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Abstract

Diffusion in the presence of high-diffusivity paths is an important issue of current
technology. In metals, high-diffusivity paths are identified with dislocations, grain
boundaries, free surfaces and internal microcracks. In pourous media such as rocks,
fissures provide a system of high-flow paths. Recently, based on a continuum
approach, these phenomena have been modelled, resulting in coupled systems of
partial differential equations of parabolic type for the concentrations in bulk and in
the high-diffusivity paths. This theory assumes that each point of the medium is
simultaneously occupied by more than one diffusion or flow path. Here a simple
discrete random walk model of diffusion in a medium with double diffusivity is given.
The continuous version of this model gives rise to precisely the coupled system of
partial differential equations obtained from the continuum approach. For the
discrete model three problems are considered : the unrestricted particle, the particle
with reflecting barriers at the end points, and the particle moving between absorbing
barriers. For the source solutions of the continuous model an approximate
expression is obtained for the total concentration. Numerical results are given which
compare this approximate solution with an exact expression obtained previously.

1. Introduction

Diffusion in a homogeneous, isotropic, isothermal, rigid medium with a single family
of diffusion paths is described by the classical diffusion equation, based on Fick's
second law of diffusion, namely

^ = DV2c, D>0, (1.1)

where c(x, t) is the concentration and D the diffusion coefficient (see, for example,
Crank [7]). For diffusion in an ideal medium, but with two families of diffusion
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paths, Aifantis [2,3] has proposed the following coupled system for the
concentrations in each path :

^- = DlV
2cl-klcl + k2c2 and ^ = D2 V

2 c2 + klCl-k2c2, (1.2)

where Dl,D2,kl and k2 are all constants for which physical arguments indicate the
following inequalities :

£>, > 0, D2 > 0, fej > 0 and k2 > 0. (1.3)

For example, (1.2) is proposed to describe diffusion in a polycrystalline metal where
the diffusivity in the grain boundary space is several orders of magnitude larger than
the bulk diffusivity.

The above system is strictly valid only for diffusion problems. However, formally
similar equations have been proposed by Barenblatt et al. [5] to describe the flow of
liquid in rocks which are assumed to consist of both systems of pores and fissures.
These equations also arise from "multiporosity theory" (see Aifantis [1]). This
theory describes diffusion and flow in a medium possessing more than one family of
diffusion or flow paths. Thus, for example, the theory may be applicable to the
seepage of water in soils where additional flow paths arise from the soil's cracking or
possibly from old root and worm channels. In Aifantis and Hill [4] and Hill and
Aifantis [12] both qualitative mathematical results and solutions of specific
boundary value problems are given for the system (1.2) with the inequalities (1.3). We
remark that related qualitative studies are also given in [8, 10, 13, 15]. The purpose
of this paper is to consider simple problems arising from a discrete random walk
model of diffusion in a medium with two distinct families of diffusion paths. The
continuous development of this model results in equations (1.2).

The discrete random walk model giving rise to the classical diffusion equation
(1.1) is well known (see, for example, Prabhu [14]). Briefly the situation is as follows.
A particle is random walking on the integers such that at integral instants in time, a
move to the right is made with probability p and to the left with probability q, where
p + q = 1. If uk „ denotes the probability the particle is at position k at time n then, for
an unrestricted particle,

"*,„+! =PUk-i. n + <lUk+i,n f o rn>0 . (1.4)

We now let the jumps be of length Ax and the time interval between jumps At; then in
the limit as Ax and At tend to zero, i^ „ is approximately equal to/(x, t)dx and (1.4)
becomes

/(x, t + At) = p/(x - Ax, t) + qf(x + Ax, t). (1.5)

From Taylor's theorem we have
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. 8f (p + q),. s2d
2f i -v A df . ,.

A t r f = 2 (Ax) a ? " ^ - ^ A x ^ ' (L6)

and thus, for the free particle (p = <? = i), the classical diffusion equation (1.1)
emerges provided At and Ax tend to zero in such a way that At/(Ax)2 approaches the
finite limit (2D)~l. This simple formal connection, which can be made
mathematically rigorous, is an important link in understanding diffusion processes.

In the following section we describe a discrete random walk model which gives
rise to the coupled equations (1.2) in the continuous limit. We generalize the above
classical model by assuming that the particle moves along one of two distinct paths
and that at each jump it not only can move either to the left or to the right but also
has the possibility of transition to the other path. Apart from providing a simple
model for the underlying mechanism, this approach has additional advantages. For
example, inequalities such as (1.3) are immediate and need not be derived by ad hoc
physical arguments. Moreover, guided by the central limit theorem, we are led to an
approximate solution of (1.2) which is in agreement with asymptotic formulae given in
Aifantis and Hill [4]. This approximate solution can be justified directly from (1.2)
and demonstrates clearly departures from the classical expression which are not
apparent in the asymptotic results given by Aifantis and Hill [4].

The first sections of the paper deal with aspects of the discrete model. This model
is formally similar to one proposed by Barnett [6] for the flow of liquids or gases
through packed columns. In fact the model given here is mathematically more
complex and consequently the number of problems that can be solved explicitly are
limited. In Section 3 we obtain the mean and variance of the position of an
unrestricted particle. In Section 4 we obtain the stationary probabilities for a
particle with reflecting barriers at 0 and a. Physically these barriers correspond to
walls of the container. In Section 5 we obtain the probabilities of absorption at 0
(particle escape), given that both 0 and a are absorbing barriers. In Section 6 the
continuous version of the model is considered. In particular, the coupled system of
equations (1.2) are deduced and the implications of the continuous form of the
results of Section 3 are discussed. The system of coupled partial differential
equations for more than two diffusion paths is also discussed briefly.

2. Discrete model for a medium with two distinct diffusion paths

We consider a single particle random walking on the integers on the infinite
straight line. In the continuum approach "multiporosity theory" and for a medium
with double diffusivity, Aifantis [1-3] assumes that each point of space is
simultaneously occupied by two distinct diffusion or flow paths. We therefore
consider the infinite line to consist of two paths subscripted by 1 and 2 which we
might visualize as two strands of a string. We allow the particle to move along either
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of these paths but in addition we allow the possibility of a transition from one path to
the same position on the other path. If the particle is in path i,i = 1,2, we suppose
that at each jump the particle moves one step to the right with probability ph one to
the left with probability qh remains in position with probability r, and each of these
outcomes is assumed to take place within the same path. However, we also assume
the particle has probability s, of occupying the same position on the other path.
Thus, at each jump, only one of four possible outcomes can occur. We have,
therefore,

Pt + qi + rl + sl = l, 1 = 1,2, (2.1)

and we shall also assume that the various probabilities are independent of the
position of the particle.

We make the following observations for this model. The random movement of a
particle in a medium is referred to as diffusion if the randomness is attributed to the
particle and to percolation if the randomness is due to the nature of the medium. As
noted by Frisch and Hammersley [11], this distinction is not always a precise
classification. Clearly, if we allow our probabilities to be position dependent, then
the model is more appropriate to the phenomenon of percolation rather than that of
diffusion. With these comments in mind we shall for definiteness, in the present
model, consider the various probabilities as parameters attributed to the particle
rather than to the medium. If, at each jump, we allow two additional outcomes,
namely taking one step to the left or to the right but on the other path, then in the
equations corresponding to (1.2) we generate the so-called "cross-effects" (see
Aifantis [2, 3]). This additional complexity will not be considered here. As far as
practicable we will leave the probabilities ph qh r, and sh i = 1,2, subject to (2.1),
completely arbitrary. Indeed, special values do not seem to simplify the mathematics
significantly. However, the following list provides some important special cases
which relate to previous work :

0) Pi = <7i» Pi = <?2 (free particle, Aifantis [2, 3]),
(ii) s, = s2 (equal transition probabilities, Barenblatt et al. [5]),

(iii) p, = qup2 = q2 = 0 (diffusion along one path very much greater than along the
other).

Finally, we observe that, although the probabilities r, and r2 appear not to enter the
calculations in an essential manner, we shall nevertheless retain them nonzero so
that the important special case px = qu p2 = q2 and s, = s2 can be considered
without necessarily implying p^ and p2 are the same.

We now consider the problem of an unrestricted particle initially at the origin.
This problem corresponds to the source solutions for (1.2) given by Aifantis and Hill
[4]. We let Un „ denote the probability that the particle is in path 1 at position k at
step n. Similarly, we let vk n denote the probability that the particle is in path 2 at
position k at step n. For no barriers we have the forward equations
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and (2.2)

for all integers k and for integers n > 0. We further suppose that initially the particle is
at the origin and is in path 1 with probability M0 and path 2 with probability v0,

v0 = 1, so that we have

and vk0 = v0Sk0, (2.3)

where dtj is the usual Kronecker delta. We introduce generating functions

U&)= T «t,nz
fc and Vn{z)= £ vKnz". (2.4)

k = — oo k = — oo

From (2.3) we have

U0(z) = u0 and K0(z) = v0, (2.5)

while (2.2) becomes

Un+i(z) = n1{z)Un{z) + s2Vr(z) and Kn+1(2) = n2{z) Vn(z) + Sl Un(z), (2.6)

where the functions n,{z), i = 1,2, are denned by

ni(z) = Piz + ri + Qiz~l< i = 1,2. (2.7)

If we introduce U(z, <J) and ^z, )̂ by

S" and V(z,0= £ ^«(z){", (2-8)
n=0 Z

n=0

then, in the usual way from (2.5) and (2.6), we can deduce

and (2.9)

Thus, in principal, we have formally obtained the probabilistic behaviour of the
unrestricted walk. Although from (2.9) we can deduce expressions for Un(z) and Vn(z),
it appears difficult to proceed further. We therefore content ourselves with the mean
and variance of the position of the particle at time n, namely

and a2
n=

k= — co
(2.10)
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The calculation of these quantities is extremely long and tedious and therefore the
details are confined to a separate section. However, the calculation is worthwhile
since, if Xn is the random variable for the position of the particle at time n, then, from
two applications of the central limit theorem (Feller [9]), we know that (Xn-/xn)/an

is approximately standard normally distributed as n tends to infinity.

3. Mean and variance of the position of an unrestricted particle

The mean and variance of the position of the unrestricted particle can be obtained
in a variety of ways. We use (2.6) and derivatives of (2.6), set z = 1, and solve the
resulting difference equations. The following combinations of the probabilities are
important parameters and it is convenient to introduce them here :

0 = l-(s1+s2), e—Pi-qi and ft = si/(sl + s 2 ) , i = l , 2 . (3.1)

In the process of calculating fin and a2
n we need to determine expressions for

« „ = Z "*,n, Pn= Z «*.„, (3-2)

y n = Z *«*.«, &n= Z
k= — oo fc= — oo

and

sn= Z k(k-l)(uKn+vkJ, (3.4)
k=-oo

so that the mean and variance are then given by

Hn = yn + Sn and a2
n=en+nn-n

2
n. (3.5)

For the quantities an and /?„ we observe from (2.3) and (3.2) that cc0 = u0 and
/?0 = D0. On setting z = 1 in (2.6) and making use of (2.1) we have

a n + i = ( l - 5 , ) a n + s2)?n and pn+l = (l-s3)j8. + s, «„. (3.6)

At time n the probabilities the particle is in path 1 or path 2 are <xn and /?„,
respectively. On noting that an+Pn = 1, we can readily deduce from (3.6) that

««=/2+(«o-/2)0" and fl, =/,+(»„-/i)0"- (3-7)

Thus we can identify/2 and/j as the probabilities the particle is ultimately in path 1
and path 2, respectively.

In order to determine the mean \im we differentiate (2.6) with respect to z, set z = 1,
and add the resulting equations. We obtain
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Mn+1 = Hn + ei ua + e2 pn. (3.8)

On observing that /x0 = 0, we have from (3.7) and (3.8) that

{ ^ , (3.9)

where A and B are constants which are defined by

-4 =£1/2+^2/, and B = el(u0-f2) + e2(v0-fl). (3.10)

In the calculation of the variance a\ we differentiate (2.6) twice with respect to z,
set z = 1, and add the resulting equations. Using (3.2), (3.3) and (3.4) we have

n. (3.11)

We therefore need to determine expressions for the quantities yn and 8n. We do this
by differentiating the first equation in (2.6) once with respect to z, setting z = 1, and
making use of the first equation in (3.5). We obtain

y.+ i =^n + elam + s2nn. (3.12)

From this equation the first equation in (3.7) and (3.9) we can deduce an expression
for yn which, together with the first equation in (3.5) and (3.9), yields an expression for
<5n. The final results are as follows :

where the various constants are given by

C=f2(el+B-A)/(l-8), C*=U

E = e, u0 —f2(e j + B), E* = e2 v0 —fx(e2 + B). J

On using (3.7) and (3.13) in (3.11) we obtain after a long calculation

en = n{n - 1) A2 + 2nF + 2G[1 - n6"~l +(n - 1) 0"]/(l - 0)2 + 2/f (1 - 0")/(l - 0),

(3.15)
where the constants F, G and H are given by

F =

(3.16)

and
' — p C*

From the second equation in (3.5), (3.9) and (3.15) we can deduce an expression for
the variance a\. Unfortunately, there appears to be no significant simplications so
we shall not give this expression explicitly. We note, however, that the important
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special case of a free particle p, = qh i = 1,2, gives the mean /zn zero while the
variance a\ is given by

<% = 2(qJ2+q2fi)n + 2lqi(uo-f2) + q2(Vo-fl)'](i-dn)^-0)- (3-17)

We also remark that we can check the above results since in the limit, as r,, sf, i = 1,2,
tend to zero, and px = p2, we can deduce the mean and variance of the classical
random walk, namely n(pi — qx) and Anp^ q2, respectively (see Prabhu [14]).

4. Stationary probabilities with reflecting barriers at 0 and a

We now consider the effect of the walls of a container on the movement of the
particle. We suppose that at 0 and a there are reflecting barriers which here we
assume are defined in the following way. If the particle is at 0 in path i, i = 1,2, then
at the next move it has probability p. + q, of moving to the right, r, of staying at 0 in
path i, and s, of staying at 0 but switching paths. Similarly, if the particle is at a in
path i, then at the next move it has probability p; + qt of moving to the left, r, of
remaining at a in path i, and s( of remaining at a but in the other path. If we define

l , n
= 0, (4.1)

then, instead of (2.2), we have the forward equations for 0 ^ / c ^ a and

«lc,n+ 1 = Pi "ic-l.n + ri "*

and (4.2)

where again ^(J is the usual Kronecker delta. If we introduce generating functions

Un(z)= il^z" and VJ(z)= £ vknz\ (4.3)
k=0 k=0

and if initially the particle is at 0 in path 1 with probability u0 and in path 2 with
probability v0 where u0 + v0 = 1, then we have

U0(z) = u0 and V0(z) = v0. (4.4)

From (4.2) and (4.3) we obtain

Un+l(z) = (p, z + rt +q{ z~l) Un(z) + s2 Vn(z)-(z-z-l){pl ua,nz
a-qx uo

and (4-5)
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If we introduce generating functions similar to those defined by (2.8), then from (4.5)
we see that the resulting expressions are equally intractable as those given by (2.9).
Instead we make use of (4.5) to deduce the stationary (n -* oo) probabilities.

We let nk and cpk denote the stationary probabilities that the particle is at k in paths
1 or 2, respectively. We define

U(z)= 2>
t= 0

and <D(z)= I 4>kz\
k = 0

(4.6)

and from (4.5) we can deduce that

s2z(p2(j)az
a-q2<t>0)}

and (4.7)

+ slz{plnaz"-q1n0)},

where A(z) is defined by

A(z) = (1 -z)(Pi z-qi)(p2 z-92) + Sj z(p2 z-q2) + s2 z(p^ z-q^. (4.8)

Assuming that pt and qh i = 1,2, are nonzero, the four constants n0, <f>0, na and <f>a are
determined by requiring that Il(z) and O(z) are analytic at the three roots of the cubic
A(z) = 0, namely

PiP2z
3-(qiP2+q2pl+SiP2+s2pl+plp2)z

2

+ (qiP2+'!2Pi + s1q2+

together with the normalizing condition

= 0 , (4.9)

1. (4.10)

From the condition that the numerators in (4.7) should vanish at the roots zp

j = 1,2,3, of (4.9) we can deduce, for j = 1,2,3,

Pi - ( S j p, q2 na~s2 p2} ) q2(sl no-s2 4>0) = 0.

(4.11)

Clearly, with p, and qh i = 1,2, nonzero, a limiting distribution exists if and only if

A 1
zr1 z\ i

z% 1

= 0. (4.12)
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Thus, in general, the condition for a stationary distribution to exist is non-trivial and
we shall not discuss (4.12) further. For purposes of illustration we consider the case
when the probabilities p, and qit i = 1,2, satisfy the condition

P1Q2 = P2<li> (4.13)

which we note includes the important special case of a free particle pt = qh i = 1,2.
Assuming that (4.13) holds we see that (4.11) becomes, for) = 1,2,3,

(5, na - s 2 <pa) zfa -X) + l 2 ( S l n0 - s2 <f>0) = 0, (4.14)

where A = qjpi = q2/P2- Now, in this case, one root of (4.9) is A and therefore from
(4.14) we have

5,710 = 52^0 and 5, na = s2 </>„.

From (4.7), (4.8), (4.13) and (4.15) we deduce that

-Ar1(7tazfl-A7r0) and 0>(z) =

Now, clearly, we require

no = X"-lna and e/>0 = Xa

and, making use of (4.10), we finally obtain

(4.15)

- A ) - 1 W>az
a-A(/>0).

(4.16)

(4.17)

2(1-A")

and

2 ( 1 - A " ) ^ ' " ' { l - ( z / X )

where/, and/ 2 are defined by (3.1)3. Thus, for example, we have

(4.18)

°)12{\-X°)
a-\-k

Tin =
°~2(1-Aa)

)
")

(4.19)

and similarly for <f>k. We notice that in the free particle case, A = 1, we have

- 1 and nn = n= ^-. (4.20)
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5. Absorption at 0 with absorbing barriers at 0 and a

In this section we determine the probabilities of ultimate absorption at 0 from the
position k given that 0 and a are absorbing barriers. Physically the problem
corresponds to obtaining the probability of particle escape at 0 from position k in an
open ended container. We let \jjk and cok be the probabilities of absorption at 0 from
position k in paths 1 and 2, respectively. For l^k^a— 1 we have the backward
equations

fa = Pi ^4
and

and clearly we have in addition

(5.1)

\p0 = co0 = 1 and i/ra = coa = 0. (5.2)

To solve these equations we introduce generating functions

%z) = "Z h z" a n d fi(z) = "T. o>k z
k, (5.3)

k=1 k = l

and in the usual way from (5.1) and (5.2) we obtain

and

h z\ [-PiOii +qiiz-a>a-1 2")]

(5.4)

where 0(z) is defined by

(<?1z-p1)]. (5.5)

Again assuming that p, and qt, i = 1,2, are nonzero, we determine the four constants
il/l,col,il/a_l and coa_2 by requiring that ^(z) and Q(z) are analytic at the four roots
of 0(z) = 0. One root is clearly z = 1, while the others are roots of a cubic. Thus the
determination of the absorption probabilities involves solving a four by four
nonhomogeneous system of equations. In general this is a nontrivial problem and
we shall only give explicit expressions for absorption probabilities for the special
case when (4.13) is satisfied.
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With X as defined previously we have that in this special case one root of the cubic
is A"* and, from the condition that the numerators of (5.4) vanish for the other two
roots of the cubic, we can deduce

iA1=a>1 and <A0_ x = «„_,. (5.6)

On requiring that the numerators of (5.4) also vanish for z = 1 we obtain

(^ = 2 ( 1 - . / ^ , ) . (5.7)

Using (5.6) and (5.7) in (5.4) and (5.5) we obtain

4>(z) - Q(z) {l_m_z-i) • (5.8)

However, these generating functions are analytic at z = X~' and thus we have

^ _ 1 = Afl-1(l-A)(l-Afl)-1. (5.9)

From (5.9) we can simplify (5.8) to read

^}{i^} (5.10)
from which the required probabilities are immediate, namely

^k = (Dk = {xk-xa){\-ryl- (5.ii)

We observe that in the special case of X = 1 we have simply

^ = 0^ = 1-tor1 . (5.12)

6. Continuous model for a medium with two distinct diffusion paths

In this section we show that the continuous version of the model given in Section 2
gives rise to the coupled system of partial differential equations (1.2) in the special
case of p,- = q(, i = 1,2. We suppose that each step has length Ax and that the time
between consecutive steps is At. Formally, we replace k and n by x and t, respectively,
and we introduce functions /(x, t) and g(x, t) such that in the limit of Ax and At
tending to zero, uk „ and vk „ are approximately/(x,t)dx and g(x,t)dx, respectively.
The equations corresponding to (2.2) are

fix, t + At) = pJix- Ax, t) + rJix, t) + q1f(x+ Ax, t) + s2 g[x, t)
and

g(x, t + At) = p2 g(x - Ax, t) + r2 g(x, t) + q2 gf(x + Ax, t) + s, /(x, t).

Up to first order in At and second order in Ax (6.1) becomes

(6.1)
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and (6.2)

where we have made use of (2.1). We now suppose At and Ax tend to zero in such a
way that At/(Ax)2 tends to a finite positive limit A*. Further, we assume that the
various probabilities pt, qt and s,, i = 1,2, are such that

Pi = A*(D, + dI-Ax), qt = A *(£); — dt Ax) and st = X*kt(Ax)2, (6.3)

where d,-, D; and kh i = 1,2, are assumed to be finite constants. Clearly, from (6.2) and
(6.3) we obtain

and (6.4)

In the case of a free particle, pf = qt, i = 1,2, we obtain (1.2) and we observe that the
constants fej and k2 are essentially transition probabilities. Thus the inequalities (1.3)
are immediate.

In Aifantis and Hill [4] asymptotic formulae are given for the source solutions of
(1.2), that is for solutions of (1.2) with initial conditions

and c2(x,0) = c°2d(x), (6.5)

where c? and c2 are constants specifying the strength of the source, and <5(x) denotes
the usual Dirac delta function. For small times it is shown that

(6.6)

for — oo < x < oo. For large times the total concentraton cl+c2 is given by

for — oo < x < oo, where D* is given by

D* =
Dlk2 + D2kl

(6.7)

(6.8)

Thus, for small times, both c, and c2 follow the classical solution but with
diffusivities Dt and D2, respectively, while for large times the total concentration
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follows the classical solution with diffusivity D*. This problem is analogous to the
unrestricted random walk considered in Sections 2 and 3. By applying the central
limit theorem twice we can deduce an asymptotic formula for the total
concentration which confirms (6.7) but, more importantly, demonstrates the
deviations of c1 + c2 from the classical formula.

In order to utilize the formulae of Section 3 for the source solutions we need to
rescale ct(x, t) and c2(x, t) by dividing by c° + c% so that we can identify M0 and v0 with
cV(c°i+c2) a n d c^/(c°i+c% respectively. Thus we identify/(x, f) and g{x,t) with
C!(x,t)/(c? + c2) and c2(x, t)l(c\ + c2), respectively. Now f(x,t)+g(x,t) is a well-
defined probability density function for the position of the particle at time t. If the
mean and variance of the position of the particle are denoted by n(t) and <r{t)2,
respectively, then, as t -* oo,f+g is asymptotically normally distributed with mean
fi(t) and variance ait)2. If we consider the case of pt = qh i = 1,2, then fi(t) = 0 and we
have therefore

Now we can deduce an expression for the variance a(t)2 from (3.17). We have
a{t)2 = <T2

n(Ax)2 and, from (6.3) and At = /l*(Ax)2, we obtain from (3.17)

o(t)2 = 2D*t + " > g T 2 - P * D - g ' ' 1 ^ , (6-10)

where D* is given by (6.8) and, in deriving (6.10), we formally replaced n by tjAt.
Thus, in summary, the asymptotic form for the total concentration becomes

cl(x,t) + c2(x,t) ~ —

where the variance a{t)2 is given by (6.10). We observe that (6.7) and (6.11) are
consistent since as, t -* oo, the first term of the right-hand side of (6.10) dominates
and the variance in (6.11) is merely 2D*t, which is in agreement with (6.7). Table 1
gives numerical values of c, + c2 as given by (6.11) and (6.7) and divided by the exact
value of c t + c2 obtained from Aifantis and Hill [4]. Clearly (6.11) provides a useful
approximation to the total concentration. It is closer than (6.7) to the exact value for
smaller values of t while for larger values of t (6.7) is marginally more accurate. The
asterisk (*) indicates the better approximation.

It is difficult to relate (6.11) as an approximate formulae to the exact expression
given by Aifantis and Hill [4]. However, some analytic insight can be obtained by
recalling that both c, and c2, and therefore the total concentration, satisfy

8 2 4
dt i 2 >

https://doi.org/10.1017/S0334270000002551 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002551


72 J. M. Hill [15]

TABLE 1
Comparison of c, +c2 as given by (6.11) and (6.7) for D, = fc, = c° = 2, D2 = k2 = c° = 1 and x = 2

t

0-5
1-5
2-5
3-5
4-5
5-5
6-5
7-5
8-5
9-5

(6.11)/(exact)

10532*
10095*
10006*
0-9983*
0-9977*
0-9975*
0-9975
0-9976
0-9977
0-9978

(6.7)/(exact)

0-9425
10102
10074
1-0051
10038
10030
10024*
1-0020*
10017*
10015*

which is obtained by eliminating either of c, or c2 from (1.2). If now we look for a
solution of the form

c(x,t) = h(x,x) and x = o(t)2/2, (6.13)

where h(x, x) is assumed to satisfy the classical diffusion equation (1.1) with t replaced
by T, and unit diffusivity, then (6.12) becomes

(6.14)

where primes denote derivatives with respect to t. In the particular case of interest
with h(x, t) as the classical source solution we have

„ „ ^ 1 - ^ 1 + 3 } . (6.5,

If we assume the variance a{t)2 is vanishingly small for small times and tends to
infinity with t then, from (6.14) and (6.15), we observe that for t small the first term of
(6.14) dominates so that

a{t)2 = 2D, r or a{tf = 2D21. (6.16)

which can be reconciled with (6.6). Alternatively, for large t we see from (6.14) and
(6.15) that the second term in (6.14) is the dominant expression and therefore we have

oo" + o'2 +(k, +k2)a& = (*! D2 + k2

On integrating this equation we obtain
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a{t)2 =2D*t + A* + B*e-{k>+k>)', (6.18)

where D* is given by (6.8) and A* and B* are constants of integration. If we require
that the variance is zero at t = 0 then (6.18) becomes

a{t)2 =2D*t + A*\_l-e-ik>+k*)'l (6.19)

Thus we can provide a fairly plausible independent derivation of the general form of
the expression (6.10) for a[t)2. However, it is difficult to see how one might identify
the constant A* in (6.19) other than by the calcuations given in Section 3.

Finally in this section we note the equations corresponding to (6.4) for the case of n
diffusion paths. We let sy, i,j = l,2,...,n, denote the transition probabilities from
path i to path j . We have

Pi + <fc + r, + Z s,j = 1 , i = 1,2,..., n, (6.20)

and we assume that p, and qt are given by (6.3) and that

2. (6.21)

If/i(x, t) denotes the probability density function for the position of the particle in
path i then, instead of (6.4), we can show that we have

for i = 1,2,..., n. For the case of the free particle these equations have been given by
Aifantis [2] without specifying the signs of the various coefficients in (6.22). They are
clearly apparent from this formulation since k{i ^ 0.

Acknowledgements

The author wishes to acknowledge E. C. Aifantis for many stimulating discussions
as well as C. M. Gulati for bringing one of the references to his notice.

References

[1] E. C. Aifantis, "Introducing a multiporous medium", Developments in mechanics, Proc. 15th
Midwestern Mech, Conf. 8 (1977), 209-211.

[2] E. C. Aifantis, "A new interpretation of diffusion in high-diffusivity paths—a continuum approach",
A eta Metall. 27, (1979), 683-691.

[3] E. C. Aifantis, "Continuum basis for diffusion in regions with multiple diffusivity", J. Appl. Phys. 50
(1979), 1334-1338.

[4] E. C. Aifantis and J. M. Hill, "On the theory of diffusion in media with double diffusivity. Part I.
Basic mathematical results", Quart. J. Mech. Appl. Math. 33 (1980).

https://doi.org/10.1017/S0334270000002551 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002551


74 J. M. Hill [17]

[5] G. I. Barenblatt, Iu. P. Zheltov and I. N. Kochina, "Basic concepts in the theory of seepage of
homogenous liquids in fissured rocks [strata]", J. Appl. Math. Mech. 24 (1960), 1286-1303.

[6] V. D. Barnett, "A simple random walk on parallel axes moving at different rates", J. Appl. Prob. 12
(1975), 466-476.

[7] J. Crank, Mathematics of diffusion (Oxford University Press, 2nd edition, 1967).
[8] S. D. Eidelman, Parabolic systems (North-Holland Pub. Co. Amsterdam, 1969).
[9] W. Feller, An introduction to probability theory and its applications, Vol. 2 (Wiley, 1966).

[10] A. Friedman, Partial differential equations of parabolic type (Prentice-Hall, 1964).
[11] H. L. Frisch and J. M. Hamrnersley, "Percolation processes and related topics", J. Soc. Indusl. Appl.

Math. 11 (1963), 894-918.
[12] J. M. Hill and E. C. Aifantis, "On the theory of diffusion in media with double diffusivity. Part II.

Boundary value problems", Quart. J. Mech. Appl. Math. 33 (1980).
[13] A. McNabb, "Comparison and existence theorems for multicomponent diffusion systems", J. Math.

Anal. Applies. 3 (1961), 133-144.
[14] N. U. Prabhu, Stochastic processes (Macmillan, 1966).
[15] J. Szarski, Differential inequalities (PWN, Warsaw, 1968).

Department of Mathematics
University of Wollongong
Wollongong
New South Wales 2500

https://doi.org/10.1017/S0334270000002551 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002551

