ADDITIVITY OF THE *P*^{*n*}-INTEGRAL

GEORGE CROSS

1. Introduction. It is known that the P^n -integral as originally defined is not additive on abutting intervals. This paper offers a slight modification in the definition of the integral and develops necessary and sufficient conditions for the integral to be additive.

The following example is given in [2]:

If n is odd, let

$$F(x) = \begin{cases} x \cos 1/x, & x \neq 0\\ 0, & x = 0 \end{cases}$$

and if n is even, let

$$F(x) = \begin{cases} x \sin 1/x, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

Define a function f by

$$f(x) = \begin{cases} F^{(n+1)}(x), & \text{for } x \in (0, i/\pi] \\ 0, & \text{for } x \in [-i/\pi, 0], \end{cases}$$

where i = 2 if *n* is odd and 1 if *n* is even.

It is easy to see that f is P^{n+1} -integrable over each of the intervals $[-i/\pi, 0]$ and $[0, i/\pi]$ but not over $[-i/\pi, i/\pi]$. The function f fails to be P^{n+1} -integrable over $[-i/\pi, i/\pi]$ essentially because F(x) is not n-smooth at 0.

In the case n = 2 Skvorcov [6] obtained necessary and sufficient conditions for the P^2 -integral of a given function to exist on an interval [a, b] where it is known that the P^2 -integral of that function exists on the two abutting intervals [a, c] and [c, b]:

THEOREM [6, Theorem 2]. Let the function f(x) be P^2 -integrable on the closed intervals [a, c] and [c, d] and have $F_1(x)$ and $F_2(x)$, respectively, for its P^2 -integral on these intervals. Then f(x) is P^2 -integrable on [a, b] if and only if there exists a number α such that the function

$$F(x) = \begin{cases} F_1(x) + \frac{\alpha}{c-a} (x-a), & x \in [a, c] \\ F_2(x) + \frac{\alpha}{c-b} (x-b), & x \in [c, b] \end{cases}$$

Received April 22, 1977 and in revised form, August 12, 1977.

is smooth at the point c. If such a number α exists, then the function F(x) is the P^2 -integral of f(x) on [a, b].

Smoothness of F at c, of course, imposes certain constraints on F (and on f) in a neighbourhood of c. The proof of Skvorcov's result depends on the following:

LEMMA [6, Lemma 3]. Let f(x) be P^2 -integrable on [a, b] and have F(x) for its P^2 -integral. Then for any $\epsilon > 0$ there exists a majorant M(x) and a minorant m(x) such that if R(x) = M(x) - F(x), r(x) = F(x) - m(x), we have

$$|R(x)| < \epsilon, \quad |r(x)| < \epsilon, \quad |R_{+}'(a)| < \epsilon, \quad |R_{-}'(b)| < \epsilon, \\ |r_{+}'(a)| < \epsilon, \quad |r_{-}'(b)| < \epsilon.$$

It is not known how to prove the lemma that would be required to obtain the corresponding additivity result for the P^n -integral [see the remark at the end of this paper]. In the following we obtain necessary and sufficient conditions that a function f be P^n -integrable on an interval [a, b] phrased in terms of a different kind of neighbourhood property of f(x).

2. Definitions. In the original definition of the P^n -integral there is a difficulty with the condition B_{n-2} [**4**, p. 150] since it is not linear on the set of major and minor functions. As a result, the proof of Lemma 5.1 [**4**] fails since the difference Q(x) - q(x) need not satisfy the conditions of Theorem 4.2 [**4**].

It was shown in [3] that a simple modification of the definition of major and minor functions avoids this difficulty and leads to a definition of an integral which is strong enough to solve the coefficient problem in trigonometric series under the conditions imposed by James [5].

Let F(x) be a real-valued function defined on the bounded interval [a, b]. If there exist constants $\alpha_1, \alpha_2, \ldots, \alpha_r$ which depend on x_0 only and not on h, such that

(2.1)
$$F(x_0 + h) - F(x_0) = \sum_{k=1}^r \alpha_k \frac{h^k}{k!} + o(h^r), \text{ as } h \to 0,$$

then α_k , $1 \leq k \leq r$, is called the Peano derivative of order k of F at x_0 and is denoted by $F_{(k)}(x_0)$. If F possesses derivatives $F_{(k)}(x_0)$, $1 \leq k \leq r - 1$, we write

(2.2)
$$\frac{h^r}{r!}\gamma_r(F;x_0,h) = F(x_0+h) - F(x_0) - \sum_{k=1}^{r-1} \frac{h^k}{k!}F_{(k)}(x_0).$$

By restricting h to be positive (or negative) in (2.1) we can define onesided Peano derivatives, which we write as $F_{(k)}(x_{0^+})$ (or $F_{(k)}(x_{0^-})$).

If there exist constants $\beta_0, \beta_2, \ldots, \beta_{2r}$ which depend on x_0 , and not on h, such that

$$\frac{F(x_0+h)+F(x_0-h)}{2} = \sum_{k=0}^r \beta_{2k} \frac{h^{2k}}{(2k)!} + o(h^{2r}), \quad \text{as } h \to 0,$$

then β_{2k} , $0 \leq k \leq r$ is called the de la Vallée Poussin derivative of order 2k of F at x_0 and is denoted by $D^{2k} F(x_0)$.

If F has derivatives $D^{2k} F(x_0), 0 \leq k \leq r - 1$, we write

$$\frac{h^{2r}}{(2r)!}\theta_{2r}(F;x_0,h) = \frac{F(x_0+h)+F(x_0-h)}{2} - \sum_{k=0}^{r-1} \frac{h^{2k}}{(2k)!}D^{2k}F(x_0)$$

and define

$$\bar{D}^{2\tau}F(x_0) = \lim_{h \to 0} \sup \theta_{2\tau}(F; x_0, h)$$

$$\underline{D}^{2\tau}F(x_0) = \lim_{h \to 0} \inf \theta_{2\tau}(F; x_0, h).$$

All the above symbols are defined similarly for odd-numbered indices (see, for example, [4, pp. 163–164].

We denote the ordinary derivative of F(x) at x_0 of order k by $F^{(k)}(x_0)$.

The function F will be said to satisfy condition A_n^* $(n \ge 3)$ in [a, b] if it is continuous in [a, b], if, for $1 \le k \le n - 2$, each $F_{(k)}(x)$ exists and is finite in (a, b) and if

(2.3)
$$\lim_{h\to 0} h\theta_n(F; x, h) = 0,$$

for all $x \in (a, b) - E$ where E is countable.

When a function F satisfies condition (2.3) at a point x, F is said to be *n*-smooth at x.

THEOREM 2.1. If F satisfies condition $A_{2m}^*(A_{2m+1}^*)$ in [a, b], then $F_{(2k)}(x) = D^{2k}F(x)$ $(F_{(2k+1)}(x) = D^{2k+1}(x))$ does not have an ordinary discontinuity in (a, b) for $0 \leq k \leq m - 1$.

Proof. This is Lemma 8.1 [4].

Note. Condition A_{2m}^* is a stronger form of James' condition A_{2m} , [4], in that it replaces the requirement that $D^{2k} F(x)$ exist and be finite for $1 \leq k \leq m - 1$ by the same condition on the Peano derivatives. Theorem 2.1 then shows that A_{2m}^* also implies James' condition B_{2m-2} , [4].

We shall make extensive use of the theory of n-convex functions in the following. For the definition and properties of n-convex functions we refer the reader to [1].

THEOREM 2.2. If F satisfies A_n^* , $n \ge 3$, in [a, b] and

- (a) $\overline{D}^n F(x) \ge 0$, $x \in (a, b) E$, |E| = 0,
- (b) $\overline{D}^n F(x) > -\infty$, $x \in (a, b) S$, S a scattered set,
- (c) $\lim_{h\to 0} \sup h\theta_n(F; x, h) \ge 0 \ge \lim_{h\to 0} \inf h\theta_n(F; x, h), x \in S,$

then F is n-convex.

Proof. In [1, Theorem 16] Bullen proves a similar result which implies this theorem. In place of condition A_n^* he uses a condition C_n which is just A_n together with B_{n-2} , but as was noted above these are implied by A_n^* .

Definition 2.1. Let f(x) be a function defined in [a, b] and let $A \equiv \{a_i, i = 1, 2, \ldots, n\}$ be fixed points such that $a = a_1 < a_2 < \ldots < a_n = b$. The functions Q(x) and q(x) are called P^n -major and minor functions (respectively) of f(x) over $(a_i) = (a_1, a_2, \ldots, a_n)$, or with respect to the basis A, if

(2.4.1) Q(x) and q(x) satisfy condition A_n^* in [a, b];

 $(2.4.2) \quad Q(a_i) = q(a_i) = 0, \quad i = 1, 2, \ldots, n;$

(2.4.3) $\underline{D}^n Q(x) \ge f(x) \ge \overline{D}^n q(x), x \in [a, b] - E, |E| = 0;$

(2.4.4) $\underline{D}^n Q(x) \neq -\infty$, $\overline{D}^n q(x) \neq +\infty$, $x \in [a, b] - S$, S a scattered set;

(2.4.5) (i) $\lim_{h \to 0} \sup h\theta_n(Q; x, h) \ge 0 \ge \lim_{h \to 0} \inf h\theta_n(Q; x, h), \quad x \in S$

(ii) $\limsup_{n \to \infty} h\theta_n(q; x, h) \ge 0 \ge \liminf_{n \to \infty} h\theta_n(q; x, h), x \in S.$

LEMMA 2.1. For every pair Q(x) and q(x) the difference Q(x) - q(x) is *n*-convex in [a, b].

Proof. The proof follows from Theorem 2.2 above.

Definition 2.2. For each major and minor function of f(x) over $(a_i)_{i=1}^n = A$ the functions defined by

 $Q^*(x) = (-1)^r Q(x), \quad q^*(x) = (-1)^r q(x), \quad a_r \leq x < a_{r+1}$

are called associated major and minor functions, respectively, of f(x) over (a_i) or on [a, b] with respect to the basis A.

The proofs of the following lemmas and theorems are given in [3] and [4].

LEMMA 2.2. For every pair of associated major and minor functions of f(x) over (a_i) ,

$$Q^*(x) - q^*(x) \ge 0$$

for all x in [a, b].

Definition 2.3. Let c be a point in (a_1, a_n) such that $c \neq a_i, i = 1, ..., n$. If for every $\epsilon > 0$ there is a pair Q(x), q(x) such that

 $(2.5) \quad |Q(c) - q(c)| < \epsilon,$

then f(x) is said to be P^n -integrable over (a_1, c) .

LEMMA 2.3. If the inequality (2.5) holds, then

$$|Q(x) - q(x)| < \epsilon k$$

for all x in $[a_1, a_n]$ where k is independent of x.

786

THEOREM 2.3. If f(x) is P^n -integrable over $(a_i; c)$, there is a function $F^*(x)$ which is the inf of all associated major functions of f(x) over (a_i) and the sup of all associated minor functions.

Definition 2.4. If f(x) is P^n -integrable over $(a_i; c)$ and if $F^*(x)$ is the function of Theorem 2.3, define F(x) by

$$F^*(x) = (-1)^r F(x), \quad a_r \leq x < a_{r+1}.$$

If $a_s < c < a_{s+1}$, the *P*ⁿ-integral of f(x) over $(a_i; c)$ is defined to be $(-1)^s F(c)$. Since $(-1)^s F(a_i) = F(a_i) = 0$, the integral is defined to be zero if $c = a_i$, i = 1, 2, ..., n. We write

$$(-1)^{s}F(c) = \int_{(a_i)}^{c} f(t)d_n t.$$

THEOREM 2.4. If f(x) is P^n -integrable over $(a_i; c)$ it is also P^n -integrable over $(a_i; x)$ for every x in $[a_1, a_n]$. If F(x) is the function of Definition 2.4 then for $a_r \leq x < a_{r+1}$,

$$(-1)^{r}F(x) = \int_{(a_{1})}^{x} f(t)d_{n}t.$$

In view of Theorem 2.4, if f(x) is integrable over $(a_i; c)$ we shall say it is integrable on [a, b] with respect to the basis A. We shall refer to the function F(x) of Definition 2.4 as the associated (P^n) integral of f over $(a_i; x)$ (or with respect to the basis A).

THEOREM 2.5. If f(x) is P^n -integrable over $(a_i; x)$, it is also P^n -integrable over $(b_j; x)$, where $a_1 \leq b_1 < \ldots < b_n \leq a_n$. In addition if F(x) is the associated P^n -integral of f over $(a_i; x)$, and $b_s \leq x < b_{s+1}$ then

(2.6)
$$(-1)^s \int_{(b_j)}^x f(x) d_n x = F(x) - \sum_{j=1}^n \lambda(x; b_j) F(b_j),$$

where

$$\lambda(x; b_j) = \prod_{k \neq j} (x - b_k) / (b_j - b_k)$$

is a polynomial of degree n - 1 at most.

Because of Theorem 2.5 we shall sometimes use the phrase "f(x) is P^{n} -integrable over [a, b]" without explicit reference to a basis (a_{i}) .

COROLLARY. If f(x) is P^n -integrable over [a, b], Q(x), q(x) are P^n -major and minor functions of f(x) and F(x) is the associated P^n -integral of f(x), then Q(x) - F(x) and F(x) - q(x) are n-convex.

3. Some preliminary considerations. We assume throughout the remainder of the paper that n is even; obvious modifications must be made in the notation to cover the case when n is odd.

THEOREM 3.1. The function F(x) of Definition 2.4 possesses derivatives $F_{(k)}(x), 1 \leq k \leq n-2, x \in (a, b).$

Proof. If Q(x) denotes a P^n -major function of f(x) over (a_i) then Q(x) - F(x) is *n*-convex in [a, b]. By Theorem 7 [1], we have $(Q(x) - F(x))^{(k)} = (Q(x) - F(x))_{(k)}$ exists $(1 \le k \le n - 2, x \in [a, b])$ and since by definition $Q_{(k)}(x)$ exists $(1 \le k \le n - 2, x \in (a, b))$, the statement in the theorem follows.

THEOREM 3.2. [1, Corollary 8]. If F is n-convex in $[a, b], |F| \leq K$ then

$$|F_{(k)}(x)| \leq \frac{AK}{\min\{(b-x)^k, (x-a)^k\}}, \quad 0 \leq k \leq n-1,$$

 $x \in (a, b)$, where A is a constant independent of k, F and x, and where, if k = n - 1, the derivative is to be interpreted as $\max(|F_{(n-1)}(x+)|, |F_{(n-1)}(x-)|)$.

THEOREM 3.3. The function F(x) of Definition 2.4 has the property that

(3.1)
$$\lim_{h\to 0} \sup h\theta_n(F; x, h) \ge 0 \ge \lim_{h\to 0} \inf h\theta_n(F; x, h), \quad x \in (a, b)$$

Proof. Corresponding to arbitrary $\epsilon > 0$ there exists a P^n -major function Q(x) and a P^n -minor function q(x) such that the *n*-convex functions

 $R(x) = Q(x) - F(x), \quad r(x) = F(x) - q(x)$

satisfy $|R(x)| < \epsilon$, $|r(x)| < \epsilon$, $x \in [a, b]$. The major and minor functions have the property further that $\underline{D}^n Q(x) > -\infty$ and $\overline{D}^n q(x) < +\infty$, $x \in [a, b] - S$, where *S* is a scattered set, while Q(x) and q(x) satisfy 2.4.5 in *S*. Thus for each fixed $x \in [a, b] - S$, there exist finite numbers $C_1(x)$ and $C_2(x)$ such that

$$h\theta_n(Q; x, h) > h C_1(x)$$

$$h\theta_n(q; x, h) < hC_2(x)$$

for all sufficiently small positive *h*. But, for $x \in (a, b)$,

$$h\theta_n(R; x, h) = (n/2) \{ \gamma_{n-1}(R; x, h) - \gamma_{n-1}(R; x, -h) \}$$

and

$$h\theta_n(r; x, h) = (n/2) \{ \gamma_{n-1}(r; x, h) - \gamma_{n-1}(r; x, -h) \},\$$

and since R(x) and r(x) are *n*-convex, it follows that

$$\lim_{h\to 0+} h\theta_n(R;x,h) = (n/2)\{R_{(n-1)}(x+) - R_{(n-1)}(x-)\} \equiv H(n,x),$$

and

$$\lim_{h\to 0+} h\theta_n(r; x, h) = (n/2)\{r_{(n-1)}(x+) - r_{(n-1)}(x-)\} \equiv h(n, x).$$

We have further, for each fixed x, the inequality (Theorem 3.2).

(3.2)
$$\max \{ |R_{(n-1)}(x+)|, |R_{(n-1)}(x-)|, |r_{(n-1)}(x+)|, |r_{(n-1)}(x-)| \} \\ \leq \frac{A\epsilon}{\min \{ (b-x)^{n-1}(x-a)^{n-1} \}}$$

where A is a constant independent of ϵ , R(x), r(x), and x. Then since

(3.3) $h\theta_n(q;x,h) + h\theta_n(r;x,h) = h\theta_n(F;x,h) = h\theta_n(Q;x,h) - h\theta_n(R;x,h),$ we have

$$(3.4) \quad hC_2(x) - h\theta_n(r; x, h) > h\theta_n F; x, h) > hC_1(x) - h\theta_n(R; x, h)$$

for all sufficiently small positive h. Similar inequalities hold for negative h and, since ϵ is arbitrary in (3.4), it follows that

$$\lim_{h \to 0} h\theta_n(F; x, h) = 0, \quad x \in [a, b] - S.$$

If $x \in S$, then

$$\lim_{h \to 0} \sup h\theta_n(F; x, h) \ge \lim_{h \to 0} \sup h\theta_n(Q; x, h) - H(n, x)$$
$$\ge -H(n, x)$$

and

$$\lim_{h \to 0} \inf h\theta_n(F; x, h) \leq \lim_{h \to 0} \inf h\theta_n(q; x, h) + h(n, x)$$

< 0 + h(n, x),

and the result follows because of (3.2).

Now suppose f is a function defined on [a, b], and let a < u < c < v < b. If f is P^n -integrable on [a, v] with respect to some basis, then f is P^n -integrable on [a, v] with respect to the basis

$$A_3 \equiv (c_0, c_2, c_3, \ldots, c_{n-1}, c_n) \equiv (a, c_2, \ldots, c_{n-1}, v)$$

(Theorem 2.5) where, for convenience and without affecting the generality of what we prove, we may assume that $(u, c_2, c_3, \ldots, c_{n-1}, v)$ is a partition of [u, v] into subintervals of equal length, $u < c_2$ and $c_{n/2} < c < c_{(n/2)+1}$. Likewise if f is P^n -integrable on [u, b] with respect to some basis, then it is P^n -integral on [u, b] with respect to the basis

 $A_4 \equiv (c_1, c_2, \ldots, c_{n-1}, c_n') \equiv (u, c_2, c_3, \ldots, c_{n-1}, b).$

Now if f is P^n -integrable on [a, v] and on [u, b] then f is P^n -integrable on the interval [u, v] with respect to the basis

 $A_5 \equiv (c_1, c_2, \ldots, c_{n-1}, c_n) \equiv (u, c_2, \ldots, c_{n-1}, v).$

Also f is P^n -integrable on the interval [a, c] with respect to the basis

 $A_1 \equiv (c_0, d_1, c_2, d_2, c_3, \dots, d_{n/2-1}, c_{n/2}, d_{n/2}) \equiv \{a_i\}$

when $c_0 = a < d_1 < c_2 < d_2 < \ldots < d_{n/2-1} < c_{n/2} < d_{n/2} = c$, and on the interval [c, b] with respect to the basis

$$A_{2} = (d_{n/2}, c_{(n/2)+1}, d_{n/2+1}, c_{(n/2)+2}, \dots, c_{n-1}, d_{n-1}, b) \equiv \{b_{i}\}$$

where

 $c = d_{n/2} < c_{(n/2)+1} < d_{(n/2)+1} < \ldots < c_{n-1} < d_{n-1} < b.$

On the other hand if f is P^n -integrable on [a, b] with respect to the basis $(a, c_2, c_3, \ldots, c_{n-1}, b) \equiv (l_1, l_2, \ldots, l_n)$ then it is P^n -integrable on [a, b] with respect to any basis.

For an arbitrary set $A = \{x_0, x_1, \ldots, x_n\}$ of distinct numbers we define a function λ by

$$\lambda(A; x, x_r) \equiv \prod_{i \neq r} \left(\frac{x - x_i}{x_r - x_i} \right) \,.$$

If $F_3(x)$, $F_4(x)$ and $F_5(x)$ denote the associated integrals of f over [a, v], [u, b] and [u, v] with respect to the bases A_3 , A_4 , and A_5 , respectively, then for $x \in [u, v]$, we have (Theorem 2.5)

(3.5)
$$F_3(x) = F_5(x) + \lambda(A_5; x, u)F_3(u),$$

and

and

(3.6)
$$F_4(x) = F_5(x) + \lambda(A_5; x, v)F_4(v).$$

Let F be defined on [a, b] as follows:

$$(3.7) F(x) = \begin{cases} F_3(x) + \lambda(A_3; x, v) \bigg[F_4(v) + \bigg(\frac{v - b}{u - b} \bigg) F_3(u) \bigg] \\ \times \bigg[\frac{(v - a)(u - b)}{(v - u)(a - b)} \bigg], & x \in [a, v], \end{cases} \\ F_4(x) + \lambda(A_4; x, u) \bigg[F_3(u) + \bigg(\frac{u - a}{v - a} \bigg) F_4(v) \bigg] \\ \times \bigg[\frac{(v - a)(u - b)}{(v - u)(a - b)} \bigg], & x \in [u, b] \end{cases} \\ = \begin{cases} F_3(x) + \lambda(A_3; x, v) K_1, \\ F_4(x) + \lambda(A_4; x, u) K_2. \end{cases}$$

We must show that F is well-defined on [u, v]. Since f is integrable on [u, v] with respect to the basis A_5 we have from (3.5), (3.6) and (3.7),

(3.8)
$$F(x) = \begin{cases} F_5(x) + \lambda(A_5; x, u) F_3(u) + \lambda(A_3; x, v) K_1 \\ F_5(x) + \lambda(A_5; x, v) F_4(v) + \lambda(A_4; x, u) K_2, & \text{if } x \in [u, v] \end{cases}$$

Since $u - c_i = v - c_{n-i+1}$, $i = 2, 3, \ldots, n-1$, it is easy to see that

$$\lambda(A_{5}; x, v)F_{4}(v) + \lambda(A_{4}; x, u)K_{2}$$

$$= g(x)\left\{\frac{(x-u)F_{4}(v)}{(v-u)} + \frac{(x-b)}{(u-b)}\left[F_{3}(u) + \left(\frac{u-a}{v-a}\right)F_{4}(v)\right] \\ \times \left[\frac{(v-a)(u-b)}{(v-u)(a-b)}\right]\right\}$$

$$(3.9) = g(x)\left\{\frac{(x-v)F_{3}(u)}{(u-v)} + \left(\frac{x-a}{v-a}\right)\left[F_{4}(v) + \left(\frac{v-b}{u-b}\right)F_{3}(u)\right] \\ \times \left[\frac{(u-b)(v-a)}{(v-u)(a-b)}\right]\right\}$$

$$= \lambda(A_{5}; x, u)F_{3}(u) + \lambda(A_{3}; x, v)K_{1},$$
where $g(x) = \frac{(x-c_{2})(x-c_{3})\dots(x-c_{n-1})}{(v-c_{2})(v-c_{3})\dots(v-c_{n-1})}.$

LEMMA 3.1. If f is integrable on [a, v] and on [u, b] and u < c < v, then corresponding to $\epsilon > 0$, there exists a major function $Q_1(x)$ on [a, c] and a major function $Q_2(x)$ on [c, b] such that if

$$R_1(x) = Q_1(x) - F_1(x), \quad R_2(x) = Q_2(x) - F_2(x),$$

where $F_1(x)$ and $F_2(x)$ denote the associated integrals of f over [a, c] and [c, b], respectively, then

$$(3.10) |R_1(x)| < \epsilon, |R_2(x)| < \epsilon, |R_{1(k)}(c-)| < \epsilon, |R_{2(k)}(c+)| < \epsilon,$$

k = 1, 2, ..., (n - 1). Minor functions $q_1(x), q_2(x)$ exist satisfying similar inequalities.

Proof. Let $Q_3(x)$, $Q_4(x)$ be major functions on [a, v] and [u, b] respectively. Then

$$Q_1(x) = Q_3(x) - \sum_{i=1}^n \lambda(A_1; x, a_i) Q_3(a_i),$$

and

$$Q_2(x) = Q_4(x) - \sum_{i=1}^n \lambda(A_2; x, b_i) Q_4(b_i)$$

are major functions of f on [a, c] and [c, b] respectively. Now if

we may write

$$\begin{aligned} R_1(x) &= Q_3(x) - F_3(x) - \sum_{i=1}^n \lambda(A_1; x, a_i) (Q_3(a_i) - F_3(a_i)) \\ &\equiv R_3(x) - \sum_{i=1}^n \lambda(A_1; x, a_i) R_3(a_i), \quad x \in [a, c], \end{aligned}$$

and

$$\begin{aligned} R_2(x) &= Q_4(x) - F_4(x) - \sum_{i=1}^n \lambda(A_2; x, b_i(Q_4(b_i) - F_4(b_i))) \\ &\equiv R_4(x) - \sum_{i=1}^n \lambda(A_2; x, b_i) R_4(b_i), \quad x \in [c, d]. \end{aligned}$$

Since $R_3(x)$ and $R_4(x)$ are *n*-convex on [a, v] and [u, b], respectively, then $R_{3(k)}(c)$; $R_{4(k)}(c)$, $1 \leq k \leq n-2$, exist, as do $R_{3(n-1)}(c-)$ and $R_{4(n-1)}(c+)$. It follows that $R_{1(k)}(c-)$ and $R_{2(k)}(c+)$ exist for $1 \leq k \leq n-1$. Moreover by Theorem 3.2 we may choose $R_3(x)$ and $R_4(x)$ so that all the one-sided derivatives of $R_1(x)$ and $R_2(x)$ satisfy the inequalities (3.10).

4. The main result. We are now ready to state and prove our theorem on the additivity of the P^n -integral.

THEOREM 4.1. The function f is P^n -integrable on [a, b] if and only if f is P^n -integrable on [a, v] and on [u, b] where a < u < v < b. Moreover in the notation of the preceding section we have for $l_s \leq x < l_{s+1}$, s = 1, 2, ..., n - 1,

(4.1)
$$F(x) = \begin{cases} F_3(x) + \lambda(A_3; x, v)K_1, & a \leq x \leq v \\ F_4(x) + \lambda(A_4; x, u)K_2, & u \leq x \leq b, \end{cases}$$

where F(x) denotes the associated integral of f on [a, b] with respect to the basis $(c_0, c_2, \ldots, c_{n-1}, c_n') \equiv (l_1, l_2, \ldots, l_{n-1}, l_n).$

Proof. The necessity of the condition follows from Theorem 2.5, and verification of (4.1) is a direct result of straightforward calculations. Indeed if F(x) denotes the associated P^n -integral of f over [a, b] then for $l_s \leq x < l_{s+1}$,

(4.2)
$$F(x) = \begin{cases} F_3(x) + \lambda(A_3; x, v)F(v), & a \le x \le v \\ F_4(x) + \lambda(A_4; x, u)F(u), & u \le x \le b \end{cases}$$

Now substituting x = v in both equations of (4.2) and equating we obtain (since $F_3(v) = 0$, $(A_3; v, v) = 1$)

$$F_4(v) = F(v) - \lambda(A_4; v, u)F(u) = F(v) - \left(\frac{v-b}{u-b}\right)F(u).$$

Solving for F(v) and substituting in the first equation of (4.2) gives

(4.3)
$$F(x) = F_3(x) + \left(\frac{u-a}{v-a}\right) \left[F_4(v) + \left(\frac{v-b}{u-b}\right)F(u)\right], \quad a \le x \le v.$$

Substituting x = u in (4.3) yields

$$F(u) = F_3(u) + \left(\frac{u-a}{v-a}\right) \left[F_4(v) + \left(\frac{v-b}{u-b}\right) F(u) \right],$$

from which we obtain

$$F(u) = \frac{F_3(u) + \left(\frac{u-a}{v-a}\right)F_4(v)}{1 - \left(\frac{u-a}{v-a}\right)\left(\frac{v-b}{u-b}\right)} = K_2.$$

A similar calculation may be made involving K_1 .

To prove sufficiency we note first that for u < c < v and $\epsilon > 0$ there exists by Lemma 3.1 a major function $Q_1(x)$ with respect to the basis A_1 on the interval [a, c] and a major function $Q_2(x)$ with respect to the basis A_2 on the interval [c, b] such that the functions $R_1(x) \equiv Q_1(x) - F_1(x)$ and $R_2(x) \equiv$ $Q_2(x) - F_2(x)$ satisfy the following inequalities:

$$|R_1(x)| < \epsilon, \quad |R_2(x)| < \epsilon, \quad |R_{1(k)}(c-)| < \epsilon, \quad |R_{2(k)}(c+)| < \epsilon,$$

k = 1, 2, ..., n - 1. Minor functions $q_1(x)$, $q_2(x)$ satisfying analogous inequalities may be defined similarly,

Now define the functions R and r by

$$(4.4) R(x) = \begin{cases} R_1(x) + \sum_{j=1}^{n/2} \lambda(A_1; x, d_j)\alpha_j \equiv R_1(x) + U(x), & a \leq x \leq c \\ R_2(x) + \sum_{j=n/2}^{n-1} \lambda(A_2; x, d_j)\alpha_j \equiv R_2(x) + V(x), & c \leq x \leq b \end{cases}$$

$$(4.5) r(x) = \begin{cases} r_1(x) + \sum_{j=1}^{n/2} \lambda(A_1; x, d_j)\beta_j \equiv r_1(x) + u(x), & a \leq x \leq c \\ r_2(x) + \sum_{j=n/2}^{n-1} \lambda(A_2; x, d_j)\beta_j \equiv r_2(x) + v(x), & c \leq x \leq b, \end{cases}$$

where the constants α_j and β_j are to be determined so that $R_{(k)}(x)$, $r_{(k)}(x)$ exist at c, k = 1, 2, ..., (n - 2) and R(x) and r(x) are *n*-smooth at c. There are thus (n - 1) conditions to determine (n - 1) constants in each case (of course where the constants exist we will have the relations $\alpha_j = R(d_j)$ and $\beta_j = r(d_j)$).

From this point on we shall restrict our discussion to the function R(x) – analogous statements and proofs hold for r(x).

The first step in showing that the constants α_j with the required properties exist will be to show that the (n-1) conditions mentioned above together with properties of $R_1(x)$ and $R_2(x)$ are equivalent to the condition that $R_{(n-1)}(c)$ exist.

The condition of *n*-smoothness for R(x) at x = c is given by

(4.6)
$$\frac{1}{h^{n-1}} \left[\frac{R(c+h) + R(c-h)}{2} - \sum_{k=0}^{(n/2)-1} \frac{h^{2k}}{(2k)!} D^{2k} R(c) \right] \to 0, \text{ as } h \to 0.$$

Assuming the existence of $R_{(k)}(c)$, k = 1, 2, ..., (n - 2), the left hand side of (4.6) may be re-written as

$$\frac{1}{2h^{n-1}} \left[R(c+h) - R(c) - \sum_{k=1}^{n-2} \frac{h^k}{k!} R_{(k)}(c+) \right] \\ - \frac{1}{2(-h)^{n-1}} \left[R(c-h) - R(c) - \sum_{k=1}^{n-2} \frac{(-h)^k}{k!} R_{(k)}(c-) \right] \\ = \frac{1}{2h^{n-1}} \left[R_2(c+h) - R_2(c) - \sum_{k=1}^{n-2} \frac{h^k}{k!} R_{2(k)}(c+) \right] \\ + \frac{1}{2h^{n-1}} \left[V(c+h) - V(c) - \sum_{k=1}^{n-2} \frac{h^k}{k!} V_{(k)}(c+) \right] \\ - \frac{1}{2(-h)^{n-1}} \left[R_1(c-h) - R_1(c) - \sum_{k=1}^{n-2} \frac{(-h)^k}{k!} R_{1(k)}(c-) \right] \\ - \frac{1}{2(-h)^{n-1}} \left[U(c+h) - U(c) - \sum_{k=1}^{n-2} \frac{(-h)^k}{k!} U_{(k)}(c-) \right].$$

Since the one sided derivatives of the polynomials U(x) and V(x) always

exist and since by construction $R_{2(n-1)}(c+)$ and $R_{1(n-1)}(c-)$ exist, it follows that if $R_{(k)}(c)$, k = 1, 2, ..., (n-2) exist, *n*-smoothness of R(x) at *c* is equivalent to the existence and equality of $R_{(n-1)}(c+)$ and $R_{(n-1)}(c-)$.

The next step is to obtain (n-1) equations in the (n-1) unknowns, α_j , by differentiating equation (4.4) (n-1) – times and setting $R_{(k)}(c-) = R_{(k)}(c+)$, k = 1, 2, ..., n-1. This yields (where for simplicity in notation we write $\lambda_{(k)}(A_1; x, d_j)|_{x=c} \equiv q_{(k)}(d_j)$ and $\lambda_{(k)}(A_2; x, d_j)|_{x=c} \equiv h_{(k)}(d_j)$, j = 1, 2, ..., n-1, and k = 1, 2, ..., n-1),

$$\sum_{j=1}^{n/2} \alpha_j g_{(k)}(d_j) - \sum_{j=n/2}^{n-1} \alpha_j h_{(k)}(d_j) = R_{2(k)}(c+) - R_{1(k)}(c-) \equiv \theta_k,$$

$$(g_{(k)}(d_{n/2}) - h_{(k)}(d_{n/2}))\alpha_{n/2} + \sum_{j=1}^{(n/2)-1} \alpha_j g_{(k)}(d_j) - \sum_{j=(n/2)+1}^{n-1} \alpha_j h_{(k)}(d_j) = \theta_k,$$

 $k = 1, 2, \ldots, n - 1.$

To show that these (n - 1) equations have a unique solution we must show that the corresponding determinant is not zero, i.e., the determinant which has as its *i*th column the following

$$g_{(i)}(d_{n/2}) - h_{(i)}(d_{n/2})$$

$$g_{(i)}(d_1)$$

$$\vdots$$

$$g_{(i)}(d_{n/2-1})$$

$$h_{(i)}(d_{n/2+1})$$

$$\vdots$$

$$h_{(i)}(d_{n-1}),$$

for i = 1, 2, ..., n - 1. But this is clearly equivalent to the condition that the polynomials

(4.7)
$$\lambda(A_1; x, c) - \lambda(A_2; x, c), \quad \lambda(A_2; x, d_j), d_j > c, \quad \lambda(A_1; x, d_j), d_j < c,$$

be linearly independent on [a, b].

If the polynomials (4.7) were linearly dependent there would exist constants γ_1 , $i = 0, 1, 2, \ldots$, (n - 1), such that

(4.8)
$$\gamma_0 \lambda(A_1; x, c) + \sum_{j=1}^{(n/2)-1} \gamma_j \lambda(A_1; x, d_j)$$

= $\gamma_0 \lambda(A_2; x, c) + \sum_{j=(n/2)+1}^{n-1} \gamma_j \lambda(A_2; x, d_j), x \in [a, b],$

where each side of the expression is a polynomial of degree n - 1 at most. But then (4.8) may be rewritten (in the notation introduced in the previous section) as:

$$(x-a)m(x)\prod_{i=2}^{n/2} (x-c_i) = (x-b)n(x)\prod_{i=(n/2)+1}^{n-1} (x-c_i), x \in [a,b]$$

where m(x) and n(x) are polynomials of degree at most (n/2) - 1. Thus the left hand side has n/2 zeros and the right hand side has n/2 zeros, all distinct. This would imply that the left hand side which is a polynomial of degree at most (n - 1), has at least n zeros, an impossibility. It follows that the polynomials (4.7) are linearly independent.

This shows that the constants $\alpha_j = R(d_j)$ may be determined so that R(x) is *n*-smooth at *c* and so that the unsymmetric derivatives up to order (n-2) exist and are finite at *c*. Moreover

(4.9)
$$R(d_j) = \sum_{k=1}^{n-1} A_k^{j} (R_{2(k)}(c+) - R_{1(k)}(c-)),$$

and

(4.10)
$$r(d_j) = \sum_{k=1}^{n-1} A_k^{j} (r_{2(k)}(c+) - r_{1(k)}(c-)),$$

for each d_i , where the A_k^{j} depends on $\{d_i\}$ but not on f, R_1 , R_2 , r_1 , or r_2 .

It is clear therefore that the original choice of $R_1(x)$ and $R_2(x)$, may be made so that

(4.11)
$$|R(x)| < \epsilon/2$$
 and $|r(x)| < \epsilon/2$, $x \in [a, b]$.

Now we claim that Q(x) = F(x) + R(x) is a P^n -major function for f(x) on [a, b] with respect to the basis $(a, c_2, c_3, \ldots, c_{n-1}, b)$.

Both F(x) and R(x) obviously satisfy conditions (2.4.2) of Definition 2.1. That they are continuous and possess derivatives $F_k(x)$, $R_k(x)$, $1 \leq k \leq n-2$, follows from their definitions (cf. equations (3.7) and (4.4)). Moreover since we may write

(4.12)
$$Q(x) = \begin{cases} F_1(x) + R_1(x) + \Theta_1(x) = Q_1(x) + \Theta_1(x), & x \in [a, c] \\ F_2(x) + R_2(x) + \Theta_2(x) = Q_2(x) + \Theta_2(x), & x \in [c, b] \end{cases}$$

where $\Theta_1(x)$ and $\Theta_2(x)$ are polynomials of degree at most (n-1), Q(x) inherits the required *n*-smoothness property of condition (2.4.1) from $Q_1(x)$ and $Q_2(x)$.

It may be shown also from (4.12) that Q(x) satisfies conditions (2.4.3) and (2.4.4) of Definition 2.1. Since F(x) satisfies condition (2.4.5) at x = c [cf. (3.7) and Theorem 3.3] and R(x), by definition, is *n*-smooth at x = c, it follows that Q(x) satisfies condition (2.4.5) (*i*).

Similarly q(x) = F(x) - r(x) can be shown to be a P^n -minor function for f(x) on [a, b] with respect to the basis $(a, c_2, c_3, \ldots, c_{n-1}, b)$.

Because of (4.11) we have furthermore that

,

$$|Q(x) - q(x)| = |R(x) - r(x)| < \epsilon, x \in [a, b],$$

which completes the proof that f(x) is P^n -integrable on [a, b].

Remark. The lemma corresponding to Skvorcov's Lemma 3 referred to in the introduction of this paper would say that if f is integrable on [a, c] and on [c, b] then functions $R_1(x)$ and $R_2(x)$ (as defined in Lemma 3.1) exist satisfying the inequalities (3.10). If such functions exist for integrable f our methods can be used to prove the result for P^n -integrals corresponding to Theorem 2 [6]:

Let f(x) be P^n -integrable over $(a_i; x)$ with associated integral $F_1(x)$ and over $(b_i; x)$ with associated integral $F_2(x)$. Then f(x) is P^n -integrable on [a, b] if and only if there exist constants $\{\theta_i\}, j = 1, 2, ..., n - 1$ such that the function

$$F(x) = \begin{cases} F_1(x) + \sum_{\substack{j=1 \ n-1}}^{n/2} \lambda(A_1; x, d_j)\theta_j, & a \le x \le c, \\ F_2(x) + \sum_{\substack{j=n/2}}^{n-1} \lambda(A_2; x, d_j)\theta_j, & c \le x \le b \end{cases}$$

is n-smooth and possesses Peano unsymmetric derivatives up to order n-2 at x = c. If such numbers exist then the function F(x) is the associated P^n -integral of f(x) over (l_1, l_2, \ldots, l_n) .

References

- 1. P. S. Bullen, A criterion for n-convexity, Pacific J. Math. 36 (1971), 81-98.
- **2.** P. S. Bullen, and C. M. Lee, The SC_nP -integral and the P^{n+1} -integral, Can. J. Math. 25 (1973), 1274–1284.
- 3. G. E. Cross, The Pⁿ-integral, Can. Math. Bull. 18 (1975), 493-497.
- 4. R. D. James, Generalized nth primitives, Trans. Amer. Math. Soc. 76 (1954), 149-176.
- 5. Summable trigonometric series, Pacific J. Math. 6 (1956), 99-110.
- V. A. Skvorcov, Concerning the definition of P²- and SCP-integrals, Vestnik Moskov. Univ. Ser. 1 Mat. Heh. 21 (1966), 12–19.

University of Waterloo Waterloo, Ontario