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PROPERTIES OF THE BEREZIN TRANSFORM OF BOUNDED
FUNCTIONS

JAESUNG LEE

We find the spectrum of the Berezin operator T on L°(B,), then we show that if
f € L®(By) satisfies Sf = rf for some r in the unit circle, where S is any convex
combination of the iterations of 7', then f is M-harmonic.

Finally we decompose the subspace of L®(B;,) where lim T* f exists into the direct
sum of two subspaces of L*®(B,,).

1. INTRODUCTION

Let B, be the unit ball of C" and v be Lebesgue measure on C™ normalised to
v(B,) = 1. For f € L}(B,,v), Tf (the Berezin transform of f) is by definition,

(TF)(2) = / £ (pa(w)) du(w)

n

where ¢, € Aut(B,) is the canonical automorphism given by

a—- Pz— (1-|a))V?Qz
ou(z) = 2= F 1£1(2,L3l) Q

where P is the projection into the space spanned by a € B,,, @, = z — Pz. Equivalently

we can write +
(1~12%)"

|1 _ (Z,’U))|2"+2

The invariant Laplacian A is defined for f € C?(B,) by

(Af)(2) = A(f 0 9,)(0).

(TH(2) = S (w) dv(w).

The M-harmonic functions in B,, are those for which A f = 0. 7 is the measure on B,
defined by
dr(z) = (1 - |27 du(2)
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/"de=/n (fod)dr

for every f € L'(r) and ¢ € Aut(B,).

We denote by L% (7) the subspace of LP(7) which consists of radial functions. That
is, f € L(7) if and only if f € LP(r) and f(z) = f(|z|) for all z € B,. Throughout
the paper, we follow notations in [1] and [7]. [1] is our main reference, and we’ve got
motivations from it. One of the main theorems of [1] is that if f L™(B,) satisfies T f = f,
then f is M-harmonic. Here we generalise that result and investigate further properties
of the operator T on L®(B,) and L!(r) by finding the spectrum of T, which gives us

and satisfies

an essential connection to our investigation of the iteration of the Berezin transform.
The theorem of Katznelson and Tzafriri [5] on the spectrum of contractions plays an
important role.

We start from basic properties of T on L?(7). The operator T is not bounded in L!(v)
(1, 2.2], but the next lemma shows that T has nice behaviour on L*(7) for 1 < p < o0.

LEMMA 1.1. Forl1<p< oo, 1/p+1/g=1(p= o0 meansq=1):
(a) T is a linear contraction on LP(T).
(b) For f € LP(7) and g € Li(7)

[ g ar- / S(Tg)dr

Proor: (a) Let f € L*(r). Then

/B,. |Tf(z)| dr(z) = /B,, ‘ . (w) -|1(1—_(z|,z—1|j))|1;; dv(w) | d7r(2)
<J,

|f('w)| (1 - |w| )

. B, ll _ (w’z>|2n+2

M) = [ e

Let f € L*°(B,). Then

dv(z) dr(w)

_ 2\ n+1
/ —(1 12 ) dv(w)
B

| Tf lloo < |l flleo sup TwE
|1 = (z,w)]

2€B,
(2) = [Iflloo-
By (1), (2) and the Riesz-Thorin interpolation theorem, we get (a).
(b)

[ (Tt ar < |71 sl
B,

< Il llglly < oo by (a).

Hence by using Fubini’s theorem and simple calculation, we get the proof of (b). O
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2. THE SPECTRUM OF T

From Lemma 1.1, the operator T on L*®(B,) is the adjoint of T' on L!(7), and since
L*®(B,) = L!(7)*, the spectrum of T on L®(B,) is the same as the spectrum of T on
L}(B,, 7). We get the following theorem.

THEOREM 2.1. The spectrum of T on L®(B,) is

Tz+1)T(n+1 - 2)
{ T(n+1)

OSRezsn}.

Before proving Theorem 2.1, we need some preliminaries. Since T'f is radial for a
radial f, by Lemma 1.1 T is a contraction on Lk(7), which is a commutative Banach
algebra under the convolution

(f*9)() = / 1 (w))g(w) dr(w)

Bn

for f,g € LL(7). Hence if f € LL(7), we can write Tf = f * h where
h(z) = (1 — |2]*)™*! € Li(7).

From this, we get the following Lemma.
LEMMA 2.2. The spectrum of T on L4 (7) is

{I‘(z+1)F(n+1—z

)
< < .
T(n+1) \O\R"Z\"

PRrROOF: For f € LL(7), the Gelfand( or spherical) transform of f is defined by (see
(3, 4])

& fler= [ 1) a(s) dr(e)
where g, is a spherical function defined by [7, 4.2.2]

0a(2) = /5 P*(,€) do(£).

—~

f(@) exists if « lies in the vertical strip
Yo ={0< Rea <1}
which is the maximal ideal space of Lk(7), and satisfies

(f * 9Y (@) = f(@)§(a), flle < £l
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(Note that g, is bounded if and only if a € £, by (7, 1.4.10].) Since Tf = f * h where
h(z) = (1- |z|2)"+1, the spectrum of T on L} (7) is the same as the spectrum of A in the
commutative Banach algebra L}(7), which is {h(a) | @ € £ }. From (1),

ﬁ(a) = hg, d1 = / 9o dv.
By B,
By [1, Proposition 3.4 and 3.5)

_T'1+na)l'(n+1-na)
/n g dv = I'(n+1) '

This completes the proof of the lemma. 0

PROOF OF THEOREM 2.1: Since the operator T on LE(B,) is the adjoint of T on
LY(7), the spectrum of T on LF(B,) is

Fl+2)(n+1-2)
(1) { T+ 1)

Now let A be in the spectrum of T on L®(B,). Then there exists a sequence {fi} in
L*(By), ||fkllc = 1, for which

fim [T fe ~ Afelloo = 0.
—00

Let ¢x € Aut(B,) satisfy |R(fi o ¢x)||., = 1 where Rf is the radialisation {7, 4.2.1] of
f. Since T and R are contractions on L*(B,),

|7 (R(5 0 80) = ARUx 0 80)|| _ = | RIS 0 90)) = RO o 0|
<||Tthode) - Mo a|

= “(Tfk) ok — Afxo ¢'k“°°
(by Proposition 2.3 of [1])
=||ITfi — Millo =0 as k — 0.

OSRezén}.

Hence A is in the spectrum of T on LE(B,).

Thus from (1), we complete the proof. 0
The next corollary plays an important role in this paper.
COROLLARY 2.3. Let f € L'(7) and g € L*(B,). Then

Jim |74 =T, =0 and Jim[T¥(s - T, = 0.

PRroOOF: By [1, Proposition 3.7(b)], h(a) < 1 when & € T \ {0,1} and h(0) =
h(1) = 1. Hence the spectrum of T on L(7) (or L*(B,)) intersects the unit circle only
at one point z = 1. Hence by (5, Theorem 1},

klggo”Tk(I —T)|| =0on L'(r) (or L®(B,)).

This completes the proof. 0
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3. THE ITERATION OF T

Here we use the results of the previous section to get the behaviour of functions in
L*®(B,) or its predual L!(7) under the infinite iteration of T. First we generalise one of
the Main Theorems of [1].

LEMMA 3.1. Let f € Ly(7). Then
lim lT"f| dr =0 if and only if / fdr=0.
B, n

k—oo
PRrRoOOF: Since

/ Tk f dr = fdr for every k>0,
n Bn

lim |T’°f| dr =0 implies fdr=0.
Bn

k—o0 B,

On the other hand, if we define
LO}zz{feL}Z(T)] fdr:O},
By

then
(I = T)Lk(7) C LO.

Now let £ € L¥(B,) satisfy

/ (f=Tf)edr =0 for every f € Li(7).

n

Then by Lemma 1.1
f(€—Te dr =0 for every f € Li(7).
Bn
Hence T¢ = ¢, which means ¢ is radial M-harmonic by [1]. Thus £ is a constant. Hence
we get
/ g-€dr =0 for every g € LO}.

By the Hahn-Banach theorem, this means (I — T')L%(7) is dense in LO}%. Hence from
Corollary 2.3,

lim / |T*gldr =0 for every g € LO}.
B

k—ro0

0

N
THEOREM 3.2. Let 0 < o < 1 satisfy Y ox = 1 and let my be positive numbers
k=1
fork=1,2,---N. If f € L*(B,) satisfies

N
(ZakT’"“)f =rf for some r with|r| =1,
k=1
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then f is M-harmonic.

PROOF: Let N
S= ZakT'""
k=1
and
X ={feL®Bn)|S5f=rf}.
Fix j which satisfies 0 < a; < 1, and define U on L*(B,) by

U= 1 Z akT""‘ .

=935

If f € X, then
ST™ f=TMSf=rT™f.

Hence T™i f € X and in the same way Uf € X. Thus by Lemma 1.1, T™ and U are
contractions on the Banach space X. And on L*°(B,)

(1) S =a;T™ + (1 — a;)U.

Let P be the operator on X defined by

(2) P =q;T™ —a;rl.

Now let ¢ be an extreme point of A*, the closed unit ball of X*. Then from (1)
3) rg = o;(T™)*q+ (1 - o;)(Uq).

Since (T™i)*,U* are contractions on X*, (3) forces

(T™)'q _Uq
T r

q =
Therefore on X*,
P'q=oqa; (T™)q—-ajrqg=0.

But by the Krein-Milman theorem, A* is the closed convex hull of the set of its extreme
points. It follows that P* =0 on A*. Thatis, P = 0. Hence T™ =r] on X. 0

Now pick £ € L¥(Bn)N X and g € Lk(r) with

/ gdr = 0.
Bn

£ Moo kli’x{.lo/B |T™*g|dr =0 by Lemma 3.2.

Then

lim
k—o0

/ Tmi%g . ¢ dr
Bn
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But for all k > 0,

T"‘f"g~£dr=/ g -T™*¢dr
By n

=r"/ g-£dr.
/ g-€dr =0,

which implies that £ is a constant. For an arbitrary f € X, consider the radialisation of

Hence

R(f o ¢.).
T™ (R(f o ;) = R(T™(f 0 ¢;)) = R(T™ f 0 ;)
(by Proposition 2.3 of [1})
=rR(fop,).
Hence

R(fop.) € XN LF(B,),

which means R(f o ;) is a constant. Hence for any w € B,

R(f o @.)(w) = R(f 0 0.)(0) = f(v-(0)) = f(2).
By [7, 4.2.4), f is M-harmonic. This proves the theorem. 1]

COROLLARY 3.3. If f € L'(v) satisfies Tf = rf for some r with |r| = 1 and
R(f o ¢) € L*®(B,) for every ¢ € Aut(B,), then f is M-harmonic.

PRrOOF:
T(R(f 2 4)) = R(T(f 0 9)) = R(Tf 0 $) = R(f 0 4).
Thus R(f o ¢) is a constant by Theorem 3.2. Then by the same argument as in the proof

of Theorem 3.2, we can see that f is M-harmonic. 0

The next two propositions are about the iteration of T on L'(r). We need the
following lemma first.

LEMMA 3.4. If f € LY{1) satisfies Tf = rf for some |r| =1, then f = 0.
PROOF:

_ (1 _ |Z|2)ﬂ+1
76 = r@l < [, V@I

< mp (U0 i) [ e

2€Bn |1 - (:':,w)l2

du(w)

= ifldr < oo
Bn
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So f is bounded, thus f is M-harmonic by Theorem 3.2. But the constant zero is the
only M-harmonic function which belongs to L!(7). 0

PROPOSITION 3.5. For f € L(7), if {T*f} has a subsequence that converges
weakly, then
lim ||T*f]|, = 0.
k—oo

Proor: Let {T™ f} be a subsequence that converges weakly to some g € L!(7).
Then for any £ € L>(B,) we get

Bn(g—Tg)-ZdT: (/"g-ZdT—/"(Tm“f)-Zd‘r>
+(/B"(T""=f)-Zdr—/Bn(T'""“f)-EdT)
+</"(T""=“f)-€dr—/"(Tg)-édr).

As k — oo the first and the third terms of the right hand side converge to zero since
T™ — g weakly and the second term converges to zero by Corollary 2.3. Hence T'g = g,
which means g = 0 by Lemma 3.4. Thus by Masur’s Theorem, for any ¢ > 0 there exists

N
s=Y a1 (o<1, Ta=1)
=1

on L(7) such that ||Sf||; < €. For k > 0,

an operator

I7* 7l < ITFSFIh+ T f - T*S 7l

where
NTESfll < ISfl < e

and
lim ||T%f —T*Sf|l, =0
k—oo0
by Corollary 2.3. Therefore,
lim ||IT*f[l, =0
k—o0
and this completes the proof. o

However lim [ |T* f| dr exists for all f € L'(r) since T is a contraction on L'(7).
When f is radial we get a similar result to [2].
PROPOSITION 3.6. If f € Li(7), then
/ fdr
B

lim ||T*f|l, =
k—=oo
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PROOF: Let
A={eeLF(Ba)| Nl <1}
and Ej = T*A, o
Ezf]&-
k=1

Then for f € Li(7),

/" |T’°f|d7'=sup{ /Bn(T"f) ldr
=sup{!/3nf-(T"€)dT

‘heE}.

On the other hand, for any £ > 0 and k > 1 there exists hy € A with

|£eA}
|€eA}.

Hence

T* > -hd
W IT* £l >sup{‘/3ﬂf r

lim
k—o0

+e

IT*fll: < ’/ (ka) - hedr
Bn

< + €.

o (T*h) dr
By

Since Ej is weak * compact and E; | E, E is weak * compact. Thus if g is a weak *
limit of a subsequence {T*hy,} of {T*hi}, then g € E and

/ f(T*he,) dr

n

f-gdr
By

= lim
j—ro00

> lim 7% fll: — €.
j—oo

Hence

(2) leIEOHkaIhSSup{ B"f-hd‘r |h€E}.
From (1), (2) we get

(3) Jim (I7*£]l =sup{/ f-hdr |he E}

From (3) and Lemma 3.1, if f € L% (7) then

fdr=0 if and only if / f-hdr =0
Bn B,
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for every h € E. Hence
E={cecC|ld<1}

and we can rewrite (3) as
lim || T*f||; = sup {l/ cf dr
k—o0 Bn

fute|
O

Using Proposition 3.5 and 3.6, it follows that there exists f € L*(B,) for which
lim T* f does not exist even pointwise. To see this, assume that lim 7*¢ exists for every
¢ € L*(B,). Then for any g € L(7),

|Ic|<1}

lim (T*g)edr = lim [ g(T*¢)dr
k—o0 B, k—o0 Ba,

exists. This means {T*g} converges weakly since L'(7) is weak complete, which implies
that, by Proposition 3.5,

lim ||T*g|j; =0

k—oo

for any g € L'(7), which is not true by Proposition 3.6.
The next theorem is about the subspace of L®(B,) for which limT* f exists with
the L™-norm, which is the unit ball analogue of {6, Theorem 2.7] in the polydisc.

THEOREM 3.7. Let X be the subspace of L®(B,) defined by
X = {f € L®(B,) | lim T*f exists}.
k—o0

Then
X=HeN

where

H = {f € L*(By,) | f is M-harmonic} and
N = T=T)I=(By).

Proor: By Corollary 2.3, we get
lim ||T*g|leo =0 for allge N
k—co0

and for h € H, Th = h. Hence
Hn N = {0}
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Let P be the operator on X defined by
(P)(2) = Jim (T*f)(z) for f € X.

Since T and P commute on X by the Dominated Convergence Theorem, if f € X then
T(Pf) = P(Tf) = lim T*f = Pf.

Hence by Theorem 3.2, Pf € H. Since f = Pf + (f — Pf), it remains to show that
f~Pfe N when f € X. Let d € L®(B,)" satisfy d(g — Tg) = 0 for all g € L*®(B,),
then we get T*d = d. Hence

d(f — Pf)=d(T*(f — Pf)) for all k>0 1)
But
Jim |T"(f - Pf)“ =0.
By taking the limit as k — oo in (1), we get d(f — Pf) = 0. Hence by the Hahn-Banach
theorem, f — Pf € N. This completes the proof of Theorem 3.7. 1]
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