FAGTOR-CORRESPONDENGES IN REGULAR RINGS

S. K. BERBERIAN

1. Introduction. Factor-correspondences are nothing more than a way of describing isomorphisms between principal ideals in a regular ring. However, due to a remarkable decomposition theorem of M. J. Wonenburger [7, Lemma 1], they have proved to be a highly effective tool in the study of completeness properties in matrix rings over regular rings [7, Theorem 1]. Factor-correspondences also figure in the proof of D. Handelman's theorem that an $\boldsymbol{\aleph}_{0}$-continuous regular ring is unitregular [4, Theorem 3.2].

The aim of the present article is to sharpen the main result in [7] and to re-examine its applications to matrix rings. The basic properties of factor-correspondences are reviewed briefly for the reader's convenience.
2. Factor-correspondences. Throughout, R denotes a regular ring (with unity).

Definition 1 (cf. [5, p. 209ff], [7, p. 212]). A right factor-correspondence in R is a right R-isomorphism $\varphi: J \rightarrow K$, where J and K are principal right ideals of R (left factor-correspondences are defined dually).

With notation as in Definition 1, write $J=e R, K=f R$ with e, f idempotent. Defining $y=\varphi(e), x=\varphi^{-1}(f)$, one sees that φ (resp. φ^{-1}) is left-multiplication by y (resp. x) on J (resp. K). (For example, $\varphi(e r)=$ $\varphi(e e r)=\varphi(e) e r=y e r$ for all $r \in R$.) In particular, $x y x=x(y x)=$ $\varphi^{-1}(\varphi(x))=x$ and similarly $y=y x y$. One has $J=x R, K=y R$. (For example, $x=\varphi^{-1}(f) \in J$, so $x R \subset J$, whereas $J=\varphi^{-1}(K)=x K \subset x R$, thus $J=x R$.)

Conversely, if x, y are elements of R such that $x y x=x$ and $y x y=y$, one sees that $x r \mapsto y(x r)$ defines a right factor-correspondence $\varphi: x R \rightarrow$ $y R$ with $\varphi^{-1}(y r)=x(y r)$.

We denote by R_{d} (resp. R_{s}) the ring R regarded as a right (resp. left) R-module in the natural way. (Thus, in another notation, $R_{d}=R_{R}$ and $R_{s}={ }_{R} R$.) One writes $2 R_{d}=R_{d} \oplus R_{d}$ for the right R-module of ordered pairs of elements of R (and $n R_{d}$ for the module of n-tuples). If A is a finitely generated projective right module over the regular ring R, one writes $L(A)$ for the set of all finitely generated submodules B of $A ; L(A)$ may also be described as the set of all direct summands of $A[\mathbf{2}, \mathrm{p} .6$, Theorem 1.11]. Ordered by inclusion, $L(A)$ is a complemented modular
lattice, with $B \vee C=B+C$ and $B \wedge C=B \cap C[\mathbf{2}$, p. 15, Theorem 2.3].

Lemma 1 [7, p. 212, Lemma 1]. If R is a regular ring and $M \in L\left(2 R_{d}\right)$, one can write

$$
M=[M \cap(1,0) R] \oplus\left(a_{1}, a_{2}\right) R \oplus[M \cap(0,1) R]
$$

with a_{1}, a_{2} elements of R such that $R a_{1}=R a_{2}$.
There is more to the statement of Wonenburger's lemma, as follows. Since $\operatorname{pr}_{1}[M \cap(1,0) R]$ and $\operatorname{pr}_{2}[M \cap(0,1) R]$ are principal right ideals of R [2, p. 1, Theorem 1.1], one can write

$$
M \cap(1,0) R=\left(e_{1}, 0\right) R, \quad M \cap(0,1) R=\left(0, e_{2}\right) R
$$

with e_{1}, e_{2} idempotents of R, thus M is the direct sum of three cyclic submodules:

$$
M=\left(e_{1}, 0\right) R \oplus\left(a_{1}, a_{2}\right) R \oplus\left(0, e_{2}\right) R
$$

The proof of [7, Lemma 1] shows, moreover, that the middle term $\left(a_{1}, a_{2}\right) R$ may be prescribed to be the set $\left\{(r, s) \in M: e_{1} r=e_{2} s=0\right\}$ and one can suppose further that a_{1} is idempotent (thus $a_{2} a_{1}=a_{2}$). Note that M is the graph of a function (necessarily R-linear) if and only if $M \cap(0,1) R=0$; it is the graph of a bijection if and only if

$$
M \cap(0,1) R=M \cap(1,0) R=0
$$

Since, in a regular ring $R, R a=(R a)^{r l}=\{a\}^{r l}$ (the exponents denote right and left annihilators), the condition $R a_{1}=R a_{2}$ signifies that a_{1} and a_{2} have the same right annihilators; whence:

Lemma 2 [7, p. 212, Lemma 2]. If R is a regular ring and a, b are elements of R such that $R a=R b$, then $a r \mapsto b r(r \in R)$ defines a right factor-correspondence $a R \rightarrow b R$.

With notation as in Lemma 2, one writes ($a: b$) for the right factorcorrespondence $a r \mapsto b r$; its graph is $(a, b) R \in L\left(2 R_{d}\right)$. The action of the function ($a: b$) is indicated by ($a: b$) ar $=b r, r \in R$.

Conversely, suppose $\varphi: J \rightarrow K$ is any right factor-correspondence in R. Choose elements x, y of R such that $J=x R$ and $\varphi(s)=y s$ for all $s \in J$; then for all $r \in R$ one has $\varphi(x r)=y(x r)$, thus the graph of φ is the cyclic submodule

$$
\{(x, y x) r: r \in R\}=(x, y x) R \in L\left(2 R_{d}\right)
$$

Lemma 3. Every right factor-correspondence in a regular ring R is of the form $\left(a_{1}: a_{2}\right)$ for suitable elements a_{1}, a_{2} of R with $R a_{1}=R a_{2}$.

Proof. Let $\varphi: J \rightarrow K$ be a right factor-correspondence in R, M its graph. Since $M \in L\left(2 R_{d}\right)$ by the preceding remark, one may apply to
it the decomposition of Lemma 1 ; since M is the graph of a bijection, one has

$$
M \cap(1,0) R=M \cap(0,1) R=0
$$

thus $M=\left(a_{1}, a_{2}\right) R$ with $R a_{1}=R a_{2}$. By Lemma 2 , the pair a_{1}, a_{2} defines a right factor-correspondence ($a_{1}: a_{2}$) whose graph is $\left(a_{1}, a_{2}\right) R=M$; in other words, $\left(a_{1}: a_{2}\right)=\varphi$.

Remarks. It follows from Lemmas 1 and 2 that if $M \in L\left(2 R_{d}\right)$ is the graph of a bijection, then it must be the graph of a right factor-correspondence. More generally, if $M \in L\left(2 R_{d}\right)$ is the graph of a function φ, then $M \cap(0,1) R=0$; writing $M \cap(1,0) R=\left(e_{1}, 0\right) R, e_{1}$ idempotent, Lemma 1 gives a decomposition

$$
M=\left(e_{1}, 0\right) R \oplus\left(a_{1}, a_{2}\right) R, \quad R a_{1}=R a_{2}
$$

and one can arrange to have $e_{1} a_{1}=0$. The domain of φ is

$$
\operatorname{pr}_{1} M=e_{1} R+a_{1} R=e_{1} R \oplus a_{1} R
$$

(the sum is direct because $e_{1} a_{1}=0$), and the graph of φ is

$$
M=\left\{\left(e_{1} r+a_{1} s, a_{2} s\right): r, s \in R\right\},
$$

so that $\varphi\left(e_{1} r+a_{1} s\right)=a_{2} s$ for all r, s in R; thus $\varphi \mid e_{1} R=0$ and $\varphi \mid a_{1} R=$ $\left(a_{1}: a_{2}\right)$. The gist of what is going on is that it means a great deal for a graph to be finitely generated. (For example, if A is a projective module over a regular ring and if M is a finitely generated submodule of $2 A=A \oplus A$ such that M is the graph of a function φ, then the domain $\operatorname{pr}_{1} M$ and range $\operatorname{pr}_{2} M$ of φ are finitely generated, hence are direct summands of A [2, p. 6, Theorem 1.11], hence are projective; thus the epimorphism $\varphi: \operatorname{pr}_{1} M \rightarrow \operatorname{pr}_{2} M$ splits.) The message of Lemma 1 is that every finitely generated submodule of $2 R_{d}$ is the direct sum of the graph of an isomorphism and two "defect" terms.

Definition 2. For right factor-correspondences φ, ψ in the regular ring R, one writes $\varphi \leqq \psi$ if ψ extends φ, that is, if the graph of φ is contained in the graph of ψ. This is a partial ordering in the set of all right factorcorrespondences.

If φ, ψ are right factor-correspondences and one writes $\varphi=\left(a_{1}: a_{2}\right)$, $\psi=\left(b_{1}: b_{2}\right)$ via Lemma 3 , then $\varphi \leqq \psi$ signifies that $\left(a_{1}, a_{2}\right) R \subset$ $\left(b_{1}, b_{2}\right) R$; equivalently, $a_{1} R \subset b_{1} R$ and $\psi\left(a_{1}\right)=a_{2}$.
3. Right $\boldsymbol{\aleph}$-continuous regular rings. Let $\boldsymbol{\aleph}$ be an infinite cardinal. A lattice L is said to be upper $\boldsymbol{\aleph}$-complete if every nonempty subset of L of cardinality $\leqq \boldsymbol{\aleph}$ has a supremum in $L ; L$ is said to be upper \boldsymbol{N}-continuous if it is upper $\boldsymbol{\aleph}$-complete and if

$$
a \wedge(\vee\{b: b \in B\})=\vee\{a \wedge b: b \in B\}
$$

for every $a \in L$ and every nonempty, simply ordered subset B of L whose cardinality is $\leqq \boldsymbol{\aleph}$. The terms "lower \boldsymbol{K}-complete lattice" and "lower $\boldsymbol{\aleph}$-continuous lattice" are defined dually. A regular ring R is said to be right $\boldsymbol{\aleph}$-continuous if $L\left(R_{d}\right)$ is upper $\boldsymbol{\aleph}$-continuous (equivalently, the antiisomorphic lattice $L\left(R_{s}\right)$ is lower $\boldsymbol{\aleph}$-continuous) ; left $\boldsymbol{\aleph}$-continuous if $L\left(R_{s}\right)$ is upper continuous; and $\boldsymbol{\mathcal { K }}$-continuous if it is both left and right $\boldsymbol{\mathcal { N }}$-continuous. A regular ring R is left $\boldsymbol{\aleph}$-continuous if and only if the opposite ring R^{0} is right $\boldsymbol{\aleph}$-continuous. For $\boldsymbol{\aleph}$ finite, all of these conditions are trivially fulfilled by every lattice (or regular ring).

The following lemma is contained in the proof of [7, Theorem 1]:
Lemma 4. Let $\boldsymbol{\aleph}$ be an infinite cardinal, R a regular ring such that the lattice $L\left(2 R_{d}\right)$ is upper $\boldsymbol{\aleph}$-continuous. Let \mathscr{G} be the set of graphs of the right factor-correspondences in $R\left(\right.$ thus $\left.\mathscr{G} \subset L\left(2 R_{d}\right)\right)$. Then \mathscr{G} is an $\boldsymbol{\aleph}$-inductive subset of $L\left(2 R_{d}\right)$, in the following sense: if \mathscr{S} is an increasingly filtering subset of \mathscr{G} of cardinality $\leqq \boldsymbol{\aleph}$ and if $M=\vee \mathscr{S}$ in $L\left(2 R_{d}\right)$, then $M \in \mathscr{G}$.

Proof. Since $L\left(2 R_{d}\right)$ is isomorphic to the lattice of principal right ideals of the matrix ring $M_{2}(R)$ [2, p. 15, Proposition 2.4], the hypothesis on R is that $M_{2}(R)$ is a right $\boldsymbol{\aleph}$-continuous regular ring (hence so is its "corner" R, cf. [2, p. 175, Proposition 14.6]). To say that \mathscr{S} is increasingly filtering means that for every pair G_{1}, G_{2} in \mathscr{S}, there exists $G_{3} \in \mathscr{S}$ containing both G_{1} and G_{2}.

Since the modules in \mathscr{S} are graphs of bijective functions, one has

$$
G \cap(1,0) R=G \cap(0,1) R=0 \text { for all } G \in \mathscr{S},
$$

hence $M \cap(1,0) R=M \cap(0,1) R=0$ by the upper \boldsymbol{K}-continuity of $L\left(2 R_{d}\right)$, cf. [2, p. 160, Proposition 13.1]. By Lemma 1, $M=\left(a_{1}, a_{2}\right) R$ with $R a_{1}=R a_{2}$, thus $M \in \mathscr{G}$ by Lemma 2 .

The following theorem sharpens a result in [7]:
Theorem 1 [7, Theorem 1]. Let $\boldsymbol{\aleph}$ be an infinite cardinal, R a right $\boldsymbol{\aleph}$-continuous regular ring, and let \mathscr{G} be the set of graphs of the right factorcorrespondences in R, ordered by inclusion. The following conditions are equivalent:
(a) the lattice $L\left(2 R_{d}\right)$ of finitely generated submodules of $2 R_{d}$ is upper $\boldsymbol{\aleph}$-complete;
(b) every increasingly filtering subset of \mathscr{G} of cardinality $\leqq \boldsymbol{\aleph}$ has a supremum in $L\left(2 R_{d}\right)$;
(c) every simply ordered subset of \mathscr{G} of cardinality $\leqq \mathbb{\mathcal { N }}$ has a supremum in $L\left(2 R_{d}\right)$;
(d) every well-ordered subset of \mathscr{G} of cardinality $\leqq \boldsymbol{\aleph}$ has a supremum in $L\left(2 R_{d}\right)$.

If the above conditions are fulfilled, then so are the following:
(1) $L\left(2 R_{d}\right)$ is upper $\boldsymbol{\aleph}$-continuous (that is, $M_{2}(R)$ is right $\boldsymbol{\aleph}$-continuous);
(2) If \mathscr{S} is an increasingly filtering subset of \mathscr{G} of cardinality \leqq Nand if $M=\vee \mathscr{S}$ in $L\left(2 R_{d}\right)$, then $M \in \mathscr{G}$ (thus M is a supremum of \mathscr{S} in \mathscr{G}).

Proof. The implications (a) $\Rightarrow(\mathrm{b}) \Rightarrow(\mathrm{c}) \Rightarrow(\mathrm{d})$ are trivial.
(d) \Rightarrow (a) : Let \mathscr{M} be a nonempty subset of $L\left(2 R_{d}\right)$ of cardinality $\leqq \boldsymbol{X}$; assuming (d), we are to show that \mathscr{M} has a supremum in $L\left(2 R_{d}\right)$. By a transfinite induction on the cardinality of \mathscr{M}, we can suppose that \mathscr{M} is well-ordered. (Sketch: Assume all's well for cardinality $<\boldsymbol{\aleph}$, and suppose \mathscr{M} has cardinality $\boldsymbol{\aleph}$. Let Ω be the least ordinal with cardinality \boldsymbol{N}, and index \mathscr{M} by Ω, say $\mathscr{M}=\left\{M_{\alpha}: \alpha<\Omega\right\}$. For every $\alpha<\Omega$ define

$$
M^{\alpha}=\vee\left\{M_{\beta}: \beta<\alpha\right\}
$$

which exists by the induction hypothesis. If one can show that $\vee M^{\alpha}$ exists, then it will serve as $\vee M$.) If \mathscr{M} has a largest element, we are through; otherwise, we can suppose $\mathscr{M}=\left\{M^{\alpha}: \alpha<\Lambda\right\}$, where Λ is a limit ordinal of cardinality $\leqq \boldsymbol{X}$ and where $\alpha \leqq \beta$ implies $M^{\alpha} \leqq M^{\beta}$. Assuming (d), one shows, as in the proof of [7, Theorem 1], that the family (M^{α}) has a supremum in $L\left(2 R_{d}\right)$ (for this, it is not necessary to know that the supremum hypothesized in (d) is an element of \mathscr{G}). (The idea of the proof is to use Lemma 1 to replace \mathscr{M} by a well-ordered subset of \mathscr{G}.)
(a) $\Rightarrow(1),(2)$: Since $L\left(R_{d}\right)$ is, by hypothesis, upper \aleph-continuous, the upper $\boldsymbol{\aleph}$-completeness of $L\left(2 R_{d}\right)$ implies that $L\left(2 R_{d}\right)$ is also upper $\boldsymbol{\aleph}$ continuous, by [1, Theorem 4.3]; thus (a) implies (1), and then (2) follows from Lemma 4.

Lemma 5. Let $\boldsymbol{\aleph}$ be an infinite cardinal, R a regular ring such that $L\left(R_{d}\right)$ is upper $\boldsymbol{\aleph}$-complete.
(i) If $\left(J_{i}\right)_{i \in I}$ is any family in $L\left(R_{d}\right)$ with card $I \leqq \boldsymbol{\aleph}$, then

$$
\vee J_{i}=\left(\cup J_{i}\right)^{l r}=\left(\sum J_{i}\right)^{l r} .
$$

(ii) If $\left(K_{i}\right)_{i \in I}$ is any family in $L\left(R_{s}\right)$ (note the subscript) with $\operatorname{card} l \leqq \boldsymbol{\aleph}$, then $\cap K_{i} \in L\left(R_{s}\right)$.

Proof. (ii) Since the principal left ideal lattice $L\left(R_{s}\right)$ is anti-isomorphic to $L\left(R_{d}\right)$, it is lower \boldsymbol{N}-complete; thus $\wedge K_{i}$ exists in $L\left(R_{s}\right)$. Then $\wedge K_{i}=\cap K_{i}$, cf. [2, p. 161, proof of Proposition 13.2].
(i) Write $J=\vee J_{i}$ and set $K_{i}=J_{i}^{l}$. Thus $K_{i} \in L\left(R_{s}\right)$, so by (ii) one has $\cap K_{i}=K$ for some $K \in L\left(R_{s}\right)$. Then $K=\cap J_{i}{ }^{l}=\left(\cup J_{i}\right)^{l}$, so

$$
\left(\cup J_{i}\right)^{l r}=K^{r}=\left(\wedge K_{i}\right)^{r}=\vee\left(K_{i}^{r}\right)=\vee\left(J_{i}^{l r}\right)=\vee J_{i}=J
$$

Definition 3. Let $\boldsymbol{\aleph}$ be an infinite cardinal, R a regular ring, and write X for the set of right ideals J of R such that J is generated (as a right ideal) by a set of cardinality $\leqq \boldsymbol{\aleph}$. One says that R is right $\boldsymbol{\aleph}$-injective, cf.
[2, p. 105] if every R-linear mapping $\varphi: J \rightarrow R_{d}$, where $J \in X$, is extendible to an R-linear mapping $R_{d} \rightarrow R_{d}$ (equivalently, there exists $x \in R$ such that $\varphi(s)=x s$ for all $s \in J)$. Left $\boldsymbol{\aleph}$-injective rings are defined dually.

The following lemma is a reworking (and extension to arbitrary cardinals) of [4, proof of Theorem 3.2]:

Lemma 6 [4, pp. 188-189]. Let $\boldsymbol{\aleph}$ be an infinite cardinal. If R is a right $\boldsymbol{\mathcal { K }}$-continuous, right $\mathbf{\mathcal { K }}$-injective regular ring, then the matrix ring $M_{2}(R)$ is right $\boldsymbol{\aleph}$-continuous.

Proof. Let us verify criterion (b) of Theorem 1. Let \mathscr{S} be an increasingly filtering subset of \mathscr{G} (the set of graphs of the right factor-correspondences in R) with card $\mathscr{S} \leqq \boldsymbol{N}$. Write $\mathscr{S}=\left\{G_{i}: i \in I\right\}$, card $I \leqq \boldsymbol{N}$. For each i, we know from Lemma 3 that G_{i} is the graph of some ($a_{i}: b_{i}$), where $R a_{i}=R b_{i}$, thus $G_{i}=\left(a_{i}, b_{i}\right) R$. Let $G=\cup G_{i}$ be the settheoretic union of the G_{i}; since \mathscr{S} is increasingly filtering, G is the graph of a right R-isomorphism $\alpha: J \rightarrow K$, where $J=\cup a_{i} R, K=\cup b_{i} R$ (set-theoretic unions, both right ideals), and since $G_{i} \subset G$ we know that α extends $\left(a_{i}: b_{i}\right)$ for all i. Since $L\left(R_{d}\right)$ is upper \mathcal{N}-complete, there exist idempotents e, f in R such that $e R=\vee a_{i} R$ and $f R=\vee b_{i} R$ in $L\left(R_{d}\right)$.

The sum $J+(1-e) R$ is direct; define $\beta: J+(1-e) R \rightarrow R_{d}$ by

$$
\beta \mid J=\alpha \text { and } \beta \mid(1-e) R=0 .
$$

Since R is right \boldsymbol{N}-injective, there exists $y \in R$ such that left-multiplication by y coincides with β on $J+(1-e) R$; thus $y(1-e)=0$ and

$$
y a_{i}=\alpha\left(a_{i}\right)=\left(a_{i}: b_{i}\right) a_{i}=b_{i} \text { for all } i \in I .
$$

Briefly, $y e=y$ and $y a_{i}=b_{i}$ for all i. Similarly, there exists $x \in R$ such that $x f=x$ and $x b_{i}=a_{i}$ for all i. Then $y x y a_{i}=y x b_{i}=y a_{i},(y x y-$ $y) a_{i}=0$ for all i, therefore $(y x y-y) J=0$; by Lemma 5, $(y x y-y) e R$ $=0$, and since $y e=y$ this means $y x y-y=0$. Similarly $x y x-x=0$. Therefore the mapping $\varphi: x R \rightarrow y R$ defined by $\varphi(x r)=y x r(r \in R)$ is a right factor-correspondence with $\varphi^{-1}(y r)=x y r$. One has $x R=e R$ and $y R=f R$. (For example, $b_{i} R=y a_{i} R \subset y R$ for all i, hence $f R \subset y R$ because $f R=\vee b_{i} R$. On the other hand,

$$
y J=\beta(J)=\alpha(J)=K \subset f R,
$$

so $(1-f) y J=0$; by Lemma 5 , $(1-f) y e R=0$, thus

$$
(1-f) y e=0,(1-f) y=0, y=f y, y R \subset f R .
$$

Thus $y R=f R$.) The domain $x R=e R$ of φ contains every $a_{i} R$, and $\varphi\left(a_{i}\right)=y a_{i}=b_{i}$ shows that $\left(a_{i}: b_{i}\right) \leqq \varphi$.

The graph of φ is $(x, y x) R \in L\left(2 R_{d}\right)$; let us show that $(x, y x) R$ serves as $\sup G_{i}$ in $L\left(2 R_{d}\right)$. On the one hand, $\left(a_{i}: b_{i}\right) \leqq \varphi$ shows that $G_{i}=$ $\left(a_{i}, b_{i}\right) R \subset(x, y x) R$. On the other hand, suppose $G_{i} \subset M \in L\left(2 R_{d}\right)$ for all i; it is to be shown that $(x, y x) R \subset M$, in other words that $(x, y x) \in$ M. Define $\sigma: R_{d} \rightarrow 2 R_{d}$ by

$$
\sigma(r)=(x, y x) r, r \in R
$$

σ is right R-linear and

$$
\sigma\left(b_{i}\right)=\left(x b_{i}, y x b_{i}\right)=\left(a_{i}, y a_{i}\right)=\left(a_{i}, b_{i}\right) \in G_{i} \subset M
$$

thus $b_{i} R \subset \sigma^{-1}(M)$ for all i. Since $\sigma^{-1}(M)$ is a principal right ideal of R [2, p. 14, Lemma 2.1], it follows that $f R \subset \sigma^{-1}(M)$, thus $(x, y x) f \in M$; since $x f=x$ this means $(x, y x) \in M$ and the proof is complete.

Theorem 2. If R is a right $\boldsymbol{\aleph}$-continuous, right $\boldsymbol{\aleph}$-injective regular ring, then every matrix ring $M_{n}(R)$ is right \boldsymbol{K}-continuous.

Proof. The case for $n=2$ (Lemma 6) implies the case of general n by [3, Theorem 3.1 and its Corollary 3].

Problem. In Theorem 2, is $M_{n}(R)$ also right $\boldsymbol{\aleph}$-injective? The answer is yes for $\boldsymbol{\aleph}=\boldsymbol{\aleph}_{0}$:

Corollary 1 [2, p. 183, Proposition 14.19]. If R is a right $\boldsymbol{\aleph}_{0}$-continuous, right $\boldsymbol{\aleph}_{0}$-injective regular ring, then so is every matrix ring $M_{n}(R)$.

Proof. Let $S=M_{n}(R)$, which is right $\boldsymbol{\aleph}_{0}$-continuous by Theorem 2; since $M_{2}(S)=M_{2 n}(R)$ is also right $\boldsymbol{\aleph}_{0}$-continuous, S is right $\boldsymbol{\aleph}_{0}$-injective [2, p. 180, Corollary 14.14]. (The basic reason that things go well for $\boldsymbol{\aleph}_{0}$ is that, over a regular ring, every countably generated submodule of a projective module is projective [2, p. 20, Corollary 2.15].)

Corollary 2 [2, Proposition 14.19]. Let $\boldsymbol{\aleph}$ be an infinite cardinal, R a right $\boldsymbol{\aleph}$-continuous and right $\boldsymbol{\aleph}$-injective regular ring, A a finitely generated projective right R-module, and $T=\operatorname{End}_{R}(A)$ the endomorphism ring of A. Then T is right $\boldsymbol{\aleph}$-continuous and right $\boldsymbol{\aleph}_{0}$-injective.

Proof. If A is generated by n elements, one has $n R_{d}=A \oplus B$ for a suitable right R-module B; then $T=\operatorname{End}_{R}(A)$ is a corner of $M_{n}(R)$, that is, $T=e M_{n}(R) e$ for a suitable idempotent e. Since $M_{n}(R)$ is right $\boldsymbol{\aleph}$-continuous (Theorem 2) so is its corner T [2, p. 163, proof of Proposition 13.7]. Also, $2 n R_{d}=2 A \oplus 2 B$, so $M_{2}(T)=\operatorname{End}_{R}(2 A)$ [6, p. 34, Corollary 8] is a corner of $M_{2 n}(R)$; since $\boldsymbol{\aleph} \geqq \boldsymbol{\aleph}_{0}, R$ is a fortiori right $\boldsymbol{\aleph}_{0}$-continuous and right $\boldsymbol{\aleph}_{0}$-injective, therefore so is $M_{2 n}(R)$ (Corollary 1), hence its corner $M_{2}(T)$ is right $\boldsymbol{\aleph}_{0}$-continuous [2, p. 175, Proposition 14.6]; therefore T is right $\boldsymbol{\aleph}_{0}$-injective [$\mathbf{2}, \mathrm{p} .180$, Corollary 14.14].

Added in proof. The question following Theorem 2 has been answered in the affirmative by K. R. Goodearl.

References

1. I. Amemiya and I. Halperin, Complemented modular lattices, Can. J. Math. 11 (1959), 481-520.
2. K. R. Goodearl, Von Neumann regular rings (Pitman, London, 1979).
3. I. Halperin and M. Wonenburger, On the additivity of lattice completeness, Pacific J. Math. 12 (1962), 1289-1299.
4. D. Handelman, Finite Rickart C^{*}-algebras and their properties, Advances in Mathematics Supplementary Studies 4 (1979), 171-196.
5. J. v. Neumann, Continuous geometry (Princeton University Press, Princeton, N.J., 1960).
6. G. Renault, Algèbre non commutative, Collection "Varia Mathematica" (GauthierVillars, 1975).
7. M. J. Wonenburger, Matrix K-rings, Proc. Amer. Math. Soc. 14 (1963), 211-215.

The University of Texas at Austin, Austin, Texas

