and a finitely generated projective Cf -module Q such that Df
∼= SymQ as

Cf -algebras.
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Proof. Let P be a direct summand of a free S−1C-module F of rank m

with basis {e1, . . . , em} and φ : F → P be the projection map. Now it is easy

to see that there exists g ∈ S such that φ(ei) = (
∑

1≤j≤n ajej)/g for some

a1, . . . , an ∈ C. Let E be the free Cg-module generated by {e1, . . . , em}

(considered as a subgroup of F ). Let ψ = φ |E and N = ψ(E). As in

the proof of Lemma 2, N is a finitely generated projective Cg-module and

S−1N = P . Thus

S−1Dg
∼= SymS−1Cg

S−1N = S−1(SymCg
N).

Now as D is finitely generated over C, it is easy to see that there exists

h ∈ S such that Dgh
∼= (SymCg

N)h. Let f = gh and Q = Nh. Then Q is a

finitely generated projective Cf -module such that Df
∼= SymCf

Q.

We shall now prove the main theorem. For the convenience of the reader,

we first give a simple proof of the following well-known result.

Lemma 5. Let k be a field and let L be a finite separable extension of

k. Suppose that B is an overdomain of k such that B ⊗k L = L[1]. Then

B = k[1].

Proof. Let B⊗kL = L[T ]. We identify B with its image in B⊗kL under

the map b→ b⊗1. Replacing L by its splitting field, we may assume L to be

finite Galois over k with Galois group G, say. Any σ ∈ G can be extended

to a B-automorphism of B ⊗k L(= L[T ]) by defining σ(b ⊗ α) = b ⊗ σ(α)

for b ∈ B,α ∈ L. Let

T = 1 ⊗ α0 + e1 ⊗ α1 + · · · + er ⊗ αr,

where 1, e1, . . . , er form part of a k-basis of B and αi ∈ L. Since the bilinear

map L×L→ k given by (x, y) → Tr(xy) is non-degenerate, replacing T by

αT (α ∈ L∗) if necessary, we assume that Tr(αi) 6= 0 for some i ≥ 1. Thus

W =
∑

σ∈G

σ(T ) = 1 ⊗ Tr(α0) + e1 ⊗ Tr(α1) + · · · + er ⊗ Tr(αr)

is an element of B\k. Since L[T ] = σ(L[T ]) = L[σ(T )], clearly σ(T ) is linear

in T for each σ and hence degT W ≤ 1. But as B ∩ L = k, it follows that

W /∈ L so that degT W = 1. Hence, k[W ] ⊗k L = L[W ] = L[T ] = B ⊗k L.

Therefore, L being faithfully flat over k, we obtain B = k[W ](= k[1]).
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We now generalise Lemma 5 as follows.

Proposition 6. Let k be a field, L a finite separable extension of

k, A a k-algebra and B an A-algebra such that B ⊗k L is isomorphic to

the symmetric algebra of a finitely generated rank one projective module

over A ⊗k L. Then B is isomorphic to the symmetric algebra of a finitely

generated rank one projective module over A.

Proof. By Lemma 1, B is finitely presented over A. Hence, by [BCW,

4.4], it is enough to assume that A is local. Now A ⊗k L, being a finite

extension of A, is semilocal. Hence B ⊗k L = (A ⊗k L)[1], say, B ⊗k L =

(A ⊗k L)[Y ]. Let B = A[b1, . . . , br] and let bi ⊗ 1 =
∑

j aij ⊗ fj(Y ), where

aij ∈ A, fj ∈ L[1]. Let A1 = k[{aij}i,j ](↪→ A) andB1 = A1[b1, . . . , br](↪→ B).

Then clearly B1⊗k L = (A1 ⊗k L)[Y ] (identifying them by their isomorphic

images in B⊗kL). Now the canonical map B1⊗A1
A→ B is clearly surjective

and as

(B1 ⊗A1
A) ⊗k L = (B1 ⊗k L) ⊗A1

A

= (A1 ⊗k L)[Y ] ⊗A1
A

= (A⊗k L)[Y ]

= B ⊗k L,

the map B1 ⊗A1
A → B is actually an isomorphism.

Thus, replacing A by A1 and B by B1 if necessary, we assume that A

is an affine k-algebra; in particular, A is noetherian. By [BCW, 4.4], we

can assume that A is a k-spot. Since A is now noetherian, to prove that

B = A[1], it is enough to prove that B/(nilA)B = (A/nilA)[1], so that we

may further assume A to be a reduced ring. Replacing L by its splitting

field, we may assume L to be a Galois extension of k. We are thus reduced

to proving the following statement:

(*) Let L be a finite Galois extension of k with Galois group G, A a

reduced k-spot and B a finitely generated A-algebra such that B⊗kL =

(A⊗k L)[1]. Then B = A[1].

We now use Itoh’s result in [I] on weak normality to deduce (*). (The au-

thor thanks the referee for drawing his attention to the paper of Itoh which

has simplified the proof of (*) and Amit Roy for his help in the following

deduction.) Note that any σ ∈ G can be extended to an A-automorphism
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of A ⊗k L by defining σ(a ⊗ α) = a ⊗ σ(α) for a ∈ A,α ∈ L. Now let

x ∈ A ⊗k L be such that x2, x3 ∈ A. Then σ(x2) = x2 and σ(x3) = x3 for

all σ ∈ G and hence it follows that (σ(x)−x)3 = 0 for all σ ∈ G. Therefore,

as A ⊗k L is reduced, σ(x) = x for all σ ∈ G, showing that x ∈ A. Thus

A is seminormal in A ⊗k L. Now, let z ∈ A ⊗k L be such that zp, pz ∈ A

for some prime p. If p 6= ch k, then already z ∈ A. If p = ch k, then for any

σ ∈ G, (σ(z) − z)p = σ(z)p − zp = 0, showing that σ(z) = z for all σ ∈ G

and hence z ∈ A. Therefore, by [I, Prop. 1], A is weakly normal in A⊗k L

and hence (*) follows from the main theorem in [I].

We now prove the main theorem.

Theorem 7. Let k be a field, L a separable field extension of k, A a k-

algebra and B an A-algebra such that B⊗kL is isomorphic to the symmetric

algebra of a finitely generated rank one projective module over A⊗kL. Then

B is isomorphic to the symmetric algebra of a finitely generated rank one

projective module over A.

Proof. Using Lemmas 2 and 3 successively, we see that there ex-

ists a subfield L1 of L which is finitely generated over k and a finitely

generated projective (A ⊗k L1)-module P of rank one such that B ⊗k

L1
∼= SymA⊗kL1

P . Now L1 is a finite separable extension of a rational

function field K = k(X1, . . . ,Xn). Hence, by Proposition 6, B ⊗k K is

the symmetric algebra of a finitely generated rank one projective A ⊗k

K-module Q. By Lemma 4, there exists an element f ∈ k[n] such that

B[X1, . . . ,Xn, 1/f(X1, . . . ,Xn)] is the symmetric algebra of a finitely gen-

erated rank one projective A[X1, . . . ,Xn, 1/f(X1, . . . ,Xn)]-module.

Let D = k[X1, . . . ,Xn, 1/f(X1, . . . ,Xn)]. If k is a finite field, then for

any maximal ideal N of D, F = D/N is a finite extension of k (by Null-

stellensatz) and separable over k. Now B ⊗k F is the symmetric algebra of

a rank one projective A ⊗k F -module. Hence, by Proposition 6, B is the

symmetric algebra of a finitely generated rank one projective A-module.

If k is infinite, then we can choose z1, . . . , zn ∈ k such that f(z1, . . . , zn) 6=

0. In D, consider the maximal ideal

N = (X1 − z1, . . . ,Xn − zn, 1/f(X1, . . . ,Xn) − 1/f(z1, . . . , zn)).

Then D/N = k so that B is the symmetric algebra of a finitely generated

rank one projective A-module. This completes the proof.
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Note that, in general, a separable A
1-form need not be A

1 as the fol-

lowing well-known example illustrates : Let A = R[X,Y ]/(X2 + Y 2 − 1)

where R denotes the field of real numbers, let I be an invertible ideal

of A which is not principal and let B = SymA(I). Then B 6= A[1] but

B ⊗R C = (A⊗R C)[1].

In [K], Kambayashi has proved that separable A
2-forms over a field are

trivial. One may ask a similar question over rings:

Question. Let K be a field of characteristic zero, A a noetherian

K-algebra (say, A is regular) and B an A-algebra such that B ⊗K K =

(A ⊗K K)[2] (where K denotes the algebraic closure of K). Then, is B

isomorphic to the symmetric algebra of a projective A-module of rank two?

Remark 8. If A is a Dedekind domain, then the above question has

an affirmative answer.

Proof. Using Kambayashi’s result [K] and the arguments in Proposi-

tion 6 and Theorem 7, it would follow that B is an A
2-fibration over A.

Therefore, B is locally A
2 over A by Sathaye’s result [S, Theorem 1], and

hence a symmetric algebra by [BCW, 4.4]
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