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Direct numerical simulations are carried out to study the effect of finite Weissenberg
number up to Wi = 16 on laminar and turbulent channel flows of an elastoviscoplastic
(EVP) fluid, at a fixed bulk Reynolds number of 2800. The incompressible flow equations
are coupled with the evolution equation for the EVP stress tensor by a modified Saramito
model that extends both the Bingham viscoplastic and the finite extensible nonlinear
elastic-Peterlin (FENE-P) viscoelastic models. In turbulent flow, we find that drag
decreases with both the Bingham and Weissenberg numbers, until the flow laminarises
at high enough elastic and yield stresses. Hence, a higher drag reduction is achieved than
in the viscoelastic flow at the same Weissenberg number. The drag reduction persists at
Bingham numbers up to 20, in contrast to viscoplastic flow, where the drag increases
in the laminar regime compared with a Newtonian flow. Moreover, elasticity affects the
laminarisation of an EVP flow in a non-monotonic fashion, delaying it at lower and
promoting it at higher Weissenberg numbers. A hibernation phenomenon is observed
in the EVP flow, leading to large changes in the unyielded regions. Finally, plasticity
is observed to affect both low- and high-speed streaks equally, attenuating the turbulent
dissipation and the fragmentation of turbulent structures.
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1. Introduction

The manuscript considers unsteady and turbulent channel flows of non-Newtonian
viscoelastic and elastoviscoplastic fluids. The dynamics of non-Newtonian turbulence
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has attracted a growing interest due to numerous industrial applications dealing
with non-Newtonian fluids. Real industrial and natural fluids often present several
non-Newtonian effects at the same time, such as plasticity (yield stress) and elasticity.
Turbulent flows of yield-stress fluids are found in several industries such as petroleum,
paper, mining and sewage treatment (Hanks 1963, 1967; Maleki & Hormozi 2018). Highly
inertial flows of elastoviscoplastic fluids can also be found in geophysical applications,
such as mudslides and the tectonic dynamics of the Earth (Oishi, Martins & Thompson
2017).

Yield-stress fluids behave like solids below a local stress threshold, and flow like liquids
above this threshold. Assuming that the material is a rigid solid at stresses lower than
the yield stress, purely viscoplastic models are obtained, such as the Bingham model
(Bingham 1922), where the solvent viscosity of the yielded fluid flow follows a Newtonian
law, and the Herschel–Bulkley model (Herschel & Bulkley 1926), where the yielded fluid
flow is shear thinning. However, many yield-stress fluids deform like elastic solids in the
unyielded state and behave as viscoelastic liquids in the yielded state, displaying elastic
(E), viscous (V) and plastic (P) properties.

A simple dynamic elastoviscoplastic (EVP) constitutive model that can be integrated
with direct numerical simulations was proposed by Saramito (2007). The model has
proven to capture viscoplastic and elastic effects (Cheddadi et al. 2011; Fraggedakis,
Dimakopoulos & Tsamopoulos 2016) and to properly match experimental results and
observations (Holenberg et al. 2012) (common materials used to study this type of EVP
fluids are Carbopol solutions and liquid foams Firouznia et al. 2018; Zade et al. 2020). The
model was extended by the same author to account for shear-thinning effects (Saramito
2009), combining the Oldroyd viscoelastic model with the Herschel–Bulkley viscoplastic
model, with a power-law index that allows a shear-thinning behaviour in the yielded state.
When the index is equal to unity, the model reduces to the one proposed in his previous
work, i.e. Saramito (2007). Apart from the models proposed by Saramito, many other EVP
models exist in the literature. The interested reader is referred to Crochet & Walters (1983),
Balmforth, Frigaard & Ovarlez (2014), Saramito (2016) and Saramito & Wachs (2017) for
a thorough review of models and numerical methods.

Turbulent flow of purely viscoelastic fluids has gained attention in the drag-reduction
and flow control communities, since a tiny amount of polymer (parts per million) has
proven efficient in reducing friction drag in pipe flows (Virk 1971). Drag reduction
by polymers is related to their ability to modify coherent structures in wall-bounded
turbulence (Dubief et al. 2004, 2005). Polymers influence the turbulent cycle in two
ways: they attenuate near-wall vortices, but at the same time they also increase the
streamwise kinetic energy of the near-wall streaks. The net balance of these two opposite
actions leads to a self-sustained drag-reduced turbulent flow. More recently, Xi & Graham
(2010, 2012a,b) proposed that polymeric drag reduction is a time-dependent process:
turbulent flows with polymers spend relatively more time in hibernating phases, where the
turbulence is weak, and less time in active phases with strong turbulence. The turbulent
coherent structures, streamwise vortices and streaks, were found to differ in appearance
depending on whether the flow was in an active or a hibernating phase. Biancofiore, Brandt
& Zaki (2017) examined the secondary instability of streaks in viscoelastic flows, showing
that the streaks reach a lower average energy with increasing elasticity due to a resistive
polymer torque that opposes the streamwise vorticity and, as a result, opposes the lift-up
mechanism. Numerous studies have addressed the topic of polymeric drag reduction and
all cannot be reviewed here for brevity; the interested reader is referred to White & Mungal
(2008) for a thorough introduction to this subject.
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Turbulent flow of yield-stress fluids (plasticity) has been studied much less, despite
its relevance for applications. The reason is twofold. Time-resolved measurements in
yield-stress fluids are very challenging, even in laminar flows. Most real-life yield-stress
fluids are opaque and hence do not provide optical access. The transparent laboratory
fluid Carbopol, often used in these experiments, needs careful preparation to achieve
well-controlled properties (Dinkgreve, Fazilati & Bonn 2018; Tabuteau, Coussot & De
Bruyn 2018), and exhibits slip on smooth surfaces that needs to be avoided or carefully
controlled (Firouznia et al. 2018). On the other hand, direct numerical simulations of
yield-stress fluids have not been affordable until recently. Rosti et al. (2018a) first studied
the turbulent channel flow of a yield-stress fluid in a near-viscoplastic limit using the
Saramito EVP model (Saramito 2007), adding a tiny amount of elasticity to achieve
numerical stability (the Weissenberg number was Wi = 0.01). When the Bingham number
was gradually increased from zero, the flow became less turbulent and more correlated
in the streamwise direction, until it completely relaminarised at Bi = 2.8. The velocity
correlations revealed that the size and length of the near-wall streaks increased with the
Bingham number. The friction factor decreased with the Bingham number in the turbulent
regime, while it increased with the same in the laminar regime. Le Clainche et al. (2020)
analysed further the simulation data of Rosti et al. (2018a) using high-order dynamic mode
decomposition, and compared the modes with those in Newtonian fluids, and also in purely
viscoelastic fluids. Their results indicated that elasticity and plasticity have similar effects
on the coherent structures; in both cases, the flow is dominated by long streaks disrupted
by rapid, localised perturbations. The Newtonian flow, on the other hand, displays short
streaks and a more chaotic dynamics. Very recent experiments in a duct flow of Carbopol
confirmed that the energy content at low wavenumbers and streamwise anisotropy were
higher than in Newtonian turbulence (Mitishita et al. 2021), indicating that streamwise
near-wall structures (streaks) were enhanced in Carbopol. These experiments at higher
Reynolds numbers also confirmed the qualitative changes that viscoplasticity causes in
mean flow profiles and Reynolds stresses, as observed by Rosti et al. (2018a).

In addition, many earlier direct numerical simulation studies addressed the turbulence
in Bingham pseudoplastic fluids (obtained by regularising the Bingham model by a large
viscosity) (Rudman & Blackburn 2006; Guang et al. 2011; Zhu et al. 2020), and their
shear-thinning version, regularised Herschel–Bulkley fluids by Rudman et al. (2004)
and Singh, Rudman & Blackburn (2017). Very recently, Zhu et al. (2020) studied the
turbulence of a Bingham pseudoplastic fluid in a vertical channel with particles, at a
higher bulk Reynolds number (Reb = 8000) than Rosti et al. (2018a). They also obtained a
drag reduction with an increasing Bingham number, along with an increasing streamwise
coherence of the flow structures and observed that the turbulent statistics were asymmetric
with respect to the centreline at higher Bingham numbers.

Transitional flows of yield-stress fluids in pipes and channels have been addressed
in many studies, both experimentally and computationally. An asymmetric mean flow
profile is a characteristic feature observed in pipe flow experiments of yield-stress fluids
(Escudier et al. 2005; Peixinho et al. 2005; Esmael & Nouar 2008; Guzel, Frigaard
& Martinez 2009), and for fluids with a Herschel–Bulkley-type rheology (Escudier &
Presti 1996). According to Esmael & Nouar (2008), this was caused by an asymmetric
nonlinear coherent structure consisting of two counter-rotating vortices. Experiments on
laminar steady flow of a yield-stress fluid in a duct laden with particles were performed
recently by Zade et al. (2020). Computational studies on transitional flows have mainly
focused on the linear and nonlinear stability of channel flows (Frigaard, Howison &
Sobey 1994; Nouar & Frigaard 2001; Frigaard & Nouar 2003; Nouar et al. 2007;
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Metivier, Nouar & Brancher 2010; Nouar & Bottaro 2010; Bentrad et al. 2017). Most
importantly, within the Bingham model, the central plug regions of a channel flow remain
unyielded despite linear perturbations, and hence the flow is always linearly stable. In
non-modal analysis, in contrast to Newtonian fluids, the optimal disturbance is found to
be an oblique wave (Nouar et al. 2007), associated with the lift-up effect (Schmid 2007;
Brandt 2014). However, Nouar & Bottaro (2010) found that a slightly perturbed mean
flow profile supports exponential amplification of streamwise-travelling waves, indicating
another possible transition scenario for the plane channel flow of a yield-stress fluid.

Concluding, all previous studies on EVP turbulence focused on either purely viscoelastic
or near-viscoplastic fluids. The questions remain as to what happens when both elasticity
and plasticity effects are finite and interact with each other. The recent experimental study
by Mitishita et al. (2021) also raised the question of how the findings of Rosti et al. (2018c)
would be affected by finite elasticity. The present study focuses on EVP fluids at finite
Weissenberg numbers, i.e. fluids with finite viscoelasticity and yield stress.

In this work, we perform direct numerical simulations of turbulent channel flows of an
incompressible EVP fluid and extend the one by Rosti et al. (2018c) by considering a wide
range of Weissenberg numbers 0 ≤ Wi ≤ 16 and Bingham numbers 0 ≤ Bi ≤ 22.4, all at
the bulk Reynolds number Re = 2800. The non-Newtonian flow is simulated by solving
the full unsteady incompressible Navier–Stokes equations coupled with a modified version
of the model proposed by Saramito (2007) for the evolution of the additional EVP stress
tensor.

The manuscript is organised as follows. In § 2, we first discuss the flow configuration
and the governing equations, and then present the numerical methodology used. The new
model with some test cases is reported in § 2.1, while the new results are presented in § 3.
In particular, we discuss the role of elasticity and plasticity on a turbulent channel flow.
Finally, a summary of the main findings and conclusions are collected in § 5.

2. Formulation

We consider the laminar and turbulent flows of an incompressible EVP fluid through
a plane channel with two impermeable rigid walls. Figure 1(a) shows a sketch of the
geometry and the Cartesian coordinate system, where x, y and z (x1, x2 and x3) denote
the streamwise, wall-normal and spanwise coordinates, while u, v and w (u1, u2 and u3)
denote the respective components of the velocity field. The lower and upper stationary
impermeable walls are located at y = 0 and 2h, respectively, where h represents the
channel half-height.

The fluid motion is governed by the conservation of momentum and the
incompressibility constraint

∂ui

∂t
+ ∂uiuj

∂xj
= 1

ρ

∂σij

∂xj
, (2.1a)

∂ui

∂xi
= 0, (2.1b)

where ρ is the fluid density and σij the total Cauchy stress tensor, which is written
as σij = −pδij + 2μf Dij + τij, where p is the pressure, μf the fluid molecular dynamic
viscosity (also called solvent viscosity), δ the Kronecker delta and Dij the strain rate tensor
defined as Dij = (∂ui/∂xj + ∂uj/∂xi)/2. The additional EVP stress tensor τij accounts
for the non-Newtonian behaviour of the fluid, here described by a modified version of
the model proposed by Saramito (2007). In the original model, when the stress σ is
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y

x

z

Figure 1. Sketch of the computational domain. The XY and ZY planes in the middle of the domain show
instantaneous streamwise velocity contours with the scale ranging from 0 (blue) to 1.27Ub (red), where Ub
denotes the bulk velocity. Green structures represent unyielded regions.

below the yield stress τ0, the system predicts only recoverable Kelvin–Voigt viscoelastic
deformations, while when the stress exceeds the yield value τ0, the fluid behaves as an
Oldroyd-B viscoelastic fluid. Thus, the total strain rate ε̇ is shared between an elastic
contribution ε̇e and a plastic one ε̇p (Cheddadi et al. 2011). Since the Oldroyd-B model
assumes infinitely stretched dumbbells, the range of application of the model is limited to
low elasticity. To overcome this drawback, we instead use the finite extensible nonlinear
elastic-Peterlin (FENE-P) model. Thus, the instantaneous values of all the components of
the stress tensor τij are found by solving the following transport equation:

λ

(
∂τij

∂t
+ ∂ukτij

∂xk
− τkj

∂ui

∂xk
− τik

∂uj

∂xk

)
+ Ff τij

−
(

∂ ln F
∂t

+ ∂uk ln F
∂xk

)
(λτij + μmδij) = 2μmDij, (2.2)

where

F = 1 +

(
3 + λ

μm
τii

)
L2 , f = max

(
0,

|τd| − τ0

|τd|
)

. (2.3a,b)

Here, λ is the relaxation time, μm is an additional viscosity, L is the maximum polymer
extensibility, τ0 the yield stress and |τd| represents the second invariant of the deviatoric
part of the added stress tensor. The EVP parameters μf , μm, λ and τ0 can be obtained
by experimental data following the procedure detailed by Fraggedakis et al. (2016), based
on the determination of the linear material functions, i.e. the storage modulus G′ and the
loss modulus G′′. The above constitutive equation gives a Kelvin–Voigt solid in the limit
F ≈ 1, which is the case in the unyielded state, and a behaviour like a FENE-P fluid in the
yielded state. The previous equation can be rewritten in terms of the conformation tensor
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Cij as
∂Cij

∂t
+ ∂ukCij

∂xk
− Ckj

∂ui

∂xk
− Cik

∂uj

∂xk
= − f
λ
(FCij − δij), (2.4)

where the EVP stress tensor τij is related to the conformation tensor by the relation

τij = μm

λ
(FCij − δij). (2.5)

We use the log conformation method to overcome the well-known high Weissenberg
number problem (Fattal & Kupferman 2004; Hulsen, Fattal & Kupferman 2005;
Izbassarov & Muradoglu 2015; De Vita et al. 2018). In this approach, (2.4) is rewritten
in terms of the logarithm of the conformation tensor through an eigen-decomposition,
i.e. Ψ = log C , which ensures the positive definiteness of the conformation tensor. The
core feature of the formulation is the decomposition of the gradient of the divergence free
velocity field ∂uj/∂xi into two anti-symmetric tensors, Ωij (pure rotation) and Nij, and into
a symmetric tensor, Bij, which commutes with the conformation tensor, i.e.

∂uj

∂xi
= Ωij + Bij + NijCji. (2.6)

The modified transport equation to be solved is thus

∂Ψij

∂t
+ ∂ukΨij

∂xk
− (ΩikΨkj − ΨikΩkj) − 2Bij = f

λ
((e−Ψ )ij − Fδij). (2.7)

Once this equation is solved, the conformation tensor can be obtained using the inverse
transformation C = eΨ .

Finally, the full system of equations can be rewritten in a non-dimensional form as

Re
(

∂ui

∂t
+ ∂uiuj

∂xj

)
= ∂

∂xj
(−pδij + 2βDij + τij), (2.8a)

∂ui

∂xi
= 0, (2.8b)

∂Ψij

∂t
+ ∂ukΨij

∂xk
− (

ΩikΨkj − ΨikΩkj
) − 2Bij = f

Wi
((e−Ψ )ij − Fδij), (2.8c)

F = 1 +

(
3 + Wi

1 − β
τii

)
L2 , f = max

(
0,

|τd| − Bi
|τd|

)
, (2.8d)

τij = (1 − β)

Wi
(F(eΨ )ij − δij), (2.8e)

where we have used the same symbols to define the non-dimensional variables for
simplicity. Four non-dimensional numbers appear in the previous set of equations: the
Reynolds number Re, the Weissenberg number Wi, the Bingham number Bi and the
viscosity ratio β, defined as Re = ρUL/μ0, Bi = τ0L/μ0U, Wi = λU/L and β = μf /μ0,
where U and L are a characteristic velocity and length scales of the flow, ρ the fluid density
and μ0 the total viscosity, i.e. μ0 = μf + μm.

The equations of motion are solved with an extensively validated in-house code (Rosti &
Brandt 2017; De Vita et al. 2018; Izbassarov et al. 2018; Rosti et al. 2018c; Alghalibi, Rosti
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& Brandt 2019; Shahmardi et al. 2019). The governing equations are discretised with the
second-order centred finite difference scheme on a staggered uniform grid, except for the
advection term in (2.7) where the fifth-order WENO (weighted essentially non-oscillatory)
scheme is adopted (Shu 2009; Sugiyama et al. 2011). The time integration is performed
with a fractional-step method (Kim & Moin 1985) and a third-order explicit Runge–Kutta
scheme except for the EVP stress term which is advanced with the Crank–Nicolson
method.

In all the simulations, periodic boundary conditions are used in the streamwise
and spanwise directions, while the no-slip and no-penetration boundary conditions are
enforced on the solid walls. For all the turbulent cases considered hereafter with a
bulk Reynolds number equal to Reb = 2800, the equations of motion are discretised by
using 1728 × 576 × 864 grid points on a computational domain of size 6h × 2h × 3h in
the streamwise, wall-normal and spanwise directions, with the resolution satisfying the
constraint �x+ = �y+ = �z+ < 0.6, where the superscript + indicates the wall units.
The spatial resolution has been chosen equal to the one used in a previous work (Rosti
et al. 2018a) in order to properly resolve the turbulent scales as well as the unyielded
plug regions which form intermittently in the domain, and verified a posteriori with a
grid refinement study. In the low Reynolds fully laminar cases, the spatial resolution
was relaxed and the domain size in the homogeneous directions reduced. Finally, all
the turbulent cases are initialised with a fully developed channel flow with zero EVP
stress (τij = 0); after the flow and stresses have reached a statistically steady state, the
calculations are continued for an interval of approximately 500 bulk time units, during
which the statistics are computed.

2.1. Validations of the FENE-P-based EVP model
The present implementation for single and multiphase flows of an EVP fluid has
been extensively validated in the past; here, we report further test cases of the new
FENE-P-based EVP model also to present its rheological behaviour.

First, we consider a three-dimensional uniaxial elongational flow, with a constant
elongational rate ε̇0: the Weissenberg number Wi = λε̇0 and extensibility parameter L2

are varied in the range of 0.25 ≤ Wi ≤ 0.75 and 10 ≤ L2 ≤ ∞, respectively, while the
Bingham number Bi = τ0/(μ0ε̇0) = 1 and the viscosity ratio β = 0. The fluid flow is
assumed to have a constant velocity gradient ∂ui/∂xj = diag{1, −1/2, 1/2} and (2.2) can
be simplified as

Wi
dτ11

dt
+ ( fF − 2Wi)τ11 − d ln F

dt
(Wiτ11 + 1 − β) = 2(1 − β), (2.9a)

Wi
dτ22

dt
+ ( fF + Wi)τ22 − d ln F

dt
(Wiτ22 + 1 − β) = β − 1, (2.9b)

Wi
dτ33

dt
+ ( fF + Wi)τ33 − d ln F

dt
(Wiτ33 + 1 − β) = β − 1, (2.9c)

with τii(0) = 0 for i = 1, 2 and 3. The time evolution of τ11 − τ22 (the normal stress
difference) is reported in figure 2; we observe that, initially, the stress components grow
linearly, but when the stress level is above a threshold, i.e. the yield stress, the Saramito
model (L2 = ∞) predicts an unbounded growth for Wi > 0.5, while the FENE-P-based
model exhibits a limited growth with the stress difference reaching a plateau. This example
easily explains the reason why the FENE-P-based model is chosen for the current work,
where we aim to investigate the effect of finite elasticity.
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Figure 2. Time evolution of τ11 − τ22 in an uniaxial elongation for Bi = 1 and β = 0: (a) the effect of Wi for
L2 = ∞ (Oldroyd-B model) and (b) the effect of L2 (FENE-P model) for Wi = 0.75. The stress components
are normalised with μ0ε̇0.

Next, we consider a simple constant shear flow, with shear rate γ̇0; the Weissenberg
number is varied Wi = λγ̇0 in the range 0.01 ≤ Wi ≤ 100, while the Bingham number
Bi = τ0/(μ0γ̇ ) assumes 4 distinct values and the viscosity ratio β = 0. We consider two
cases, with L2 = 100 and L2 = ∞ to study the properties of the two models. For this
two-dimensional problem, we have ∂ui/∂xj = [

0 1
0 0

]
and (2.2) can be rewritten as

Wi
dτ11

dt
− 2Wiτ12 + fFτ11 − d ln F

dt
(Wiτ11 + 1 − β) = 0, (2.10a)

Wi
dτ22

dt
+ fFτ22 − d ln F

dt
(Wiτ22 + 1 − β) = 0, (2.10b)

Wi
dτ12

dt
− Wiτ22 + fFτ12 − d ln F

dt
(Wiτ12) = 1 − β, (2.10c)

with τij(0) = 0, i = 1, 2. The dimensionless steady shear viscosity μs/μ0 = β + τ12/γ̇ as
a function of Wi is reported in figure 3. As expected, both models exhibit a shear-thinning
behaviour: in particular, for L2 = ∞ the model tends to a plateau at both low (Wi � 0.1)
and high (Wi � 10) Weissenberg numbers, while for L2 = 100 the steady shear viscosity
reaches a plateau at low Wi but it decreases monotonically at high Wi. Note that the
shear-thinning effect is controlled by Bi, which modifies the plateau value at low Wi.

3. Results

3.1. Laminar flow
Our first analysis considers the laminar flow of an EVP fluid. All laminar cases are fixed
at β = 0.9, Re = 2800 and L2 = 3600, while the Weissenberg and the Bingham numbers
are varied in the range of 0.01 ≤ Wi ≤ 16 and 0.1 ≤ Bi ≤ 100, respectively. Note that the
domain size in the homogeneous directions was kept very small to avoid the development
of a turbulent flow and that no perturbations were added to the zero initial condition.

First, we consider the combined effects of the Bingham and the Weissenberg numbers
on the frictional resistance of the flow quantified by the Fanning friction factor f ,
defined as 2τw/ρU2

b with τw the total wall shear stress including both the viscous and
EVP contributions. Figure 4(a) shows the Fanning friction factor f as a function of the
Weissenberg number for various Bingham numbers. In particular, the cyan, brown, purple
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Figure 3. Steady shear viscosity for β = 0 and (a) L2 = ∞ (Oldroyd-B model); (b) L2 = 100 (FENE-P
model).
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Figure 4. Fanning factor as a function of (a) the Weissenberg number for Bi = 0.1, 2.8, 11.2 and 100 and (b)
the Bingham number for Wi = 0.01, 0.1, 2 and 16.

and green lines are used for Bi = 0.1, 2.8, 11.2 and 100, respectively. The friction factor
f decreases nearly linearly with Wi (in log scale). However, at Bi = 0.1 the factor f is
constant, which is consistent with the viscoelastic flows in the laminar regime. Results
clearly show that the elastic effects become more prominent with Bi, leading to a steeper
decay with Wi.

Next, we consider the reverse case, where we study the effects of Bingham number at a
fixed Wi, as shown in figure 4(b). We find that f increases nonlinearly with the Bingham
number Bi, and that the dependency on Bi decreases with the Weissenberg number Wi.
The increase of f can be explained by subtle changes in the mean streamwise velocity
profile. The non-dimensional streamwise velocity profile u/Ub is shown in figure 5(a) at
Wi = 0.01 and Bi = 0.1, 2.8, 11.2, 100 as a function of the wall-normal distance y/h. It
can be seen that the solid plug in the middle of the channel increases with the Bingham
number. The plug moves with a uniform velocity, and its velocity decreases with Bi due to
mass conservation, leading to an increase in the wall shear stress.

The variations of the non-dimensional mean velocity profile u/Ub at Bi = 22.4 with
the Weissenberg number, see figure 5(b), demonstrate that the solid plug in the middle
of the channel decreases with Wi. Indeed, the total stress magnitude in a channel flow
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Figure 5. Mean streamwise velocity profile u as a function of (a) the Bingham number for Bi = 0.1, 2.8, 11.2
and 100 at Wi = 0.01 and (b) the Weissenberg number for Wi = 0.01, 0.1, 2 and 16 at Bi = 22.4.
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Figure 6. Percentage of the unyielded volume Vols as a function of (a) the Weissenberg number for
Bi = 0.1, 2.8, 11.2 and 100 and (b) the Bingham number for Wi = 0.01, 0.1, 2 and 16.

increases with elasticity, leading to earlier yielding (Chaparian & Tammisola 2019). To
further quantify these observations, the volume of the solid region is shown in figure 6
for various combinations of Wi and Bi. The results are consistent with the observations in
figure 4, since the solid volume Vols is proportional to the friction factor f .

3.2. Turbulent flow
We examine turbulent channel flows of an EVP fluid, together with the baseline
Newtonian (Bi = 0 and Wi ≈ 0), viscoelastic (Bi = 0) and almost viscoplastic (Wi ≈ 0)
cases. All simulations have been performed until statistically steady state (at least 500
non-dimensional units). Hence, in the turbulent flow cases, the turbulence is always fully
developed. However, for some parameter values the flow is not turbulent, because it has
laminarised by increasing elasticity or plasticity.

The flow rate is constant in all simulations, so that the flow Reynolds number based
on the bulk velocity is fixed, i.e. Re = ρUbh/μ0 = 2800, where the bulk velocity Ub is
the average value of the mean velocity computed across the whole domain and μ0 is the
total zero-shear viscosity. In the turbulent regime, this bulk Reynolds number corresponds
to a nominal friction Reynolds number Reτ = ρuτ h/μ0 = 180 for a Newtonian fluid, uτ

being the friction velocity. A wide range of elasticity and plasticity is investigated: the
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Weissenberg number Wi = λUb/h is varied in the range 0 ≤ Wi ≤ 16 to study the role
of fluid elasticity, while the Bingham number Bi = τ0h/μ0Ub is varied between 0 and
22.4. The viscosity ratio and the extensibility parameter are fixed to β = μf /μ0 = 0.9
and L2 = 3600.

The viscous units used above are indicated by the superscript +, and are built using the
friction velocity uτ as the velocity scale and the viscous length δν = ν/uτ as the length
scale. Here, we define the friction velocity as

uτ =
√(

1
Reb

dū
dy

+ τ̄12

)∣∣∣∣
y=0

, (3.1)

where we have taken into account also the EVP shear stress at the wall. Note that the actual
value of the friction velocity in our simulations is computed from the friction coefficient,
obtained with the driving streamwise pressure gradient, rather than from its definition.

We first discuss the qualitative flow characteristics for various combinations of Wi and
Bi. A qualitative overview of the resulting flow regimes as functions of Wi and Bi is
presented in figure 7.

The empty and filled symbols in figure 7 represent turbulent and laminar regimes,
respectively. As expected, the flow becomes laminar and steady with an increasing
Bingham number. The critical Bic can be defined as the lowest value of Bi where
laminarisation occurs, at each Wi. At Wi = 0.01, the flow is near viscoplastic and fully
laminarises at the relatively low critical Bic = 2.8 (Rosti et al. 2018c). (Note that results
for viscoplastic cases used in this work are taken from our previous work Rosti et al.
(2018c).) Laminarisation of the viscoplastic flow with increasing Bingham number is
closely related to the increase of the core unyielded region which grows from the centreline
towards to the walls, and damps out turbulent fluctuations in the core. As described in
Rosti et al. (2018c), the near-wall streaks were intensified and became more coherent. The
low-speed streaks, usually associated with positive wall-normal fluctuations, reach higher
wall-normal distances than the high-speed streaks, thus inducing the flow to yield at higher
wall-normal distances if the local stress reaches the yield-stress threshold. Indeed, the
unyielded regions preferentially form above high-speed streaks. Overall, the flow becomes
more and more correlated in the streamwise direction when increasing the Bingham
number, with high levels of flow anisotropy close to the wall, similarly to what observed in
other drag-reducing flows. Differently from the other flows, however, both the streamwise
and spanwise correlations grow with the Bingham number also away from the wall, due to
the growth of the unyielded region.

As the flow becomes more elastic, the critical Bic shows a non-monotonic behaviour;
it first increases with Wi, then decreases. The reason for this non-monotonic behaviour is
attributed to the fact that the coherent structures are highly influenced by the relative width
of the plug compared with the yielded regions around it, as will be described later.

The colours in figure 7 represent a measure of drag reduction compared with a
Newtonian fluid. Panel (a) shows DR = [1 − (Reτ /Reτ,Wi=0)

2] × 100 %. For flows in the
turbulent regime, DR increases with Bi for all Wi studied in this work. In the laminar
regime, however, at low Wi = 0.01, the DR changes sign, showing drag increase, whereas
for higher Wi ≥ 2 values, the DR only slightly decreases with Bi. This is consistent
with the results for the Fanning factor shown in figure 8. It is well known that a finite
viscoelasticity reduces drag compared with a Newtonian flow, and this has been exploited
in many previous studies and in the industry. The figure seems to show that a combination
of finite Wi and Bi results in a much greater drag reduction than a finite Wi alone.
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Figure 7. Combined effects of elasticity and plasticity. A flow regime map is shown by symbols: � – turbulent,
� – laminar. Colour scale shows drag reduction compared with the Newtonian case. (a) Colour scale: DR =
[1 − (Reτ /Reτ,Wi=0)

2] × 100 % spanning ±65 from red (drag reduction) to violet (drag increase). (b) Colour
scale: DR2 = [1 − fEVP/fN ] × 100 % where fEVP and fN denote skin friction for EVP and Newtonian cases,
respectively.

However, a closer inspection shows that the very high drag reduction DR > 70 % occurs
when the flow laminarises, because we compare with the drag in the Newtonian flow in the
turbulent regime. We wanted to eliminate the effect of laminarisation on drag reduction,
and also try to exclude the effects of shear thinning. Therefore, in (b), we show another
measure of drag reduction which excludes the influence of shear thinning (Housiadas &
Beris 2003): DR2 = [1 − fEVP/fN] × 100 %, where fEVP and fN denote skin friction for
EVP and Newtonian cases, respectively. Following Dean (1978)

fN =
{

12/Rew laminar

0.073Re−0.25
w turbulent,

(3.2)
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Figure 8. The shear effective viscosity μe for (a) VE, (b) VP and (c) EVP cases. (a) VE case: the green,
magenta, black and blue colours are used for Wi = 2, 4, 8 and 16. (b) VP case: the red, orange, cyan and violet
colours are used for Bi = 0, 0.28, 0.7 and 1.4, respectively (c) EVP case is at fixed Wi = 4 and the green, red
and black colours are used for Bi = 0, 2.8 and 5.6, respectively.

where Rew = ρU2h/μw and μw = τw/γ̇w, and subscript w denotes wall quantities. Using
DR2 as a measure, the highest drag reduction is achieved either at high Wi, or in EVP flow
when Wi and Bi are both moderate, in the same region where laminarisation is delayed to
higher Bi. In general, the drag-reduction values remain very similar for these two measures
in the turbulent regime, indicating that shear thinning has no major influence on drag
reduction at the studied parameter values. Despite this, the viscosity profiles (figure 8)
show shear thinning for VE, EVP and VP cases. Apparently, plasticity plays a strong role
on shear thinning, as both VP and EVP show stronger shear thinning. For the EVP case at
Wi = 4 and Bi = 5.6, we are approaching results of VP at Bi = 1.4, thus elasticity seems
to decrease shear thinning.

The main area responsible for the non-monotonic trends is the unyielded region of
the flow. The unyielded regions show a non-trivial and complex trend with Bi and Wi,
with significant differences also between the laminar and turbulent regimes. In order
to better understand the flow, we start by showing visualisations of the instantaneous
distributions of the yielded and unyielded regions in figure 9. In particular, the figure shows
instantaneous cross-stream planes (x–y plane) where the unyielded regions are coloured
in brown; in the yielded regions we report colour contours of the spanwise vorticity,
ωz. At Bi = 0 and Wi ≈ 0 we recognise the classic vorticity field of turbulent channel
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Figure 9. Contours of the instantaneous spanwise vorticity −ωz in a x–y plane As a function of the Bingham
and Weissenberg numbers. Colour scale ranges from −3Ub/h (blue) to 3Ub/h (red). The brown areas represent
the instantaneous regions where the flow is not yielded.

flows, with high vorticity levels at the walls, and the footprints of the classical turbulent
streaky structures. As Wi increases, the flow becomes smoother, the flow structures seem
to be more elongated and the streamwise coherency of the flow increases, as is typical of
drag-reducing flows.

Note that, although the turbulence activity is reducing with Wi, the purely viscoelastic
flow does not laminarise. On the other hand, for every Wi, the flow returns to laminar
for a sufficiently high Bingham number (Bi > Bic). In particular, we observe that as
Bi increases, the amount of fluid which is unyielded grows, eventually forming a fully
connected plug spanning the whole streamwise and spanwise lengths, thus leading to the
decay of turbulence and the return to a fully laminar regime. However, at intermediate Wi,
we observe that a higher Bic is required to laminarise the flow than at low or high Wi. At
intermediate Wi, the equilibrium solutions indicate that the unyielded region is narrower
than in the viscoplastic flow (Chaparian & Tammisola 2019), and we propose that this
allows instabilities to be sustained in the yielded regions. In the present simulation at
intermediate Wi, a plug was formed initially and the flow seemed to laminarise, but soon
a large-scale roll-up motion developed at the edges of the unyielded region, recreating
the unsteadiness and turbulence. On the other hand, at higher values (Wi > 4) this effect
does not occur thus leading to lower Bic. This phenomenon could be attributed to the fact
that the unyielded region becomes too thin to create any instability. Moreover, the yielded
region becomes smoother at high Wi enhancing laminarisation.

It is not obvious what drives the instability leading to the roll-up motion, because the
laminar flow profile is not inflectional. A sharp viscosity contrast can lead instabilities in
channel and shear flows. The unyielded region could play a similar role as a high-viscosity
fluid in the centre of the channel, a configuration which can be unstable at high Reynolds
numbers (Hooper & Boyd 1987; Govindarajan & Sahu 2013). On the other hand, a channel
flow of Bingham fluid is known to be linearly stable at all Reynolds numbers. Although
the linear stability of EVP flow has not been studied, the transition that we observe could
be subcritical, like for Bingham fluids. However, the roll-up structure we observe does
not resemble the optimal non-modal instabilities in Bingham fluid: streamwise-travelling
waves (Nouar et al. 2007) or oblique waves (Nouar & Bottaro 2010).

For laminar flows (Bi > Bic), a further increase of Bi leads to a growth of the unyielded
region, which induces an increase of the wall shear stress and a consequent drag increase,
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Figure 10. Mean streamwise velocity profile ū as a function of the wall-normal distance y in wall units.
(a) Near-viscoplastic flow (Wi = 0.01). (b) Viscoelastic flow (Bi = 0). The dashed line and symbols in the
figure correspond to the Virk curve at maximum drag reduction (Virk 1975) and the results of Kim, Moin &
Moser (1987), respectively.

as previously observed in figure 8. This is different from observations in the turbulent
regime, where the drag reduces with both Wi and Bi (Rosti et al. 2018c).

3.3. Flow statistics
Here, we discuss the turbulent statistics for EVP flows. To facilitate comparisons, we
provide results for the two limiting cases: near-viscoplastic and viscoelastic flows, and
then compare these with the flows with finite elasticity and plasticity. The near-viscoplastic
flow was presented in our earlier work (Rosti et al. 2018c), and was computed using the
Saramito model at Wi = 0.01, β = 0.95, and varying Bi. The viscoelastic flow is computed
at varied Weissenberg number 0 ≤ Wi ≤ 16 and fixed Bingham number Bi = 0, and the
FENE-P model parameters are β = 0.9 and L2 = 3600, unless indicated otherwise.

We first discuss the mean streamwise velocity profiles in relation to drag reduction
shown in figure 7. In figure 10, the velocity profiles are shown in wall units. The profiles
for viscoplastic flow in figure 10(a) are similar to the Newtonian case for Bi < 1.4.
For Bi = 1.4, the difference becomes more significant with zero-shear region at the
centreline. At Bi = 2.8, the flow becomes laminar with a large zero-shear region, leading
to drag increase as observed in figure 7. We can observe that the flow remains unyielded
mostly in the logarithmic and outer layer, while it is always yielded in the viscous
sublayer.

For viscoelastic flows, DR% increases monotonically with Wi in the range of Wi = O(1)

and start to saturate at Wi > 10. The maximum drag reduction is close to 40 % at Wi = 16.
Figure 10(b) shows the mean streamwise velocity profiles in wall units. It can be seen that
increasing Wi the velocity profiles collapse in the viscous sublayer, however, shift upward
in the buffer region (thickening of the buffer layer) and are parallel to the Newtonian
profile. Note that we do not reach Virk’s maximum drag-reduction (MDR) asymptote
(Virk 1975), which is out of scope of the present study. The shift in the velocity profile
is consistent with results in the literature (Xi & Graham 2010; Shahmardi et al. 2019).

We next consider the EVP flow. The drag-reduction values and the corresponding mean
streamwise velocity profiles for Wi = 4, β = 0.9, L2 = 3600 and Bi = 0, 2.8, 5.6, 11.2 and
22.4 are shown in figure 11. Similarly to the viscoplastic flow, the DR% increases with Bi
in the turbulent regime. Unlike pure viscoelastic case, plasticity enhances the DR going
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Figure 11. EVP flow: (a) drag reduction as a function of Bi and (b) mean streamwise velocity profile ū as
a function of the wall-normal distance y in wall units. The Weissenberg number Wi and the extensibility
parameter L2 are fixed and equal to 4 and 3600, respectively (FENE-P model).

from low-drag reduction (LDR, DR � 40) at 0 ≤ Bi < 5.6 to high drag-reduction (HDR,
40 < DR � 60) at Bi = 5.6. Moreover, the laminar regime delays to larger Bi > 5.6,
which may be attributed to the dramatic effects due to the polymer dynamics. Unlike the
viscoplastic case, DR% only slightly decreases in the laminar case as shown also earlier in
figure 7. The change of mean streamwise velocity profile with Bi is more significant than in
figure 10(a) and more similar to figure 10(b) for Bi ≤ 5.6, i.e. the velocity profile collapse
in the viscous sublayer, and shift upward in the buffer and log-law layer approaching Virk’s
asymptote. In contrast, for Bi > 5.6 the flow fully laminarises and becomes similar to the
case in figure 10(a), with the zero-shear region at the centreline.

Next, we analyse the wall-normal distribution of the Reynolds stress components u′u′
and v′v′, shown in figure 12 together with the Newtonian case by Kim et al. (1987) (blue
symbol). The profiles are normalised with u2

τ . The results for the viscoelastic case (a,b)
show that the u′u′ increases while v′v′ decreases with Wi. In general, the shape of the
profiles is similar to the corresponding Newtonian one, but the magnitude changes with Wi.
Moreover, all the peaks move towards the channel centre, in agreement with the thickening
of the buffer layer observed in the mean velocity profile. A similar behaviour has been
noticed in the literature for drag-reducing turbulent viscoelastic flows (White & Mungal
2008; Dallas, Vassilicos & Hewitt 2010). The VP case (Wi = 0.01) is depicted in (c,d) to
examine the effects of the Bingham number in the range 0 ≤ Bi ≤ 2.8. We clearly observe
that the peak of the streamwise component u′u′ increases with Bi, while it decreases for
v′v′. A similar trend is observed for the EVP case (Wi = 4) as depicted in (e,f ).

Although the overall trends are similar, the combined effects of elasticity and plasticity
in the EVP flows result in larger deviations from the Newtonian flow than for the two
limiting cases, particularly for the peak in the u′u′ profile. It is also interesting to note that
in the EVP flow the peak moves non-monotonically, unlike in the VE and VP cases: it
first moves away from the wall as Bi increases (Bi ≤ 5.6), and then moves slightly back
towards the wall. The stress components u′v′ and w′w′ show similar trends as v′v′, and are
shown in figure 13 for completeness.

Figure 14 shows Ps, the probability of the fluid being unyielded in a given vertical
position, and Vols, the percentage of the volume that was unyielded on average, for VP
(Wi = 0.01) and EVP (Wi = 4 and 8) cases. The probability Ps is displayed against the
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Figure 12. Wall-normal profiles of components of the Reynolds stress tensor, normalised with u2
τ . The first

column shows u′u′, the second column v′v′. (a,b) VE flow at various Wi and fixed Bi = 0. (c,d) VP flow at
various Bi and fixed Wi = 0.01. (e, f ) EVP flow at various Bi and fixed Wi = 4. The extensibility parameter
L2 is fixed and equal to 3600. The •, blue symbols indicate the direct numerical simulation (DNS) data of Kim
et al. (1987).

wall-normal distance y, whereas the volume percentage is depicted in the legend. The
probability Ps ranges from 0 (always fluid) to 1 (always elastic solid).

For the laminar case, as expected, Ps sharply changes along the interface between the
unyielded and yielded region. For turbulent cases, the probability Ps increases smoothly
across the channel with a maximum in the vicinity of the centreline and a minimum near
the wall. This happens due to the time-dependent nature of the turbulent flow.

For the VP case, Ps and Vols increase with Bi, reaching the maximum (Vols = 54 %)
at Bi = 2.8, when the flow is fully laminar. The volume of the unyielded region further
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Figure 13. Wall-normal profiles of components of the Reynolds stress tensor, normalised with u2
τ . The first

column shows w′w′, the second column u′v′. (a,b) VE flow at various Wi and fixed Bi = 0. (c,d) VP flow at
various Bi and fixed Wi = 0.01. (e, f ) EVP flow at various Bi and fixed Wi = 4. The extensibility parameter L2

is fixed and equal to 3600. The •, blue symbols indicate the DNS data of Kim et al. (1987).

increases when Bi increases in the laminar regime, as illustrated in figure 5(a). Let us
now consider the EVP cases. A careful inspection of figure 14 reveals that the unyielded
volume Vols is smaller in EVP flows than in VP flows, in both laminar and turbulent states.
Also, Vols further decreases as Wi increases, from 30 % at Wi = 4 to 26 % at Wi = 8, as
seen in figure 14(b,c). The reason is that the elastic stress in channel flows increases with
Wi, resulting in a smaller unyielded volume. Moreover, the Vols increases monotonically
with Bi also for the EVP case, as long as Bi < Bic. However, when the flow laminarises
(Bi ≥ Bic), Vols decreases owing to a narrow plug region. An explanation to the decrease
can be found by comparing the laminar and turbulent mean flow profiles. In laminar VE
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Figure 14. Probability of the fluid being unyielded Ps in: (a) VP flow at Wi = 0.01 and EVP cases at
(b) Wi = 4 and (c) Wi = 8. The percentage of the unyielded volume Vols is presented in the legends. For
the (a) VP case, the red, orange, cyan, violet and green colours are used for Bi = 0, 0.28, 0.7, 1.4 and 2.8,
respectively. For the (b,c) EVP cases, green, red, black and orange colours are used for Bi = 0, 2.8, 5.6 and
11.2, respectively. The extensibility parameter for the EVP cases is L2 = 3600.

channel flows, the elastic stress is known to be proportional to both the local shear and Wi,
and therefore, the elastic stress forms the largest part of the total stress at moderate Wi. In
laminar flows, the shear is finite almost everywhere across the channel. In turbulent flows,
however, the mean flow shear is small in the central region, and hence the elastic stresses
are smaller on average, with the Reynolds stresses becoming more important in yielding
the material.

We now present the statistics of the polymer conformation tensor for VE, VP and EVP
cases. The mean profiles of the polymer stretching

√
Tr(C̄)/L are shown in figure 15(a)

for the VE case at Wi = 2, 4, 8 and 16, where the dashed line in the figure indicates the
case of coiled polymers (conformation tensor equal to identity). As expected, the polymer
stretching increases monotonically with the Weissenberg number Wi. The mean polymer
stretching first increases with maximum in the vicinity of the wall, then decreases with
minimum at the centre. The observed near-wall peak is mostly due to the interaction
between polymers and near-wall vortices (Xi & Graham 2010; Dubief, Terrapon &
Soria 2013). Viscoelastic effects become more prominent throughout the domain when
increasing Wi and the peak values move away from the wall.

The mean polymer extension for the VP cases at 0 ≤ Bi ≤ 2.8 is shown in figure 15(b).
For Bi � 2, corresponding to the turbulent regime, the stress profile is nearly constant
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Figure 15. Mean polymer extension in: (a) VE (Bi = 0), (b) VP (Wi = 0.01), EVP for (c) Wi = 4 and
(d) Wi = 8. The undeformed polymer stretching (

√
Tr(I)/L and

√
Tr(I)) is represented by the black dashed

line. The extensibility parameter is L2 = 3600.

except in the near-wall region where it is maximum. Note that, for the laminar case,
the stress monotonically decreases along the wall-normal direction. Finally, the results
pertaining the EVP flows at 0 ≤ Bi ≤ 11.2 and Wi =4 & 8 are presented in figure 15(c,d).
For the turbulent EVP cases (Bi < 11.2), the stress profiles are qualitatively similar to
the VE ones. The maximum values are in the vicinity of the wall and the minimum at
the centreline (y = h). Moreover, the minimum values increase with Bi while peaks are
not sensitive to Bi at Bi < Bic. For the laminar flows, the profile is qualitatively similar
to the viscoplastic one, with maximum and minimum values at the wall and centreline,
respectively.

3.4. Energy and stress balance
To further characterise the flow, we study the energy and shear stress budget for the
viscoelastic and EVP cases. We first consider how the energy stress budgets evolve with
Weissenberg number, at zero Bingham number.

An overall view of the velocity fluctuations is obtained from the turbulent kinetic energy
K = (u′2 + v′2 + w′2)/2, normalised with u2

τ (figure 16a). Following Dallas et al. (2010),
the budget of turbulent kinetic energy integrated over the whole domain can be written as
follows: ∫

V
P dV =

∫
V

ε dV +
∫
V

Π dV, (3.3)
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Figure 16. VE case: wall-normal profiles of (a) the turbulent kinetic energy K = (u′2 + v′2 + w′2)/2 and
of (b) the turbulent production P = −ρu′v′ dū/dy, (c) the turbulent dissipation ε = μ∂u′

i/∂xj∂u′
i/∂xj and

(d) average contributions to the energy balance from P, ε and dissipation due to the polymers Π = ∂u′
i/∂xjτ

′
ij,

all normalised with the friction velocity u3
τ . The symbols in the figure correspond to results of Kim et al. (1987)

for the Newtonian case.

where V is the volume of the domain, P = −ρu′v′ dū/dy is the turbulent production,
ε = μ∂u′

i/∂xj∂u′
i/∂xj is the turbulent dissipation and Π = ∂u′

i/∂xjτ
′
ij is the dissipation due

to the polymers.
The turbulent kinetic energy increases with Wi, and its profile is similar to the

streamwise velocity fluctuation in figure 12(a), as the streamwise velocity is of larger
magnitude than the other velocity components. On the other hand, the turbulent production
by the Reynolds shear stress P = −u′v′ dū/dy is continuously reduced when increasing
Wi. The peak values occur in the buffer layer, moving towards the channel centre with
increased DR consisted with thickening of the buffer layer. We also computed the turbulent
dissipation ε = μ∂u′

i/∂xj∂u′
i/∂xj of the fluctuating velocity field u′

i. The dissipation ε

also attenuates with Wi, while the profile maintains its shape with maximum value at
the wall and minimum at the centreline. Volume-averaged quantities of

∫ P dy,
∫

ε dy
and dissipation due to polymers

∫
Π dy are shown in figure 16(d). It can be seen that

the average turbulent production and viscous dissipation decrease with Wi, while the
polymeric dissipation increases with Wi. The decrease in P and ε with Wi is consistent
with the observed drag reduction. Note that Π first increases with Wi, but slightly
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Figure 17. VE case: shear component of the mean (a) viscous stress τ̄V and (b) viscoelastic stress tensor τ̄E as
a function of the wall-normal distance y. The extensibility parameter L2 is fixed and equal to 3600.

decreases at Wi = 16, which could be due to the fact that we are approaching the HDR
regime. Dallas et al. (2010) observed a similar non-monotonic trend with Wi for Π i.e. the
polymeric dissipation increases in LDR while it decreases in HDR and MDR. Overall, our
viscoelastic results are in agreement with the literature for turbulent flow with polymer
additives (Warholic, Massah & Hanratty 1999; Dallas et al. 2010; Xi & Graham 2010).

Next, we show the mean viscous (τ̄V ) and viscoelastic stress (τ̄E) profiles as a function
of the Weissenberg number, see figure 17. The viscous stress profiles coincide close to the
wall and in the vicinity of the channel core but increase slightly in the buffer layer. The
viscoelastic stress profile has a peak in the vicinity of the wall and minimum in the centre.
The τ̄E changes non-monotonically, it first increases reaching maximum in the buffer layer
and then decreases reaching a minimum at the centreline. With increase in Wi the peak
moves towards the core region.

To gain further understanding, the shear stress budget is shown in figure 18 for the VE
cases with Wi = 2 and Wi = 16, normalised with the corresponding wall stress. The total
shear stress τ̄T can be written as τ̄T = τ̄V + τ̄E + τ̄R = (1 − y/h)τw where the viscous
stress τ̄V = μ dū/dy, the Reynolds stress τ̄R = −ρu′v′ and viscoelastic stress τ̄E tensor.
Note that, unlike the Newtonian case, the total wall shear stress is sum of the viscous
and viscoelastic contributions. For Wi = 2, the behaviour is similar to the Newtonian case
with the viscous stress dominating close to the wall and the Reynolds stress in the core.
The viscoelastic effects become more pronounced at Wi = 16, in that the viscous and
viscoelastic stresses increase, while the Reynolds stresses diminish.

Finally, we perform the same energy and momentum budget analysis to consider the
combined effects of elasticity and plasticity. The energy budget is shown in figure 19
at fixed Weissenberg number Wi = 4, while varying the Bingham number in the range
0 ≤ Bi ≤ 11.2. Qualitatively, the effect of Bingham number on the energy budget is
similar to the viscoplastic case in Rosti et al. (2018a), the peak of K increases with Bi,
while the peak values for P and ε decrease. The volume-averaged viscous dissipation
decreases, while EVP dissipation increases with Bi. Surprisingly, however, the turbulent
production slightly increases with Bi at this finite Weissenberg number, in contrast with the
viscoplastic flow. The shear components of the mean viscous and EVP stress tensors are
shown in figure 20. In viscoplastic flows, we observed that the shear component of the EVP
stress tensor increased everywhere across the channel. In the combined case, however,
(figure 20b) its value at the wall remains constant in the turbulent regime. In the laminar
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Figure 18. VE case: normalised shear stress balance across the channel, for (a) Wi = 2 and (b) Wi = 16. The
total shear stress varies linearly across the channel height.
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Figure 19. EVP case: wall-normal profiles of (a) the turbulent kinetic energy K = (u′2 + v′2 + w′2)/2 and
of (b) the turbulent production P = −ρu′v′ dū/dy, (c) the turbulent dissipation ε = μ∂u′

i/∂xj∂u′
i/∂xj and

(d) average contributions to the energy balance due to P, ε and dissipation due to fluctuation of the EVP
stresses Π = ∂u′

i/∂xjτ
′
ij, all normalised with the friction velocity uτ . The Weissenberg number Wi and the

extensibility parameter L2 are fixed and equal to 4 and 3600, respectively (FENE-P model). The symbols in the
figure correspond to results of Kim et al. (1987) for the Newtonian case.
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Figure 20. EVP case: shear component of the mean (a) viscous stress τ̄V and (b) EVP stress tensor τ̄E as a
function of the wall-normal distance y. The Weissenberg number Wi and the extensibility parameter L2 are
fixed and equal to 4 and 3600, respectively (FENE-P model).
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Figure 21. EVP case: normalised shear stress balance across the channel, for (a) Bi = 0 and (b) Bi = 5.6. The
total shear stress varies linearly across the channel height. The Weissenberg number Wi and the extensibility
parameter L2 are fixed and equal to 4 and 3600, respectively (FENE-P model).

regime, as expected, the shear component changes linearly in the liquid region and is zero
in the solid region. The EVP stress continuously increases with Bi towards the centre
of the channel. Finally, we report in figure 21 the shear stress budget for the cases with
Bi = 0 and Bi = 5.6, normalised with the corresponding wall stress. With increasing Bi,
the EVP and viscous stresses grow more across the channel, further reducing the Reynolds
stresses, and hence the combined case deviates even more from the Newtonian flow than
the viscoelastic case does.

3.5. Intermittent dynamics
Finally, we compare the intermittent dynamics for purely viscoelastic, viscoplastic and
EVP cases. Previously, Xi & Graham (2010, 2012b) observed two distinct time intervals,
denoted as hibernating and active, for viscoelastic turbulent flow in minimal channel
geometry. During the hibernating intervals, drag reduction is high and turbulence is
partly attenuated, whereas the active intervals represent active turbulence similar to the
Newtonian turbulent flow.
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Figure 22. Time series for hibernation phenomenon. Left column: the Reτ evolution in time; right column:
mean streamwise velocity at time instants i–v defined in the left column, for VE flow (a,b), VP flow (c,d) and
EVP flow (e,f ). The parameters are: Wi = 16 and Bi = 0 for VE flow, Wi = 8 and Bi = 2.8 for EVP flow and
Wi = 0.01 and Bi = 1.4 for VP flow.

Figure 22(a) shows the time evolution of the friction Reynolds number Reτ for the
viscoelastic flow. We choose five time instants (i–v) defined in figure 22(a): (iii) is in
the active regime, whereas (i and v) are in the hibernation regime. The instantaneous
velocity profiles at these times are shown in figure 22(b). Note that velocity profiles are
shown in inner units based on the instantaneous friction velocity. For convenience, data
for the Newtonian case (Kim et al. 1987), represented by blue symbols, are also shown. As
expected from previous work mentioned above, the profile changes between the Newtonian
and the Virk profile, approaching the latter one at the lowest Reτ (instant v).

927 A45-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

78
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.789


D. Izbassarov, M.E. Rosti, L. Brandt and O. Tammisola

The time evolution of the friction Reynolds number for the viscoplastic flow is shown
in figure 22(c). Viscoplastic flow does not hibernate, so we choose four time instants in
the turbulent regime. A more limited range of friction Reynolds numbers is observed,
i.e. 165 < Reτ < 185. Indeed, the instantaneous velocity profile figure 22(d) at the chosen
times only slightly deviates from the Newtonian flow, represented by blue symbols in the
figure.

Let us now consider the EVP flow where both elastic and plastic effects are significant.
It is remarkable to see that the EVP flow (figure 22e) behaves like the VE flow,
with significant drag reduction in the hibernation regime. Interestingly, the elastic
characteristics of the intermittent turbulent dynamics are even stronger for the EVP flow
than for the VE flow as also observed in the velocity profiles. The profiles near the
active regime (instants i and v) are similar to LDR profiles, whereas the ones under
hibernation are more like a HDR, with instant (iv) being very close to the Virk profile.
Correspondingly, since the EVP flow hibernates longer periods, we observe a more
significant drag reduction (27 % < DR < 58 %) than for the purely viscoelastic flow. It
is worth noting that we observed and compared several hibernation cycles in VE and EVP
flows, in addition to the ones shown in the figure.

We also examine the instantaneous profiles of the mean polymer extension, wall-normal
and shear components of the conformation tensor for VE and EVP flow in figure 23.
The polymer extension is maximal in the active regime (black and red lines), while it
is minimal in the hibernation phase (orange and green lines). The same was observed
in viscoelastic turbulent flow in a minimal channel (Xi & Graham 2010, 2012b). While
the qualitative picture is the same for VE and EVP, they do present some differences. It
appears that at hibernation, the EVP flow has larger polymer extension and higher values
of the wall-normal component than the VE flow, while the shear component of the EVP
flow is lower, which explains drag reduction. On the other hand, the VE flow presents
higher values of both components in the active turbulence regime. (We recognise that these
profiles are only snapshots and may not represent accurately the whole dynamics.) EVP
stresses are lowest in the hibernation state, and consequently, the probability Ps of the fluid
to be unyielded is highest in the hibernation state, as shown in figure 24. The Ps-curves
neatly divide into two distinct groups in active vs hibernating state, as characterised by
Reτ , and also by the wall-normal component of the confirmation tensor C22.

4. Flow structures

The EVP character of the flow affects the near-wall turbulent structures, and this is visually
confirmed in figure 25. In the figure we identify the low- (blue) and high-speed (red)
near-wall streaks with isosurfaces of the streamwise velocity fluctuations u′ corresponding
to the levels u′+ = ±0.25Ub for the values of Bi and Wi pertaining all the turbulent
cases we have studied. In the Newtonian case (Bi = 0 and Wi = 0), we recognise in the
shape of the streamwise velocity fluctuations the typical footprints of the near-wall streaks
and quasi-streamwise vortices that characterise the near-wall turbulence and that are
responsible for the wall cycle that can sustain turbulence in classical wall-bounded flows
(Jiménez & Pinelli 1999). In VE flows (the leftmost column in figure 25), as the elasticity
increases, the low- and high-speed streaks become less fragmented, are correlated over
longer distances in the streamwise direction and grow in size. This behaviour has been
recognised in the past by several authors (Warholic et al. 1999; Escudier, Nickson & Poole
2009; Shahmardi et al. 2019; Le Clainche et al. 2020) who consistently reported that the
inclusion of the polymers in the flow strongly modifies the near-wall structures, by overall
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Figure 23. Hibernation phenomenon of VE and EVP fluids, at the same time instants as in figure 22. Mean
polymer extension, wall-normal C̄22 and shear C̄12 components of the mean conformation tensor for VE (Wi =
16 and Bi = 0, a,c,e) and EVP (Wi = 8 and Bi = 2.8, b,d, f ) cases.

enhancing the streamwise coherence of the flow and by increasing the size of the low- and
high-speed streaks, thus also moving the quasi-streamwise vortices away from the wall.

A similar modification of the near-wall structures was found by Rosti et al. (2018c)
for the near-viscoplastic case with Wi ≈ 0 when increasing the Bingham number. Indeed,
the figure clearly shows that the structures in the buffer layer are less fragmented and
more elongated in the streamwise direction, as the Bingham number increases. Increase
in Wi and Bi both result in the growth in size of the larger scale structures, which is
consistent with an attenuation of the small-scale features of the flow and the consequent
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Figure 24. Probability of the fluid being unyielded in EVP flow (Wi = 8 and Bi = 2.8), at the same time
instants as in figures 22 and 23.
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Figure 25. Isosurfaces of instantaneous streamwise velocity fluctuation u′ for different Bingham and
Weissenberg numbers. The flow goes from left to right and the colour scale ranges from −0.25Ub (blue)
to 0.25Ub (red). The green planes in all the figures represent the rigid wall.

reduction of the turbulent dissipation previously observed. This results in a reduction of
the friction Reynolds number Reτ , i.e. drag reduction, similarly to what observed in other
drag-reducing flows, such as riblets and anisotropic porous walls (Choi, Moin & Kim
1993; Rosti, Brandt & Pinelli 2018b). Although the modifications of the flow structures
with Wi and Bi are similar, some differences are present. Indeed, plasticity alone in VP
flows reduces the wall-normal fluctuations less than elasticity because the hibernating
turbulent phases are reduced; this results in stronger ejection events and in turbulent
structures that penetrate deeper in the bulk of the channel for high values of Bi. This
difference is related to the presence of the unyielded region in the plastic cases, which is
inherently intermittent and induces larger values of EVP dissipation rates Π than in the
viscoelastic cases (figures 16d and 19d). Because of this, the drag reduction due to the
plasticity is able to laminarise the flow while the one of elasticity is not. The two effects
mix in a non-trivial way when both finite elasticity and plasticity are considered. In the
EVP cases, the flow structures continue to become less fragmented and more streamwise
coherent, with their wall-normal size depending on the relative magnitudes of Wi and Bi.
Indeed, as also shown in figure 9, the unyielded region shows a complex trend with Wi and
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Figure 26. The x–z planes at y = 0.15h showing contours of the polymer extension
√

Tr(C̄)/L (the colour scale
goes from black to white). The blue and red isolines shows the streamwise velocity fluctuations ±0.25Ub. The
top row shows cases with increasing Wi = 2, 4, 8 and 16 from left to right at fixed Bi = 0, while the bottom
row cases with increasing Bi = 0, 2.8 and 5.6 at fixed Wi = 2. In the figures, the flow is from bottom to top.

Bi, and this might influence the size of the flow structures. The flow always laminarises
at high enough Bingham numbers. However, the VP flow is laminar at Bi > 2.8, showing
purely plastic turbulence, while the EVP flow at Wi = 2 becomes laminar only at Bi > 5.6,
and hence the turbulence shows combined elastic and plastic characteristics. At high Wi
(Wi = 16), the trend is reversed and the flow laminarises again at Bi = 2.8, and the effect
of plasticity on the turbulent viscoelastic flow is not large due to an early relaminarisation.
This non-monotonic trend can be observed in figure 7.

The different effect of elasticity and plasticity on the turbulent flow can be better
appreciated in figure 26 where we show wall-parallel contours of the instantaneous
polymer extension

√
Tr(C̄)/L at y ≈ 0.15h, together with the footprints of the low- and

high-speed streamwise velocity streaks on the plane. In the top row of the figure we
consider the viscoelastic cases with Bi = 0 and growing Weissenberg number Wi from
2 to 16. The figure confirms that as Wi grows, the polymer extension is enhanced, resulting
in more elongated and streamwise coherent structures. Also, it is evident from the figure
that the flow structures grow in size, especially the low-speed ones. The second row depicts
the results for a fixed Weissenberg number (Wi = 2) and growing Bingham number from
0 to 5.6. Again, we note that as Bi increases in the EVP flow, the flow becomes more
ordered and streamwise coherent, however, from the figure we can also appreciate the
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different effect of elasticity and plasticity on the EVP flow: plasticity reduces the turbulent
dissipation and the fragmentation of the turbulent structures, acting on both the low- and
high-speed streaks equally. Indeed, both appear more elongated in the streamwise direction
as Bi increases, with only a small growth in their spanwise dimension. On the other
hand, elasticity affects mostly the low-speed streaks, while the high-speed ones remain
fragmented despite growing in size. A common feature between the two flows is the
tendency of the low-speed streaks to appear in regions where the polymers are highly
elongated, while the high-speed streaks mostly appear in regions where polymers are not
stretched.

5. Conclusions

The combined effect of finite Weissenberg and Bingham numbers in EVP flows has
been investigated by direct numerical simulations in this work, and compared with the
two limiting cases of VE and VP flows, where VP refers to the near-viscoplastic limit
(Wi = 0.01) analysed in our previous work Rosti et al. (2018a). We study both laminar and
turbulent flows, where the turbulent case has Reτ = 180 in the Newtonian limit. A wide
range of Weissenberg and Bingham numbers is investigated in this work: Wi = 0–16 and
Bi = 0–24.

Previously, we observed that the VP flow has a moderate drag reduction compared with
Newtonian flow at intermediate Bingham numbers, while at higher Bingham numbers
the flow relaminarises and drag increases. However, the EVP flow at finite Weissenberg
numbers achieves higher drag-reduction values, up to 70%, than both viscoplastic and
viscoelastic flows at the same Re and Wi. Moreover, the drag of EVP flow keeps decreasing
after relaminarisation at high Bingham numbers.

The VP flow became laminar at Bi ≥ 2.8. The EVP flow is still turbulent at Bi = 5.6
at moderate Wi, but becomes laminar at Bi = 5.6 for higher Wi (Wi ≥ 8). The moderate
value of Wi triggers instabilities that reinstate turbulence, since the thickness of the
unyielded central plug region is considerably reduced compared with the viscoplastic case.
At higher Wi, the central plug region becomes too thin to create instabilities leading to
laminarisation.

When analysing the flow statistics, the streamwise component of Reynolds stress tensor
increases while the other components decrease compared with the Newtonian flow. This
effect is seen for EVP, VE and VP flows. However, it is strongest for the EVP flow. At
Wi = 4, Bi = 5.6 the components of the EVP flow deviate more from the Newtonian case
than VE flow at Wi = 16, or any of the turbulent VP cases.

To characterise the intermittent dynamics relating to the drag-reducing property of
polymeric flows (Xi & Graham 2010, 2012b), we divided each flow into hibernating time
intervals and periods of active turbulence. The VE flow at Wi = 16.0 and Bi = 0, EVP flow
at Wi = 8.0 and Bi = 2.8 and VP flow at Wi = 0.01 and Bi = 1.4 were considered. The VP
flow showed hibernation phenomenon with small drag-reduction variation. However, the
EVP flow hibernates more than any of the others, with the velocity profile reaching close
to the Virk profile. All EVP stress components were highest in active turbulence and lowest
in hibernation stages. The probability of the fluid to be unyielded was clearly divided into
two stages: low probability in active stages and high probability in hibernation.

Finally, we analysed the spatial flow structures and related them to the local elongation
of the polymers. As previously noted, both elasticity and plasticity increase the streamwise
coherence in the flow. In the EVP flows, we observed that polymer elongation increases
with increasing Bingham number, again showing that elastic effects are stronger at finite
Bingham numbers than in a purely elastic flow. In both VE and EVP flows, low-speed
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streaks appear in regions where polymers are more stretched, and high-speed streaks in
regions where polymers are less stretched. However, plasticity in EVP flows reduces the
turbulent dissipation and hence the fragmentation of both the low- and high-speed streaks
equally, while in VE flows high-speed streaks remain fragmented.
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