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FACTOR-CORRESPONDENCES IN REGULAR RINGS 

S. K. BERBERIAN 

1. Introduction. Factor-correspondences are nothing more than a way 
of describing isomorphisms between principal ideals in a regular ring. 
However, due to a remarkable decomposition theorem of M. J. Wonen-
burger [7, Lemma 1], they have proved to be a highly effective tool in the 
study of completeness properties in matrix rings over regular rings [7, 
Theorem 1]. Factor-correspondences also figure in the proof of D. 
Handelman's theorem that an No-continuous regular ring is unit-
regular [4, Theorem 3.2]. 

The aim of the present article is to sharpen the main result in [7] and 
to re-examine its applications to matrix rings. The basic properties of 
factor-correspondences are reviewed briefly for the reader's convenience. 

2. Factor-correspondences. Throughout, R denotes a regular ring 
(with unity). 

Definition 1 (cf. [5, p. 209ff], [7, p. 212]). A right factor-correspondence 
in R is a right ^-isomorphism <p : J —» K, where / and K are principal 
right ideals of R (left factor-correspondences are defined dually). 

With notation as in Definition 1, write / = eR, K = fR with e, f 
idempotent. Defining y = <p(e), x = v~l(f ), one sees that <p (resp. <p~l) 
is left-multiplication by y (resp. x) on / (resp. K). (For example, <p(er) = 
(p(eer) = <p{e)er = yer for all r £ R-) In particular, xyx = x(yx) = 
<p~l(v(x)) = x and similarly y = yxy. One has J = xR, K = yR. (For 
example, x = v~l{f ) G / , soxi^ C J, whereas/ = <p~l(K) = xK C xR, 
thus / = xR.) 

Conversely, if x, y are elements of R such that xyx = x and yxy —y, 
one sees that xr i—> y(xr) defines a right factor-correspondence <p : xR —» 
yR with v~l(yr) ~ x(yr). 

We denote by Rd (resp. Rs) the ring R regarded as a right (resp. left) 
.^-module in the natural way. (Thus, in another notation, Rd = RR and 
Rs = RR.) One writes 2Rd = Rd ® Rd for the right i^-module of ordered 
pairs of elements of R (and nRd for the module of n-tuples). If A is a 
finitely generated projective right module over the regular ring R, one 
writes L(A) for the set of all finitely generated submodules B of A ; L(A) 
may also be described as the set of all direct summands of A [2, p. 6, 
Theorem 1.11]. Ordered by inclusion, L(A) is a complemented modular 
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lattice, with B V C = B + C and J8 A C = 5 H C [2, p. 15, Theorem 
2.3]. 

LEMMA I [7, p. 212, Lemma l] . If R is a regular ring and M G L(2Rd), 
one can write 

M = [Mr\ (i, o)R] ® (aj, a2)2? e [Mn (o, 1)2?] 

w//* ciiy a2 elements of R such that Ra± — Ra2. 

There is more to the statement of Wonenburger's lemma, as follows. 
Since p r i [ M H (1, 0)2?] and p r 2 [ M H (0, 1)2?] are principal right ideals 
of R [2, p. 1, Theorem 1.1], one can write 

M r\ (1, 0)2? = (*i, 0)2?, M H (0, l)R = (0, e2)R 

with ei, e2 idempotents of R, thus M is the direct sum of three cyclic 
submodules: 

M = (eu 0)2? 0 (au a2)R 0 (0, e2)R. 

The proof of [7, Lemma 1] shows, moreover, that the middle term 
(<2i, a2)R may be prescribed to be the set {(r, s) £ M : <?ir = £25 = 0} 
and one can suppose further that a\ is idempotent (thus a2a\ = a2). Note 
that M is the graph of a function (necessarily 2?-linear) if and only if 
M C\ (0, 1)2? = 0; it is the graph of a bijection if and only if 

M r\ (0, 1)2? = M H (1, 0)2? = 0. 

Since, in a regular ring 2?, 2?a = (Ra)Tl = {a}7"* (the exponents denote 
right and left annihilators), the condition Rax = Ra2 signifies that ax 

and a2 have the same right annihilators; whence: 

LEMMA 2 [7, p. 212, Lemma 2]. 7/2? is a regular ring and a, b are 
elements of 2? such that Ra = Rb, then ar \—>br (r g 2?) defines a right 
factor-correspondence aR —» 62?. 

With notation as in Lemma 2, one writes (a:6) for the right factor-
correspondence ary-*br\ its graph is (a,b)R £ L(2Rd). The action of 
the function (a:b) is indicated by (a:b)ar = br, r £ 2?. 

Conversely, suppose <p : J —> K is any right factor-correspondence in 
2?. Choose elements x, y of 2? such that / = xR and <p(s) = y s for all 
5 Ç J ; then for all r £ 2? one has <p(xr) = ;y(xr), thus the graph of <p is 
the cyclic submodule 

{(x,yx)r :r G 2?} = (*,?*)# G L(22?d). 

LEMMA 3. Every right factor-correspondence in a regular ring 2? is of the 
form (ai : a2) for suitable elements ax, a2 of 2? with Rax = 2?a2. 

Proof. Let <p \ J —> K be a right factor-correspondence in 2?, M its 
graph. Since M G L(2Rd) by the preceding remark, one may apply to 
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it the decomposition of Lemma 1; since M is the graph of a bijection, 
one has 

MC\ (1,0)2? = M r\ (0,1)2? = 0, 

thus M = (ai, a2)R with Rai = Ra2. By Lemma 2, the pair aif a2 defines 
a right factor-correspondence (a,\ : a2) whose graph is (du a2)R = M] in 
other words, (a,\ : a2) = <p. 

Remarks. It follows from Lemmas 1 and 2 that if M Ç L(2Rd) is the 
graph of a bijection, then it must be the graph of a right factor-corres
pondence. More generally, if M £ L(2Rd) is the graph of a function <p, 
then i n (0, 1)2? = 0; writing M H (1, 0)2? = (é?i, 0)2?, *i idempotent, 
Lemma 1 gives a decomposition 

M = (eu 0)R © (ai, a2)2?, Rax = Ra2} 

and one can arrange to have e\a\ = 0. The domain of <p is 

priAT = ei2? + axR = ei2? © ai2? 

(the sum is direct because e\ax = 0), and the graph of <p is 

M = {(exr + ais, a2s) : r, s £ R\, 

so that <p(e\r + a^) = a2.s' for all r, s in 2?; thus <p|ei2? = 0 and <p\aiR = 
(ai : a2). The gist of what is going on is that it means a great deal for a 
graph to be finitely generated. (For example, if A is a projective module 
over a regular ring and if M is a finitely generated submodule of 
2A = A © A such that M is the graph of a function <p, then the domain 
priM and range pr2M of <p are finitely generated, hence are direct 
summands of A [2, p. 6, Theorem 1.11], hence are projective; thus the 
epimorphism y? : pr\M —* pr2M splits.) The message of Lemma 1 is that 
every finitely generated submodule of 2Rd is the direct sum of the graph 
of an isomorphism and two "defect" terms. 

Definition 2. For right factor-correspondences <p, \p in the regular ring 
2?, one writes ç> ^ \p if \j/ extends <p, that is, if the graph of <p is contained 
in the graph of \f/. This is a partial ordering in the set of all right factor-
correspondences. 

If <p, \// are right factor-correspondences and one writes ç = (ai : a2), 
\j/ = (bi : b2) via Lemma 3, then <p ^ \p signifies that (ai, a2)R C 
(6i, b2)R; equivalently, aiR C b\R and \p(ai) = a2. 

3. Right X-continuous regular rings. Let X be an infinite cardinal. A 
lattice L is said to be upper ^-complete if every nonempty subset of L of 
cardinality ^ X has a supremum in L; L is said to be upper ^-continuous 
if it is upper X-complete and if 

a A (V {b : b £ B}) = V {a A b : b e B} 
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for every a G L and every nonempty, simply ordered subset B of L whose 
cardinality is ^ X. The terms "lower X-complete lattice" and "lower 
X-continuous lattice" are defined dually. A regular ring R is said to be 
right ^-continuous if L(Rd) is upper X-continuous (equivalently, the anti-
isomorphic lattice L(RS) is lower X-continuous) ; left ^-continuous \iL(Rs) 
is upper continuous; and ^-continuous if it is both left and right X-con
tinuous. A regular ring R is left X-continuous if and only if the opposite 
ring R° is right X-continuous. For X finite, all of these conditions are 
trivially fulfilled by every lattice (or regular ring). 

The following lemma is contained in the proof of [7, Theorem 1]: 

LEMMA 4. Let X be an infinite cardinal, R a regular ring such that the 
lattice L(2Rd) is upper ^-continuous. Let & be the set of graphs of the right 
factor-correspondences in R (thus & C L(2Rd)). Then & is an ^-inductive 
subset of L(2Rd), in the following sense: if Sf is an increasingly filtering 
subset of & of cardinality ^ X and if M = V y in L(2Rd), then M G &• 

Proof. Since L(2Rd) is isomorphic to the lattice of principal right ideals 
of the matrix ring M2(R) [2, p. 15, Proposition 2.4], the hypothesis on R 
is that M2(R) is a right X-continuous regular ring (hence so is its "corner" 
R, cf. [2, p. 175, Proposition 14.6]). To say that ¥ is increasingly filtering 
means that for every pair Gx, G2 in ^ , there exists Gz £ ff containing 
both Gi and G2. 

Since the modules in Sf are graphs of bijective functions, one has 

G C\ (1, 0)R = Gf~\ (0, 1)R = 0 for all G ^ , 

hence M C\ (1, 0)R = I H (0, 1)R = 0 by the upper X-continuity of 
L(2Rd), cf. [2, p. 160, Proposition 13.1]. By Lemma 1, M = (alf a2)R 
with Rai = Ra2, thus M Ç S? by Lemma 2. 

The following theorem sharpens a result in [7]: 

THEOREM 1 [7, Theorem 1]. Let X be an infinite cardinal, R a right 
^-continuous regular ring, and let & be the set of graphs of the right factor-
correspondences in R, ordered by inclusion. The following conditions are 
equivalent: 

(a) the lattice L(2Rd) of finitely generated submodules of 2Rd is upper 
^-complete; 

(b) every increasingly filtering subset of & of cardinality ^ X has a 
supremum in L(2Rd); 

(c) every simply ordered subset of & of cardinality ^ X has a supremum 
in L(2Rd); 

(d) every well-ordered subset of & of cardinality ^ X has a supremum 
inL(2Rd). 

If the above conditions are fulfilled, then so are the following: 
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(1) L(2Rd) is upper ^-continuous {that is, M%(R) is right ^-continuous); 
(2) If 5^ is an increasingly filtering subset of & of cardinality ^ X and 

if M = V y' inL (2Rd), then M £ & (thus Misa supremum of y in&). 

Proof. The implications (a) => (b) =» (c) =» (d) are trivial. 
(d) => (a): L e t ^ be a nonempty subset of L(2Rd) of cardinality ^ X; 

assuming (d), we are to show t h a t ^ has a supremum in L(2Rd). By a 
transfinite induction on the cardinality of *Jty we can suppose that~-# is 
well-ordered. (Sketch: Assume all's well for cardinality < X, and suppose 
^é has cardinality X. Let 12 be the least ordinal with cardinality X, and 
i n d e x a by 12, s a y ^ = {M« : a < 12}. For every « < 12 define 

Ma = V {M^ : 0 < a}, 

which exists by the induction hypothesis. If one can show that V Ma 

exists, then it will serve as V M.) If ̂  has a largest element, we are 
through; otherwise, we can s u p p o s e d = {Ma : a < A}, where A is a 
limit ordinal of cardinality ^ X and where a ^ 0 implies Ma ^ Mfi. 
Assuming (d), one shows, as in the proof of [7, Theorem 1], that the 
family (Ma) has a supremum in L(2Rd) (for this, it is not necessary to 
know that the supremum hypothesized in (d) is an element of &). (The 
idea of the proof is to use Lemma 1 to replace ^ by a well-ordered 
subset of ^.) 

(a) => (1), (2): Since L(Rd) is, by hypothesis, upper X-continuous, the 
upper X-completeness of L(2Rd) implies that L(2Rd) is also upper X-
continuous, by [1, Theorem 4.3]; thus (a) implies (1), and then (2) 
follows from Lemma 4. 

LEMMA 5. Let X be an infinite cardinal, R a regular ring such that L(Rd) 
is upper ^-complete. 

(i) If (Ji)i^i is any family in L(Rd) with card / ^ X, then 

v / , = (u; , )"= ŒJi)'r-
(ii) If (K t) i£/ is any family in L(RS) (note the subscript) with card / ^ X, 

thenr\Ki £ L(RS). 

Proof, (ii) Since the principal left ideal lattice L(RS) is anti-isomorphic 
to L(Rd), it is lower X-complete; thus A Kf exists in L(RS). Then 
A ^ = H Ku cf. [2, p. 161, proof of Proposition 13.2]. 

(i) Write J = V Jt and set Kt = Jt
l. Thus Kt <E L(RS), so by (ii) 

one has C\ Kt = K for some X G L(RS). Then 2£ = H J,1 = (U /<) ', so 

(U J\-)" = 2T = ( A Ki)r = V ( # / ) = V ( / ,") = V /< = / . 

Definition 3. Let X be an infinite cardinal, i£ a regular ring, and write 
X for the set of right ideals J oi R such that / is generated (as a right 
ideal) by a set of cardinality ^ X. One says thati? is right \t-injective, cf. 
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[2, p. 105] if every .R-linear mapping <p : J —> Rdj where / G X, is exten
dible to an i^-linear mapping Rd —• Rd (equivalently, there exists x G R 
such that (p(s) = xs for ail s Ç J). Left X-injective rings are defined 
dually. 

The following lemma is a reworking (and extension to arbitrary 
cardinals) of [4, proof of Theorem 3.2]: 

LEMMA 6 [4, pp. 188-189]. Let X be an infinite cardinal. If Ris a right 
^-continuous, right ^-infective regular ring, then the matrix ring Mi(R) 
is right ^-continuous. 

Proof. Let us verify criterion (b) of Theorem 1. Let «5̂  be an increas
ingly filtering subset of & (the set of graphs of the right factor-corres
pondences in R) with card «5̂  ^ X. Write y = {Gt:i 6 / } , card I ^ X. 
For each i, we know from Lemma 3 that G* is the graph of some (at : bt), 
where Rat = Rbu thus Gt = (aubi)R. Let G = VJ Gt be the set-
theoretic union of the GV, since S^ is increasingly filtering, G is the graph 
of a right ^-isomorphism a : J -+ K, where / = W atR, K = KJ btR 
(set-theoretic unions, both right ideals), and since Gt C G we know that 
a extends (at : bt) for all i. Since L(Rd) is upper X-complete, there exist 
idempotents e,f in R such that eR = V atR and fR = V &ti? in L{Rd). 

The sum J + (1 — e)i? is direct; define 0 : / + (1 — e)R —> Rd by 

j3|/ = a and 0|(1 - e)R = 0. 

Since i£ is right X-injective, there exists y £ R such that left-multiplica
tion by y coincides with fi on / + (1 — e)R; thus ;y(l — e) = 0 and 

^at- = a(at) = (at : bt)at = bt for all i £ / . 

Briefly, 3/̂  = 3; and yat = 6* for all i. Similarly, there exists x G R such 
that xf = x and x&* = at for all i. Then yxyat = yxbt = yau (yxy — 
3f)a* = 0 for all i, therefore (yxy — y)J = 0; by Lemma 5, (yxy — y)eR 
= 0, and since ye — y this means yxy — y = 0. Similarly xyx — x = 0. 
Therefore the mapping <p : xi? —> yR defined by <p(xr) = 3>xr (r Ç i?) is 
a right factor-correspondence with ^_ 1(y r) = *3^- O n e has xR = ei£ and 
yR = fR. (For example, btR = yatR C yR for all *, hence fR C 3>i£ 
because /i? = V btR. On the other hand, 

yJ = fi(J) =a(J) = KCfR, 

so (1 — / )y / = 0; by Lemma 5, (1 — / )yeR = 0, thus 

(1 -f)ye = 0,(l-f)y = 0,y =fyyyRCfR. 

Thus 3>JR = fR.) The domain XJR = eR of «̂  contains every a^K, and 
<p(af) == yat = fr; shows that (a{ : b{) ^ <p. 

https://doi.org/10.4153/CJM-1982-004-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-004-0


FACTOR-CORRESPONDENCES 29 

The graph of <p is (x, yx)R € L(2Rd) ; let us show that (x, yx)R serves 
as sup Gt in L(2Rd). On the one hand, (af : &t) ^ <p shows that G{ = 
(a^, ^ i ) ^ C (x, yx)R. On the other hand, suppose Gt C. M (z L(2Rd) for 
all i; it is to be shown that (x, yx).R C M, in other words that (x, yx) G 
AT. Define <r : 2?d -> 2i?d by 

c(r) = (x, yx)r, r £ R; 

a is right i?-linear and 

*(&,) = ixbuyxbt) = (aifyai) = (a,, 6,) £ G, C M, 

thus btR C o--1(^0 for all i. Since o-_1(ikf) is a principal right ideal of 
R [2, p. 14, Lemma 2.1], it follows tha t /R C <r_1 W , thus (x, yx)/ G M; 
since xf = x this means (x, yx) G M and the proof is complete. 

THEOREM 2. / / R is a right ^-continuous, right ^-infective regular ring, 
then every matrix ring Mn(R) is right ^-continuous. 

Proof. The case for n = 2 (Lemma 6) implies the case of general n by 
[3, Theorem 3.1 and its Corollary 3]. 

Problem. In Theorem 2, is Mn{R) also right K-injective? The answer 
is yes for X = Xo*. 

COROLLARY 1 [2, p. 183, Proposition 14.19]. If R is a right ^-con
tinuous, right Ho-injective regular ring, then so is every matrix ring Mn(R). 

Proof. Let 5 = Mn(R), which is right Xo-continuous by Theorem 2; 
since M2(S) = M2n(R) is also right Xo-continuous, 5 is right Xo-injective 
[2, p. 180, Corollary 14.14]. (The basic reason that things go well for 
Xo is that, over a regular ring, every countably generated submodule of 
a projective module is projective [2, p. 20, Corollary 2.15].) 

COROLLARY 2 [2, Proposition 14.19]. Let X be an infinite cardinal, R a 
right it-continuous and right ^-infective regular ring, A a finitely generated 
projective right R-module, and T = End#(^4) the endomorphism ring of A. 
Then T is right ^-continuous and right ^-injective. 

Proof. If A is generated by n elements, one has nRd = A © B for a 
suitable right i^-module B; then T = EndR(A) is a corner of Mn(R), 
that is, T = eMn{R)e for a suitable idempotent e. Since Mn(R) is right 
X-continuous (Theorem 2) so is its corner T [2, p. 163, proof of Pro
position 13.7]. Also, 2nRd = 2A © 2B, so M2(T) = End*(2,4) [6, p. 34, 
Corollary 8] is a corner of M2n(R)', since X ^ Xo, R is a fortiori right 
Xo-continuous and right Xo-injective, therefore so is M2n(R) (Corollary 
1), hence its corner M2(T) is right Xo-continuous [2, p. 175, Proposition 
14.6]; therefore T is right Xo-injective [2, p. 180, Corollary 14.14]. 
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Added in proof. The question following Theorem 2 has been answered 
in the affirmative by K. R. Goodearl. 
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