FACTOR-CORRESPONDENCES IN REGULAR RINGS

S. K. BERBERIAN

1. Introduction. Factor-correspondences are nothing more than a way of describing isomorphisms between principal ideals in a regular ring. However, due to a remarkable decomposition theorem of M. J. Wonenburger [7, Lemma 1], they have proved to be a highly effective tool in the study of completeness properties in matrix rings over regular rings [7, Theorem 1]. Factor-correspondences also figure in the proof of D. Handelman's theorem that an \aleph_0 -continuous regular ring is unit-regular [4, Theorem 3.2].

The aim of the present article is to sharpen the main result in [7] and to re-examine its applications to matrix rings. The basic properties of factor-correspondences are reviewed briefly for the reader's convenience.

2. Factor-correspondences. Throughout, R denotes a regular ring (with unity).

Definition 1 (cf. [5, p. 209ff], [7, p. 212]). A right factor-correspondence in R is a right R-isomorphism $\varphi: J \to K$, where J and K are principal right ideals of R (left factor-correspondences are defined dually).

With notation as in Definition 1, write J = eR, K = fR with e, f idempotent. Defining $y = \varphi(e), x = \varphi^{-1}(f)$, one sees that φ (resp. φ^{-1}) is left-multiplication by y (resp. x) on J (resp. K). (For example, $\varphi(er) = \varphi(eer) = \varphi(e)er = yer$ for all $r \in R$.) In particular, $xyx = x(yx) = \varphi^{-1}(\varphi(x)) = x$ and similarly y = yxy. One has J = xR, K = yR. (For example, $x = \varphi^{-1}(f) \in J$, so $xR \subset J$, whereas $J = \varphi^{-1}(K) = xK \subset xR$, thus J = xR.)

Conversely, if x, y are elements of R such that xyx = x and yxy = y, one sees that $xr \mapsto y(xr)$ defines a right factor-correspondence $\varphi : xR \rightarrow yR$ with $\varphi^{-1}(yr) = x(yr)$.

We denote by R_d (resp. R_s) the ring R regarded as a right (resp. left) R-module in the natural way. (Thus, in another notation, $R_d = R_R$ and $R_s = {}_R R$.) One writes $2R_d = R_d \oplus R_d$ for the right R-module of ordered pairs of elements of R (and nR_d for the module of n-tuples). If A is a finitely generated projective right module over the regular ring R, one writes L(A) for the set of all finitely generated submodules B of A; L(A)may also be described as the set of all direct summands of A [2, p. 6, Theorem 1.11]. Ordered by inclusion, L(A) is a complemented modular

Received July 29, 1980.

lattice, with $B \lor C = B + C$ and $B \land C = B \cap C$ [2, p. 15, Theorem 2.3].

LEMMA 1 [7, p. 212, Lemma 1]. If R is a regular ring and $M \in L(2R_d)$, one can write

$$M = [M \cap (1,0)R] \oplus (a_1,a_2)R \oplus [M \cap (0,1)R]$$

with a_1, a_2 elements of R such that $Ra_1 = Ra_2$.

There is more to the statement of Wonenburger's lemma, as follows. Since $pr_1[M \cap (1, 0)R]$ and $pr_2[M \cap (0, 1)R]$ are principal right ideals of R [2, p. 1, Theorem 1.1], one can write

 $M \cap (1,0)R = (e_1,0)R, \ M \cap (0,1)R = (0,e_2)R$

with e_1 , e_2 idempotents of R, thus M is the direct sum of three cyclic submodules:

$$M = (e_1, 0)R \oplus (a_1, a_2)R \oplus (0, e_2)R.$$

The proof of [7, Lemma 1] shows, moreover, that the middle term $(a_1, a_2)R$ may be prescribed to be the set $\{(r, s) \in M : e_1r = e_2s = 0\}$ and one can suppose further that a_1 is idempotent (thus $a_2a_1 = a_2$). Note that M is the graph of a function (necessarily R-linear) if and only if $M \cap (0, 1)R = 0$; it is the graph of a bijection if and only if

 $M \cap (0, 1)R = M \cap (1, 0)R = 0.$

Since, in a regular ring R, $Ra = (Ra)^{rl} = \{a\}^{rl}$ (the exponents denote right and left annihilators), the condition $Ra_1 = Ra_2$ signifies that a_1 and a_2 have the same right annihilators; whence:

LEMMA 2 [7, p. 212, Lemma 2]. If R is a regular ring and a, b are elements of R such that Ra = Rb, then $ar \mapsto br$ $(r \in R)$ defines a right factor-correspondence $aR \rightarrow bR$.

With notation as in Lemma 2, one writes (a:b) for the right factorcorrespondence $ar \mapsto br$; its graph is $(a, b)R \in L(2R_a)$. The action of the function (a:b) is indicated by (a:b)ar = br, $r \in R$.

Conversely, suppose $\varphi: J \to K$ is any right factor-correspondence in R. Choose elements x, y of R such that J = xR and $\varphi(s) = ys$ for all $s \in J$; then for all $r \in R$ one has $\varphi(xr) = y(xr)$, thus the graph of φ is the cyclic submodule

 $\{(x, yx)r : r \in R\} = (x, yx)R \in L(2R_d).$

LEMMA 3. Every right factor-correspondence in a regular ring R is of the form $(a_1 : a_2)$ for suitable elements a_1 , a_2 of R with $Ra_1 = Ra_2$.

Proof. Let $\varphi: J \to K$ be a right factor-correspondence in R, M its graph. Since $M \in L(2R_d)$ by the preceding remark, one may apply to

it the decomposition of Lemma 1; since M is the graph of a bijection, one has

$$M \cap (1,0)R = M \cap (0,1)R = 0,$$

thus $M = (a_1, a_2)R$ with $Ra_1 = Ra_2$. By Lemma 2, the pair a_1, a_2 defines a right factor-correspondence $(a_1 : a_2)$ whose graph is $(a_1, a_2)R = M$; in other words, $(a_1 : a_2) = \varphi$.

Remarks. It follows from Lemmas 1 and 2 that if $M \in L(2R_d)$ is the graph of a bijection, then it must be the graph of a right factor-correspondence. More generally, if $M \in L(2R_d)$ is the graph of a function φ , then $M \cap (0, 1)R = 0$; writing $M \cap (1, 0)R = (e_1, 0)R$, e_1 idempotent, Lemma 1 gives a decomposition

$$M = (e_1, 0)R \oplus (a_1, a_2)R, Ra_1 = Ra_2,$$

and one can arrange to have $e_1a_1 = 0$. The domain of φ is

 $\mathrm{pr}_1 M = e_1 R + a_1 R = e_1 R \oplus a_1 R$

(the sum is direct because $e_1a_1 = 0$), and the graph of φ is

 $M = \{ (e_1r + a_1s, a_2s) : r, s \in R \},\$

so that $\varphi(e_1r + a_1s) = a_2s$ for all r, s in R; thus $\varphi|e_1R = 0$ and $\varphi|a_1R = (a_1 : a_2)$. The gist of what is going on is that it means a great deal for a graph to be finitely generated. (For example, if A is a projective module over a regular ring and if M is a finitely generated submodule of $2A = A \oplus A$ such that M is the graph of a function φ , then the domain pr_1M and range pr_2M of φ are finitely generated, hence are direct summands of A [2, p. 6, Theorem 1.11], hence are projective; thus the epimorphism $\varphi : pr_1M \to pr_2M$ splits.) The message of Lemma 1 is that every finitely generated submodule of $2R_d$ is the direct sum of the graph of an isomorphism and two "defect" terms.

Definition 2. For right factor-correspondences φ , ψ in the regular ring R, one writes $\varphi \leq \psi$ if ψ extends φ , that is, if the graph of φ is contained in the graph of ψ . This is a partial ordering in the set of all right factor-correspondences.

If φ , ψ are right factor-correspondences and one writes $\varphi = (a_1 : a_2)$, $\psi = (b_1 : b_2)$ via Lemma 3, then $\varphi \leq \psi$ signifies that $(a_1, a_2)R \subset (b_1, b_2)R$; equivalently, $a_1R \subset b_1R$ and $\psi(a_1) = a_2$.

3. Right \aleph -continuous regular rings. Let \aleph be an infinite cardinal. A lattice L is said to be *upper* \aleph -complete if every nonempty subset of L of cardinality $\leq \aleph$ has a supremum in L; L is said to be *upper* \aleph -continuous if it is upper \aleph -complete and if

$$a \land (\lor \{b : b \in B\}) = \lor \{a \land b : b \in B\}$$

for every $a \in L$ and every nonempty, simply ordered subset *B* of *L* whose cardinality is $\leq \aleph$. The terms "lower \aleph -complete lattice" and "lower \aleph -continuous lattice" are defined dually. A regular ring *R* is said to be *right* \aleph -*continuous* if $L(R_a)$ is upper \aleph -continuous (equivalently, the antiisomorphic lattice $L(R_s)$ is lower \aleph -continuous); *left* \aleph -*continuous* if $L(R_s)$ is upper continuous; and \aleph -continuous if it is both left and right \aleph -continuous. A regular ring *R* is left \aleph -continuous if and only if the opposite ring R^0 is right \aleph -continuous. For \aleph finite, all of these conditions are trivially fulfilled by every lattice (or regular ring).

The following lemma is contained in the proof of [7, Theorem 1]:

LEMMA 4. Let \aleph be an infinite cardinal, R a regular ring such that the lattice $L(2R_d)$ is upper \aleph -continuous. Let \mathscr{G} be the set of graphs of the right factor-correspondences in R (thus $\mathscr{G} \subset L(2R_d)$). Then \mathscr{G} is an \aleph -inductive subset of $L(2R_d)$, in the following sense: if \mathscr{G} is an increasingly filtering subset of \mathscr{G} of cardinality $\leq \aleph$ and if $M = \vee \mathscr{G}$ in $L(2R_d)$, then $M \in \mathscr{G}$.

Proof. Since $L(2R_d)$ is isomorphic to the lattice of principal right ideals of the matrix ring $M_2(R)$ [2, p. 15, Proposition 2.4], the hypothesis on Ris that $M_2(R)$ is a right **X**-continuous regular ring (hence so is its "corner" R, cf. [2, p. 175, Proposition 14.6]). To say that \mathscr{S} is increasingly filtering means that for every pair G_1, G_2 in \mathscr{S} , there exists $G_3 \in \mathscr{S}$ containing both G_1 and G_2 .

Since the modules in $\mathcal S$ are graphs of bijective functions, one has

$$G \cap (1,0)R = G \cap (0,1)R = 0$$
 for all $G \in \mathscr{S}$,

hence $M \cap (1, 0)R = M \cap (0, 1)R = 0$ by the upper **X**-continuity of $L(2R_d)$, cf. [2, p. 160, Proposition 13.1]. By Lemma 1, $M = (a_1, a_2)R$ with $Ra_1 = Ra_2$, thus $M \in \mathcal{G}$ by Lemma 2.

The following theorem sharpens a result in [7]:

THEOREM 1 [7, Theorem 1]. Let \aleph be an infinite cardinal, R a right \aleph -continuous regular ring, and let \mathscr{G} be the set of graphs of the right factorcorrespondences in R, ordered by inclusion. The following conditions are equivalent:

(a) the lattice $L(2R_d)$ of finitely generated submodules of $2R_d$ is upper **X**-complete;

(b) every increasingly filtering subset of \mathscr{G} of cardinality $\leq \aleph$ has a supremum in $L(2R_d)$;

(c) every simply ordered subset of \mathscr{G} of cardinality $\leq \aleph$ has a supremum in $L(2R_d)$;

(d) every well-ordered subset of \mathscr{G} of cardinality $\leq \aleph$ has a supremum in $L(2R_d)$.

If the above conditions are fulfilled, then so are the following:

(1) $L(2R_d)$ is upper \aleph -continuous (that is, $M_2(R)$ is right \aleph -continuous); (2) If \mathscr{S} is an increasingly filtering subset of \mathscr{G} of cardinality $\leq \aleph$ and if $M = \bigvee \mathscr{S}$ in $L(2R_d)$, then $M \in \mathscr{G}$ (thus M is a supremum of \mathscr{S} in \mathscr{G}).

Proof. The implications (a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d) are trivial.

 $(d) \Rightarrow (a)$: Let \mathscr{M} be a nonempty subset of $L(2R_d)$ of cardinality $\leq \aleph$; assuming (d), we are to show that \mathscr{M} has a supremum in $L(2R_d)$. By a transfinite induction on the cardinality of \mathscr{M} , we can suppose that \mathscr{M} is well-ordered. (Sketch: Assume all's well for cardinality $< \aleph$, and suppose \mathscr{M} has cardinality \aleph . Let Ω be the least ordinal with cardinality \aleph , and index \mathscr{M} by Ω , say $\mathscr{M} = \{M_\alpha : \alpha < \Omega\}$. For every $\alpha < \Omega$ define

$$M^{\alpha} = \vee \{ M_{\beta} : \beta < \alpha \},\$$

which exists by the induction hypothesis. If one can show that $\vee M^{\alpha}$ exists, then it will serve as $\vee M$.) If \mathscr{M} has a largest element, we are through; otherwise, we can suppose $\mathscr{M} = \{M^{\alpha} : \alpha < \Lambda\}$, where Λ is a limit ordinal of cardinality $\leq \mathbf{X}$ and where $\alpha \leq \beta$ implies $M^{\alpha} \leq M^{\beta}$. Assuming (d), one shows, as in the proof of [7, Theorem 1], that the family (M^{α}) has a supremum in $L(2R_d)$ (for this, it is not necessary to know that the supremum hypothesized in (d) is an element of \mathscr{G}). (The idea of the proof is to use Lemma 1 to replace \mathscr{M} by a well-ordered subset of \mathscr{G} .)

(a) \Rightarrow (1), (2): Since $L(R_d)$ is, by hypothesis, upper **X**-continuous, the upper **X**-completeness of $L(2R_d)$ implies that $L(2R_d)$ is also upper **X**-continuous, by [1, Theorem 4.3]; thus (a) implies (1), and then (2) follows from Lemma 4.

LEMMA 5. Let \aleph be an infinite cardinal, R a regular ring such that $L(R_d)$ is upper \aleph -complete.

(i) If $(J_i)_{i \in I}$ is any family in $L(R_d)$ with card $I \leq \aleph$, then

 $\bigvee J_i = (\bigcup J_i)^{lr} = (\sum J_i)^{lr}.$

(ii) If $(K_i)_{i \in I}$ is any family in $L(R_s)$ (note the subscript) with card $l \leq \aleph$, then $\bigcap K_i \in L(R_s)$.

Proof. (ii) Since the principal left ideal lattice $L(R_s)$ is anti-isomorphic to $L(R_d)$, it is lower **X**-complete; thus $\wedge K_i$ exists in $L(R_s)$. Then $\wedge K_i = \bigcap K_i$, cf. [2, p. 161, proof of Proposition 13.2].

(i) Write $J = \bigvee J_i$ and set $K_i = J_i^l$. Thus $K_i \in L(R_s)$, so by (ii) one has $\bigcap K_i = K$ for some $K \in L(R_s)$. Then $K = \bigcap J_i^l = (\bigcup J_i)^l$, so

$$(\bigcup J_i)^{lr} = K^r = (\wedge K_i)^r = \vee (K_i^r) = \vee (J_i^{lr}) = \vee J_i = J.$$

Definition 3. Let \mathbf{X} be an infinite cardinal, R a regular ring, and write X for the set of right ideals J of R such that J is generated (as a right ideal) by a set of cardinality $\leq \mathbf{X}$. One says that R is right \mathbf{X} -injective, cf.

[2, p. 105] if every *R*-linear mapping $\varphi: J \to R_d$, where $J \in X$, is extendible to an *R*-linear mapping $R_d \to R_d$ (equivalently, there exists $x \in R$ such that $\varphi(s) = xs$ for all $s \in J$). Left **X**-injective rings are defined dually.

The following lemma is a reworking (and extension to arbitrary cardinals) of [4, proof of Theorem 3.2]:

LEMMA 6 [4, pp. 188–189]. Let \aleph be an infinite cardinal. If R is a right \aleph -continuous, right \aleph -injective regular ring, then the matrix ring $M_2(R)$ is right \aleph -continuous.

Proof. Let us verify criterion (b) of Theorem 1. Let \mathscr{S} be an increasingly filtering subset of \mathscr{G} (the set of graphs of the right factor-correspondences in R) with card $\mathscr{S} \leq \aleph$. Write $\mathscr{S} = \{G_i : i \in I\}$, card $I \leq \aleph$. For each *i*, we know from Lemma 3 that G_i is the graph of some $(a_i : b_i)$, where $Ra_i = Rb_i$, thus $G_i = (a_i, b_i)R$. Let $G = \bigcup G_i$ be the settheoretic union of the G_i ; since \mathscr{S} is increasingly filtering, G is the graph of a right R-isomorphism $\alpha : J \to K$, where $J = \bigcup a_i R$, $K = \bigcup b_i R$ (set-theoretic unions, both right ideals), and since $G_i \subset G$ we know that α extends $(a_i : b_i)$ for all *i*. Since $L(R_d)$ is upper \aleph -complete, there exist idempotents *e*, *f* in R such that $eR = \bigvee a_i R$ and $fR = \bigvee b_i R$ in $L(R_d)$.

The sum J + (1 - e)R is direct; define $\beta : J + (1 - e)R \rightarrow R_d$ by

 $\beta | J = \alpha$ and $\beta | (1 - e)R = 0$.

Since R is right **X**-injective, there exists $y \in R$ such that left-multiplication by y coincides with β on J + (1 - e)R; thus y(1 - e) = 0 and

$$ya_i = \alpha(a_i) = (a_i : b_i)a_i = b_i$$
 for all $i \in I$.

Briefly, ye = y and $ya_i = b_i$ for all *i*. Similarly, there exists $x \in R$ such that xf = x and $xb_i = a_i$ for all *i*. Then $yxya_i = yxb_i = ya_i$, $(yxy - y)a_i = 0$ for all *i*, therefore (yxy - y)J = 0; by Lemma 5, (yxy - y)eR = 0, and since ye = y this means yxy - y = 0. Similarly xyx - x = 0. Therefore the mapping $\varphi : xR \to yR$ defined by $\varphi(xr) = yxr$ $(r \in R)$ is a right factor-correspondence with $\varphi^{-1}(yr) = xyr$. One has xR = eR and yR = fR. (For example, $b_iR = ya_iR \subset yR$ for all *i*, hence $fR \subset yR$ because $fR = \bigvee b_iR$. On the other hand,

 $yJ = \beta(J) = \alpha(J) = K \subset fR,$

so (1 - f)yJ = 0; by Lemma 5, (1 - f)yeR = 0, thus

$$(1 - f)ye = 0, (1 - f)y = 0, y = fy, yR \subset fR.$$

Thus yR = fR.) The domain xR = eR of φ contains every a_iR , and $\varphi(a_i) = ya_i = b_i$ shows that $(a_i : b_i) \leq \varphi$.

The graph of φ is $(x, yx)R \in L(2R_d)$; let us show that (x, yx)R serves as sup G_i in $L(2R_d)$. On the one hand, $(a_i : b_i) \leq \varphi$ shows that $G_i = (a_i, b_i)R \subset (x, yx)R$. On the other hand, suppose $G_i \subset M \in L(2R_d)$ for all *i*; it is to be shown that $(x, yx)R \subset M$, in other words that $(x, yx) \in M$. Define $\sigma : R_d \to 2R_d$ by

$$\sigma(r) = (x, yx)r, r \in R;$$

 σ is right *R*-linear and

$$\sigma(b_i) = (xb_i, yxb_i) = (a_i, ya_i) = (a_i, b_i) \in G_i \subset M,$$

thus $b_i R \subset \sigma^{-1}(M)$ for all *i*. Since $\sigma^{-1}(M)$ is a principal right ideal of R [2, p. 14, Lemma 2.1], it follows that $fR \subset \sigma^{-1}(M)$, thus $(x, yx)f \in M$; since xf = x this means $(x, yx) \in M$ and the proof is complete.

THEOREM 2. If R is a right \aleph -continuous, right \aleph -injective regular ring, then every matrix ring $M_n(R)$ is right \aleph -continuous.

Proof. The case for n = 2 (Lemma 6) implies the case of general n by [3, Theorem 3.1 and its Corollary 3].

Problem. In Theorem 2, is $M_n(R)$ also right X-injective? The answer is yes for $X = X_0$:

COROLLARY 1 [2, p. 183, Proposition 14.19]. If R is a right \aleph_0 -continuous, right \aleph_0 -injective regular ring, then so is every matrix ring $M_n(R)$.

Proof. Let $S = M_n(R)$, which is right \aleph_0 -continuous by Theorem 2; since $M_2(S) = M_{2n}(R)$ is also right \aleph_0 -continuous, S is right \aleph_0 -injective [2, p. 180, Corollary 14.14]. (The basic reason that things go well for \aleph_0 is that, over a regular ring, every countably generated submodule of a projective module is projective [2, p. 20, Corollary 2.15].)

COROLLARY 2 [2, Proposition 14.19]. Let \aleph be an infinite cardinal, R a right \aleph -continuous and right \aleph -injective regular ring, A a finitely generated projective right R-module, and $T = \operatorname{End}_{R}(A)$ the endomorphism ring of A. Then T is right \aleph -continuous and right \aleph_0 -injective.

Proof. If A is generated by n elements, one has $nR_d = A \oplus B$ for a suitable right R-module B; then $T = \operatorname{End}_R(A)$ is a corner of $M_n(R)$, that is, $T = eM_n(R)e$ for a suitable idempotent e. Since $M_n(R)$ is right **X**-continuous (Theorem 2) so is its corner T [2, p. 163, proof of Proposition 13.7]. Also, $2nR_d = 2A \oplus 2B$, so $M_2(T) = \operatorname{End}_R(2A)$ [6, p. 34, Corollary 8] is a corner of $M_{2n}(R)$; since $\mathbf{X} \ge \mathbf{X}_0$, R is a fortiori right **X**₀-continuous and right **X**₀-injective, therefore so is $M_{2n}(R)$ (Corollary 1), hence its corner $M_2(T)$ is right **X**₀-continuous [2, p. 175, Proposition 14.6]; therefore T is right **X**₀-injective [2, p. 180, Corollary 14.14].

Added in proof. The question following Theorem 2 has been answered in the affirmative by K. R. Goodearl.

References

- I. Amemiya and I. Halperin, Complemented modular lattices, Can. J. Math. 11 (1959), 481-520.
- 2. K. R. Goodearl, Von Neumann regular rings (Pitman, London, 1979).
- 3. I. Halperin and M. Wonenburger, On the additivity of lattice completeness, Pacific J. Math. 12 (1962), 1289-1299.
- 4. D. Handelman, Finite Rickart C*-algebras and their properties, Advances in Mathematics Supplementary Studies 4 (1979), 171-196.
- 5. J. v. Neumann, *Continuous geometry* (Princeton University Press, Princeton, N.J., 1960).
- 6. G. Renault, Algèbre non commutative, Collection "Varia Mathematica" (Gauthier-Villars, 1975).
- 7. M. J. Wonenburger, Matrix X-rings, Proc. Amer. Math. Soc. 14 (1963), 211-215.

The University of Texas at Austin, Austin, Texas