ADDITIVITY OF THE P^{n}-INTEGRAL

GEORGE CROSS

1. Introduction. It is known that the P^{n}-integral as originally defined is not additive on abutting intervals. This paper offers a slight modification in the definition of the integral and develops necessary and sufficient conditions for the integral to be additive.

The following example is given in [2]:
If n is odd, let

$$
F(x)= \begin{cases}x \cos 1 / x, & x \neq 0 \\ 0, & x=0,\end{cases}
$$

and if n is even, let

$$
F(x)= \begin{cases}x \sin 1 / x, & x \neq 0 \\ 0, & x=0 .\end{cases}
$$

Define a function f by

$$
f(x)= \begin{cases}F^{(n+1)}(x), & \text { for } x \in(0, i / \pi] \\ 0, & \text { for } x \in[-i / \pi, 0]\end{cases}
$$

where $i=2$ if n is odd and 1 if n is even.
It is easy to see that f is P^{n+1}-integrable over each of the intervals $[-i / \pi, 0]$ and $[0, i / \pi]$ but not over $[-i / \pi, i / \pi]$. The function f fails to be P^{n+1}-integrable over $[-i / \pi, i / \pi]$ essentially because $F(x)$ is not n-smooth at 0 .

In the case $n=2$ Skvorcov [6] obtained necessary and sufficient conditions for the P^{2}-integral of a given function to exist on an interval $[a, b]$ where it is known that the P^{2}-integral of that function exists on the two abutting intervals $[a, c]$ and $[c, b]$:

Theorem [6, Theorem 2]. Let the function $f(x)$ be P^{2}-integrable on the closed intervals $[a, c]$ and $[c, d]$ and have $F_{1}(x)$ and $F_{2}(x)$, respectively, for its P^{2}-integral on these intervals. Then $f(x)$ is P^{2}-integrable on $[a, b]$ if and only if there exists a number α such that the function

$$
F(x)= \begin{cases}F_{1}(x)+\frac{\alpha}{c-a}(x-a), & x \in[a, c] \\ F_{2}(x)+\frac{\alpha}{c-b}(x-b), & x \in[c, b]\end{cases}
$$

[^0]is smooth at the point c. If such a number α exists, then the function $F(x)$ is the P^{2}-integral of $f(x)$ on $[a, b]$.

Smoothness of F at c, of course, imposes certain constraints on F (and on f) in a neighbourhood of c. The proof of Skvorcov's result depends on the following:

Lemma [6, Lemma 3]. Let $f(x)$ be P^{2}-integrable on $[a, b]$ and have $F(x)$ for its P^{2}-integral. Then for any $\epsilon>0$ there exists a majorant $M(x)$ and a minorant $m(x)$ such that if $R(x)=M(x)-F(x), r(x)=F(x)-m(x)$, we have

$$
|R(x)|<\epsilon, \quad|r(x)|<\epsilon, \quad\left|R_{+}^{\prime}(a)\right|<\epsilon, \quad\left|R_{-}^{\prime}(b)\right|<\epsilon, \quad\left|r_{+}^{\prime}(a)\right|<\epsilon, \quad\left|r_{-}^{\prime}(b)\right|<\epsilon .
$$

It is not known how to prove the lemma that would be required to obtain the corresponding additivity result for the P^{n}-integral [see the remark at the end of this paper]. In the following we obtain necessary and sufficient conditions that a function f be P^{n}-integrable on an interval $[a, b]$ phrased in terms of a different kind of neighbourhood property of $f(x)$.
2. Definitions. In the original definition of the P^{n}-integral there is a difficulty with the condition $B_{n-2}[4$, p. 150] since it is not linear on the set of major and minor functions. As a result, the proof of Lemma 5.1 [4] fails since the difference $Q(x)-q(x)$ need not satisfy the conditions of Theorem 4.2 [4].

It was shown in [3] that a simple modification of the definition of major and minor functions avoids this difficulty and leads to a definition of an integral which is strong enough to solve the coefficient problem in trigonometric series under the conditions imposed by James [5].

Let $F(x)$ be a real-valued function defined on the bounded interval $[a, b]$. If there exist constants $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ which depend on x_{0} only and not on h, such that

$$
\begin{equation*}
F\left(x_{0}+h\right)-F\left(x_{0}\right)=\sum_{k=1}^{\tau} \alpha_{k} \frac{h^{k}}{k!}+o\left(h^{\tau}\right), \quad \text { as } h \rightarrow 0 \tag{2.1}
\end{equation*}
$$

then $\alpha_{k}, 1 \leqq k \leqq r$, is called the Peano derivative of order k of F at x_{0} and is denoted by $F_{(k)}\left(x_{0}\right)$. If F possesses derivatives $F_{(k)}\left(x_{0}\right), 1 \leqq k \leqq r-1$, we write

$$
\begin{equation*}
\frac{h^{\tau}}{r!} \gamma_{\tau}\left(F ; x_{0}, h\right)=F\left(x_{0}+h\right)-F\left(x_{0}\right)-\sum_{k=1}^{r-1} \frac{h^{k}}{k!} F_{(k)}\left(x_{0}\right) \tag{2.2}
\end{equation*}
$$

By restricting h to be positive (or negative) in (2.1) we can define onesided Peano derivatives, which we write as $F_{(k)}\left(x_{0^{+}}\right)$(or $F_{(k)}\left(x_{0^{-}}\right)$).

If there exist constants $\beta_{0}, \beta_{2}, \ldots, \beta_{2 r}$ which depend on x_{0}, and not on h, such that

$$
\frac{F\left(x_{0}+h\right)+F\left(x_{0}-h\right)}{2}=\sum_{k=0}^{r} \beta_{2 k} \frac{h^{2 k}}{(2 k)!}+o\left(h^{2 r}\right), \quad \text { as } h \rightarrow 0,
$$

then $\beta_{2 k}, 0 \leqq k \leqq r$ is called the de la Vallée Poussin derivative of order $2 k$ of F at x_{0} and is denoted by $D^{2 k} F\left(x_{0}\right)$.

If F has derivatives $D^{2 k} F\left(x_{0}\right), 0 \leqq k \leqq r-1$, we write

$$
\frac{h^{2 r}}{(2 r)!} \theta_{2 r}\left(F ; x_{0}, h\right)=\frac{F\left(x_{0}+h\right)+F\left(x_{0}-h\right)}{2}-\sum_{k=0}^{r-1} \frac{h^{2 k}}{(2 k)!} D^{2 k} F\left(x_{0}\right)
$$

and define

$$
\begin{aligned}
& \bar{D}^{2 r} F\left(x_{0}\right)=\lim _{h \rightarrow 0} \sup \theta_{2 r}\left(F ; x_{0}, h\right) \\
& \underline{D}^{2 r} F\left(x_{0}\right)=\lim _{h \rightarrow 0} \inf \theta_{2 \tau}\left(F ; x_{0}, h\right) .
\end{aligned}
$$

All the above symbols are defined similarly for odd-numbered indices (see, for example, [4, pp. 163-164].

We denote the ordinary derivative of $F(x)$ at x_{0} of order k by $F^{(k)}\left(x_{0}\right)$.
The function F will be said to satisfy condition $A_{n}{ }^{*}(n \geqq 3)$ in $[a, b]$ if it is continuous in $[a, b]$, if, for $1 \leqq k \leqq n-2$, each $F_{(k)}(x)$ exists and is finite in (a, b) and if
(2.3) $\lim _{h \rightarrow 0} h \theta_{n}(F ; x, h)=0$,
for all $x \in(a, b)-E$ where E is countable.
When a function F satisfies condition (2.3) at a point x, F is said to be n-smooth at x.

Theorem 2.1. If F satisfies condition $A_{2 m}{ }^{*}\left(A_{2 m+1}{ }^{*}\right)$ in $[a, b]$, then $F_{(2 k)}(x)=$ $D^{2 k} F(x) \quad\left(F_{(2 k+1)}(x)=D^{2 k+1}(x)\right)$ does not have an ordinary discontinuity in (a, b) for $0 \leqq k \leqq m-1$.

Proof. This is Lemma 8.1 [4].
Note. Condition $A_{2 m}{ }^{*}$ is a stronger form of James' condition $A_{2_{m},[4], \text { in that }}$ it replaces the requirement that $D^{2 k} F(x)$ exist and be finite for $1 \leqq k \leqq m-1$ by the same condition on the Peano derivatives. Theorem 2.1 then shows that $A_{2 m}{ }^{*}$ also implies James' condition $B_{2 m-2},[\mathbf{4}]$.

We shall make extensive use of the theory of n-convex functions in the following. For the definition and properties of n-convex functions we refer the reader to [1].

Theorem 2.2. If F satisfies $A_{n}{ }^{*}, n \geqq 3$, in $[a, b]$ and
(a) $\bar{D}^{n} F(x) \geqq 0, \quad x \in(a, b)-E,|E|=0$,
(b) $\bar{D}^{n} F(x)>-\infty, \quad x \in(a, b)-S, S$ a scattered set,
(c) $\lim _{h \rightarrow 0} \sup h \theta_{n}(F ; x, h) \geqq 0 \geqq \lim _{h \rightarrow 0} \inf h \theta_{n}(F ; x, h), \quad x \in S$,
then F is n-convex.

Proof. In [1, Theorem 16] Bullen proves a similar result which implies this theorem. In place of condition $A_{n}{ }^{*}$ he uses a condition C_{n} which is just A_{n} together with B_{n-2}, but as was noted above these are implied by $A_{n}{ }^{*}$.

Definition 2.1. Let $f(x)$ be a function defined in $[a, b]$ and let $A \equiv\left\{a_{i}, i=1\right.$, $2, \ldots, n\}$ be fixed points such that $a=a_{1}<a_{2}<\ldots<a_{n}=b$. The functions $Q(x)$ and $q(x)$ are called P^{n}-major and minor functions (respectively) of $f(x)$ over $\left(a_{i}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, or with respect to the basis A, if
(2.4.1) $Q(x)$ and $q(x)$ satisf y condition $A_{n}{ }^{*}$ in $[a, b]$;
(2.4.2) $\quad Q\left(a_{i}\right)=q\left(a_{i}\right)=0, \quad i=1,2, \ldots, n$;
(2.4.3) $\underline{D}^{n} Q(x) \geqq f(x) \geqq \bar{D}^{n} q(x), \quad x \in[a, b]-E,|E|=0$;
(2.4.4) $\underline{D}^{n} Q(x) \neq-\infty, \bar{D}^{n} q(x) \neq+\infty, \quad x \in[a, b]-S, S$ a scattered set;
(2.4.5) (i) $\lim _{h \rightarrow 0} \sup h \theta_{n}(Q ; x, h) \geqq 0 \geqq \lim _{h \rightarrow 0} \inf h \theta_{n}(Q ; x, h), \quad x \in S$
(ii) $\lim _{h \rightarrow 0} \sup h \theta_{n}(q ; x, h) \geqq 0 \geqq \lim _{h \rightarrow 0} \inf h \theta_{n}(q ; x, h), \quad x \in S$.

Lemma 2.1. For every pair $Q(x)$ and $q(x)$ the difference $Q(x)-q(x)$ is n-convex in $[a, b]$.

Proof. The proof follows from Theorem 2.2 above.
Definition 2.2. For each major and minor function of $f(x)$ over $\left(l_{i}\right)^{n}{ }_{i=1}=A$ the functions defined by

$$
Q^{*}(x)=(-1)^{r} Q(x), \quad q^{*}(x)=(-1)^{r} q(x), \quad a_{r} \leqq x<a_{r+1}
$$

are called associated major and minor functions, respectively, of $f(x)$ over (a_{i}) or on $[a, b]$ with respect to the basis A.

The proofs of the following lemmas and theorems are given in [3] and [4].
Lemma 2.2. For every pair of associated major and minor functions of $f(x)$ over $\left(a_{i}\right)$,

$$
Q^{*}(x)-q^{*}(x) \geqq 0
$$

for all x in $[a, b]$.
Definition 2.3. Let c be a point in $\left(a_{1}, a_{n}\right)$ such that $c \neq a_{i}, i=1, \ldots, n$. If for every $\epsilon>0$ there is a pair $Q(x), q(x)$ such that

$$
\begin{equation*}
|Q(c)-q(c)|<\epsilon, \tag{2.5}
\end{equation*}
$$

then $f(x)$ is said to be P^{n}-integrable over $\left(a_{2}, c\right)$.
Lemma 2.3. If the inequality (2.5) holds, then

$$
|Q(x)-q(x)|<\epsilon k
$$

for all x in $\left[a_{1}, a_{n}\right]$ where k is independent of x.

Theorem 2.3. If $f(x)$ is P^{n}-integrable over $\left(a_{i} ; c\right)$, there is a function $F^{*}(x)$ which is the inf of all associated major functions of $f(x)$ over $\left(a_{i}\right)$ and the sup of all associated minor functions.

Definition 2.4. If $f(x)$ is P^{n}-integrable over $\left(a_{i} ; c\right)$ and if $F^{*}(x)$ is the function of Theorem 2.3, define $F(x)$ by

$$
F^{*}(x)=(-1)^{r} F(x), \quad a_{r} \leqq x<a_{r+1} .
$$

If $a_{s}<c<a_{s+1}$, the P^{n}-integral of $f(x)$ over $\left(a_{i} ; c\right)$ is defined to be $(-1)^{s} F(c)$. Since $(-1)^{s} F\left(a_{i}\right)=F\left(a_{i}\right)=0$, the integral is defined to be zero if $c=a_{i}$, $i=1,2, \ldots, n$. We write

$$
(-1)^{s} F(c)=\int_{(a i)}^{i} f(t) d_{n} t
$$

Theorem 2.4. If $f(x)$ is P^{n}-integrable over $\left(a_{i} ; c\right)$ it is also P^{n}-integrable over $\left(a_{i} ; x\right)$ for every x in $\left[a_{1}, a_{n}\right]$. If $F(x)$ is the function of Definition 2.4 then for $a_{r} \leqq x<a_{r+1}$,

$$
(-1)^{r} F(x)=\int_{\left(a_{\imath}\right)}^{x} f(t) d_{n} t
$$

In view of Theorem 2.4, if $f(x)$ is integrable over $\left(a_{i} ; c\right)$ we shall say it is integrable on $[a, b]$ with respect to the basis A. We shall refer to the function $F(x)$ of Definition 2.4 as the associated ($P^{n}-$) integral of f over $\left(a_{i} ; x\right)$ (or with respect to the basis A).

Theorem 2.5. If $f(x)$ is P^{n}-integrable over $\left(a_{i} ; x\right)$, it is also P^{n}-integrable over $\left(b_{j} ; x\right)$, where $a_{1} \leqq b_{1}<\ldots<b_{n} \leqq a_{n}$. In addition if $F(x)$ is the associated P^{n}-integral of f over $\left(a_{i} ; x\right)$, and $b_{s} \leqq x<b_{s+1}$ then

$$
\begin{equation*}
(-1)^{s} \int_{(b ;)}^{x} f(x) d_{n} x=F(x)-\sum_{j=1}^{n} \lambda\left(x ; b_{j}\right) F\left(b_{j}\right), \tag{2.6}
\end{equation*}
$$

where

$$
\lambda\left(x ; b_{j}\right)=\prod_{k \neq j}\left(x-b_{k}\right) /\left(b_{j}-b_{k}\right)
$$

is a polynomial of degree $n-1$ at most.
Because of Theorem 2.5 we shall sometimes use the phrase " $f(x)$ is P^{n} integrable over $[a, b]$ "' without explicit reference to a basis $\left(a_{i}\right)$.

Corollary. If $f(x)$ is P^{n}-integrable over $[a, b], Q(x), q(x)$ are P^{n}-major and minor functions of $f(x)$ and $F(x)$ is the associated P^{n}-integral of $f(x)$, then $Q(x)-F(x)$ and $F(x)-q(x)$ are n-convex.
3. Some preliminary considerations. We assume throughout the remainder of the paper that n is even; obvious modifications must be made in the notation to cover the case when n is odd.

Theorem 3.1. The function $F(x)$ of Definition 2.4 possesses derivatives $F_{(k)}(x), 1 \leqq k \leqq n-2, x \in(a, b)$.

Proof. If $Q(x)$ denotes a P^{n}-major function of $f(x)$ over $\left(a_{i}\right)$ then $Q(x)$ $F(x)$ is n-convex in $[a, b]$. By Theorem $7[\mathbf{1}]$, we have $(Q(x)-F(x))^{(k)}=$ $(Q(x)-F(x))_{(k)}$ exists $(1 \leqq k \leqq n-2, x \in[a, b])$ and since by definition $Q_{(k)}(x)$ exists $(1 \leqq k \leqq n-2, x \in(a, b))$, the statement in the theorem follows.

Theorem 3.2. [1, Corollary 8]. If F is n-convex in $[a, b],|F| \leqq K$ then

$$
\left|F_{(k)}(x)\right| \leqq \frac{A K}{\min \left\{(b-x)^{k},(x-a)^{k}\right\}}, \quad 0 \leqq k \leqq n-1,
$$

$x \in(a, b)$, where A is a constant independent of k, F and x, and where, if $k=n-1$, the derivative is to be interpreted as max $\left(\left|F_{(n-1)}(x+)\right|,\left|F_{(n-1)}(x-)\right|\right)$.

Theorem 3.3. The function $F(x)$ of Definition 2.4 has the property that

$$
\begin{equation*}
\lim _{h \rightarrow 0} \sup h \theta_{n}(F ; x, h) \geqq 0 \geqq \lim _{h \rightarrow 0} \inf h \theta_{n}(F ; x, h), \quad x \in(a, b) \tag{3.1}
\end{equation*}
$$

Proof. Corresponding to arbitrary $\epsilon>0$ there exists a P^{n}-major function $Q(x)$ and a P^{n}-minor function $q(x)$ such that the n-convex functions

$$
R(x)=Q(x)-F(x), \quad r(x)=F(x)-q(x)
$$

satisfy $|R(x)|<\epsilon,|r(x)|<\epsilon, x \in[a, b]$. The major and minor functions have the property further that $\underline{D}^{n} Q(x)>-\infty$ and $\bar{D}^{n} q(x)<+\infty, x \in[a, b]-S$, where S is a scattered set, while $Q(x)$ and $q(x)$ satisfy 2.4 .5 in S. Thus for each fixed $x \in[a, b]-S$, there exist finite numbers $C_{1}(x)$ and $C_{2}(x)$ such that

$$
\begin{aligned}
& h \theta_{n}(Q ; x, h)>h C_{1}(x) \\
& h \theta_{n}(q ; x, h)<h C_{2}(x)
\end{aligned}
$$

for all sufficiently small positive h. But, for $x \in(a, b)$,

$$
h \theta_{n}(R ; x, h)=(n / 2)\left\{\gamma_{n-1}(R ; x, h)-\gamma_{n-1}(R ; x,-h)\right\}
$$

and

$$
h \theta_{n}(r ; x, h)=(n / 2)\left\{\gamma_{n-1}(r ; x, h)-\gamma_{n-1}(r ; x,-h)\right\},
$$

and since $R(x)$ and $r(x)$ are n-convex, it follows that

$$
\lim _{h \rightarrow 0+} h \theta_{n}(R ; x, h)=(n / 2)\left\{R_{(n-1)}(x+)-R_{(n-1)}(x-)\right\} \equiv H(n, x),
$$

and

$$
\lim _{h \rightarrow 0+} h \theta_{n}(r ; x, h)=(n / 2)\left\{r_{(n-1)}(x+)-r_{(n-1)}(x-)\right\} \equiv h(n, x) .
$$

We have further, for each fixed x, the inequality (Theorem 3.2).

$$
\begin{align*}
\max \left\{\left|R_{(n-1)}(x+)\right|,\left|R_{(n-1)}(x-)\right|, \mid r_{(n-1)}(x\right. & +)\left|,\left|r_{(n-1)}(x-)\right|\right\} \\
& \leqq \frac{A \epsilon}{\min \left\{(b-x)^{n-1}(x-a)^{n-1}\right\}} \tag{3.2}
\end{align*}
$$

where A is a constant independent of $\epsilon, R(x), r(x)$, and x. Then since

$$
\begin{equation*}
h \theta_{n}(q ; x, h)+h \theta_{n}(r ; x, h)=h \theta_{n}(F ; x, h)=h \theta_{n}(Q ; x, h)-h \theta_{n}(R ; x, h), \tag{3.3}
\end{equation*}
$$ we have

$$
\begin{equation*}
\left.h C_{2}(x)-h \theta_{n}(r ; x, h)>h \theta_{n} F ; x, h\right)>h C_{1}(x)-h \theta_{n}(R ; x, h), \tag{3.4}
\end{equation*}
$$

for all sufficiently small positive h. Similar inequalities hold for negative h and, since ϵ is arbitrary in (3.4), it follows that

$$
\lim _{h \rightarrow 0} h \theta_{n}(F ; x, h)=0, \quad x \in[a, b]-S
$$

If $x \in S$, then

$$
\begin{aligned}
\lim _{h \rightarrow 0} \sup h \theta_{n}(F ; x, h) & \geqq \lim _{h \rightarrow 0} \sup h \theta_{n}(Q ; x, h)-H(n, x) \\
& \geqq-H(n, x)
\end{aligned}
$$

and

$$
\begin{aligned}
\lim _{h \rightarrow 0} \inf h \theta_{n}(F ; x, h) & \leqq \lim _{h \rightarrow 0} \inf h \theta_{n}(q ; x, h)+h(n, x) \\
& <0+h(n, x)
\end{aligned}
$$

and the result follows because of (3.2).
Now suppose f is a function defined on $[a, b]$, and let $a<u<c<v<b$. If f is P^{n}-integrable on $[a, v]$ with respect to some basis, then f is P^{n}-integrable on [a, v] with respect to the basis

$$
A_{3} \equiv\left(c_{0}, c_{2}, c_{3}, \ldots, c_{n-1}, c_{n}\right) \equiv\left(a, c_{2}, \ldots, c_{n-1}, v\right)
$$

(Theorem 2.5) where, for convenience and without affecting the generality of what we prove, we may assume that $\left(u, c_{2}, c_{3}, \ldots, c_{n-1}, v\right)$ is a partition of $[u, v]$ into subintervals of equal length, $u<c_{2}$ and $c_{n / 2}<c<c_{(n / 2)+1}$. Likewise if f is P^{n}-integrable on $[u, b]$ with respect to some basis, then it is P^{n}-integral on $[u, b]$ with respect to the basis

$$
A_{4} \equiv\left(c_{1}, c_{2}, \ldots, c_{n-1}, c_{n}{ }^{\prime}\right) \equiv\left(u, c_{2}, c_{3}, \ldots, c_{n-1}, b\right)
$$

Now if f is P^{n}-integrable on $[a, v]$ and on $[u, b]$ then f is P^{n}-integrable on the interval $[u, v]$ with respect to the basis

$$
A_{5} \equiv\left(c_{1}, c_{2}, \ldots c_{n-1}, c_{n}\right) \equiv\left(u, c_{2}, \ldots, c_{n-1}, v\right)
$$

Also f is P^{n}-integrable on the interval $[a, c]$ with respect to the basis

$$
A_{1} \equiv\left(c_{0}, d_{1}, c_{2}, d_{2}, c_{3}, \ldots, d_{n / 2-1}, c_{n / 2}, d_{n / 2}\right) \equiv\left\{a_{i}\right\}
$$

when $c_{0}=a<d_{1}<c_{2}<d_{2}<\ldots<d_{n / 2-1}<c_{n / 2}<d_{n / 2}=c$, and on the interval $[c, b]$ with respect to the basis

$$
A_{2}=\left(d_{n / 2}, c_{(n / 2)+1}, d_{n / 2+1}, c_{(n / 2)+2}, \ldots, c_{n-1}, d_{n-1}, b\right) \equiv\left\{b_{i}\right\}
$$

where

$$
c=d_{n / 2}<c_{(n / 2)+1}<d_{(n / 2)+1}<\ldots<c_{n-1}<d_{n-1}<b .
$$

On the other hand if f is P^{n}-integrable on $[a, b]$ with respect to the basis $\left(a, c_{2}, c_{3}, \ldots, c_{n-1}, b\right) \equiv\left(l_{1}, l_{2}, \ldots, l_{n}\right)$ then it is P^{n}-integrable on $[a, b]$ with respect to any basis.

For an arbitary set $A=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of distinct numbers we define a function λ by

$$
\lambda\left(A ; x, x_{r}\right) \equiv \prod_{i \neq r}\left(\frac{x-x_{i}}{x_{r}-x_{i}}\right) .
$$

If $F_{3}(x), F_{4}(x)$ and $F_{5}(x)$ denote the associated integrals of f over $[a, v]$, $[u, b]$ and $[u, v]$ with respect to the bases A_{3}, A_{4}, and A_{5}, respectively, then for $x \in[u, v]$, we have (Theorem 2.5)
(3.5) $\quad F_{3}(x)=F_{5}(x)+\lambda\left(A_{5} ; x, u\right) F_{3}(u)$,
and

$$
\begin{equation*}
F_{4}(x)=F_{5}(x)+\lambda\left(A_{5} ; x, v\right) F_{4}(v) . \tag{3.6}
\end{equation*}
$$

Let F be defined on $[a, b]$ as follows:

$$
\begin{align*}
F(x) & =\left\{\begin{array}{rl}
F_{3}(x)+\lambda\left(A_{3} ; x, v\right)\left[\begin{array}{rl}
F_{4}(v) & \left.+\left(\frac{v-b}{u-b}\right) F_{3}(u)\right] \\
& \times\left[\frac{(v-a)(u-b)}{(v-u)(a-b)}\right],
\end{array}\right. \\
& x \in[a, v], \\
F_{4}(x)+\lambda\left(A_{4} ; x, u\right)\left[\begin{array}{rl}
F_{3}(u) & \left.+\left(\frac{u-a}{v-a}\right) F_{4}(v)\right] \\
& \times\left[\frac{(v-a)(u-b)}{(v-u)(a-b)}\right],
\end{array}\right. \\
& = \begin{cases}F_{3}(x)+\lambda\left(A_{3} ; x, v\right) K_{1}, \\
F_{4}(x)+\lambda\left(A_{4} ; x, u\right) K_{2} .\end{cases}
\end{array} . \begin{array}{rl}
\end{array}\right. \tag{3.7}
\end{align*}
$$

We must show that F is well-defined on $[u, v]$. Since f is integrable on $[u, v]$ with respect to the basis $A_{\text {5 }}$ we have from (3.5), (3.6) and (3.7),

$$
F(x)=\left\{\begin{array}{l}
F_{5}(x)+\lambda\left(A_{5} ; x, u\right) F_{3}(u)+\lambda\left(A_{3} ; x, v\right) K_{1} \tag{3.8}\\
F_{5}(x)+\lambda\left(A_{5} ; x, v\right) F_{4}(v)+\lambda\left(A_{4} ; x, u\right) K_{2}, \quad \text { if } x \in[u, v] .
\end{array}\right.
$$

Since $u-c_{i}=v-c_{n-i+1}, i=2,3, \ldots, n-1$, it is easy to see that

$$
\begin{aligned}
& \lambda\left(A_{5} ; x, v\right) F_{4}(v)+\lambda\left(A_{4} ; x, u\right) K_{2} \\
&=g(x)\left\{\frac{(x-u) F_{4}(v)}{(v-u)}+\frac{(x-b)}{(u-b)}\left[F_{3}(u)\right.\right.\left.+\left(\frac{u-a}{v-a}\right) F_{4}(v)\right] \\
&\left.\times\left[\frac{(v-a)(u-b)}{(v-u)(a-b)}\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
=g(x)\left\{\frac{(x-v) F_{3}(u)}{(u-v)}+\left(\frac{x-a}{v-a}\right)\left[F_{4}(v)\right.\right. & \left.+\left(\frac{v-b}{u-b}\right) F_{3}(u)\right] \tag{3.9}\\
& \left.\times\left[\frac{(u-b)}{(v-u)(v-a)}\right]\right\}
\end{align*}
$$

$$
=\lambda\left(A_{5} ; x, u\right) F_{3}(u)+\lambda\left(A_{3} ; x, v\right) K_{1}
$$

$$
\text { where } g(x)=\frac{\left(x-c_{2}\right)\left(x-c_{3}\right) \ldots\left(x-c_{n-1}\right)}{\left(v-c_{2}\right)\left(v-c_{3}\right) \ldots\left(v-c_{n-1}\right)} \text {. }
$$

Lemma 3.1. If f is integrable on $[a, v]$ and on $[u, b]$ and $u<c<v$, then corresponding to $\epsilon>0$, there exists a major function $Q_{1}(x)$ on $[a, c]$ and a major function $Q_{2}(x)$ on $[c, b]$ such that if

$$
R_{1}(x)=Q_{1}(x)-F_{1}(x), \quad R_{2}(x)=Q_{2}(x)-F_{2}(x)
$$

where $F_{1}(x)$ and $F_{2}(x)$ denote the associated integrals of f over $[a, c]$ and $[c, b]$, respectively, then

$$
\begin{equation*}
\left|R_{1}(x)\right|<\epsilon, \quad\left|R_{2}(x)\right|<\epsilon, \quad\left|R_{1(k)}(c-)\right|<\epsilon, \quad\left|R_{2(k)}(c+)\right|<\epsilon, \tag{3.10}
\end{equation*}
$$

$k=1,2, \ldots,(n-1)$. Minor functions $q_{1}(x), q_{2}(x)$ exist satisfying similar inequalities.

Proof. Let $Q_{3}(x), Q_{4}(x)$ be major functions on $[a, v]$ and $[u, b]$ respectively. Then

$$
Q_{1}(x)=Q_{3}(x)-\sum_{i=1}^{n} \lambda\left(A_{1} ; x, a_{i}\right) Q_{3}\left(a_{i}\right),
$$

and

$$
Q_{2}(x)=Q_{4}(x)-\sum_{i=1}^{n} \lambda\left(A_{2} ; x, b_{i}\right) Q_{4}\left(b_{i}\right)
$$

are major functions of f on $[a, c]$ and $[c, b]$ respectively. Now if

$$
\begin{aligned}
& R_{1}(x)=Q_{1}(x)-F_{1}(x), \quad x \in[a, c], \\
& R_{2}(x)=Q_{2}(x)-F_{2}(x), \quad x \in[c, b],
\end{aligned}
$$

we may write

$$
\begin{aligned}
R_{1}(x)=Q_{3}(x)-F_{3}(x) & -\sum_{i=1}^{n} \lambda\left(A_{1} ; x, a_{i}\right)\left(Q_{3}\left(a_{i}\right)-F_{3}\left(a_{i}\right)\right) \\
& \equiv R_{3}(x)-\sum_{i=1}^{n} \lambda\left(A_{1} ; x, a_{i}\right) R_{3}\left(a_{i}\right), \quad x \in[a, c],
\end{aligned}
$$

and

$$
\begin{aligned}
R_{2}(x)=Q_{4}(x)-F_{4}(x) & -\sum_{i=1}^{n} \lambda\left(A_{2} ; x, b_{i}\left(Q_{4}\left(b_{i}\right)-F_{4}\left(b_{i}\right)\right)\right. \\
& \equiv R_{4}(x)-\sum_{i=1}^{n} \lambda\left(A_{2} ; x, b_{i}\right) R_{4}\left(b_{i}\right), \quad x \in[c, d] .
\end{aligned}
$$

Since $R_{3}(x)$ and $R_{4}(x)$ are n-convex on $[a, v]$ and $[u, b]$, respectively, then $R_{3(k)}(c) ; R_{4(k)}(c), 1 \leqq k \leqq n-2$, exist, as do $R_{3(n-1)}(c-)$ and $R_{4(n-1)}(c+)$. It follows that $R_{1(k)}(c-)$ and $R_{2(k)}(c+)$ exist for $1 \leqq k \leqq n-1$. Moreover by Theorem 3.2 we may choose $R_{3}(x)$ and $R_{4}(x)$ so that all the one-sided derivatives of $R_{1}(x)$ and $R_{2}(x)$ satisfy the inequalities (3.10).
4. The main result. We are now ready to state and prove our theorem on the additivity of the P^{n}-integral.

Theorem 4.1. The function f is P^{n}-integrable on $[a, b]$ if and only if f is P^{n}-integrable on $[a, v]$ and on $[u, b]$ where $a<u<v<b$. Moreover in the notation of the preceding section we have for $l_{s} \leqq x<l_{s+1}, s=1,2, \ldots, n-1$,

$$
F(x)= \begin{cases}F_{3}(x)+\lambda\left(A_{3} ; x, v\right) K_{1}, & a \leqq x \leqq v \tag{4.1}\\ F_{4}(x)+\lambda\left(A_{4} ; x, u\right) K_{2}, & u \leqq x \leqq b,\end{cases}
$$

where $F(x)$ denotes the associated integral of f on $[a, b]$ with respect to the basis $\left(c_{0}, c_{2}, \ldots, c_{n-1}, c_{n}{ }^{\prime}\right) \equiv\left(l_{1}, l_{2}, \ldots, l_{n-1}, l_{n}\right)$.

Proof. The necessity of the condition follows from Theorem 2.5, and verification of (4.1) is a direct result of straightforward calculations. Indeed if $F(x)$ denotes the associated P^{n}-integral of f over $[a, b]$ then for $l_{s} \leqq x<l_{s+1}$,

$$
F(x)=\left\{\begin{array}{l}
F_{3}(x)+\lambda\left(A_{3} ; x, v\right) F(v), \quad a \leqq x \leqq v \tag{4.2}\\
F_{4}(x)+\lambda\left(A_{4} ; x, u\right) F(u), \quad u \leqq x \leqq b
\end{array}\right.
$$

Now substituting $x=v$ in both equations of (4.2) and equating we obtain (since $\left.F_{3}(v)=0,\left(A_{3} ; v, v\right)=1\right)$

$$
F_{4}(v)=F(v)-\lambda\left(A_{4} ; v, u\right) F(u)=F(v)-\left(\frac{v-b}{u-b}\right) F(u) .
$$

Solving for $F(v)$ and substituting in the first equation of (4.2) gives

$$
\begin{equation*}
F(x)=F_{3}(x)+\left(\frac{u-a}{v-a}\right)\left[F_{4}(v)+\left(\frac{v-b}{u-b}\right) F(u)\right], \quad a \leqq x \leqq v \tag{4.3}
\end{equation*}
$$

Substituting $x=u$ in (4.3) yields

$$
F(u)=F_{3}(u)+\left(\frac{u-a}{v-a}\right)\left[F_{4}(v)+\left(\frac{v-b}{u-b}\right) F(u)\right],
$$

from which we obtain

$$
F(u)=\frac{F_{3}(u)+\left(\frac{u-a}{v-a}\right) F_{1}(v)}{1-\left(\frac{u-a}{v-a}\right)\left(\frac{v-b}{u-b}\right)}=K_{2}
$$

A similar calculation may be made involving K_{1}.
To prove sufficiency we note first that for $u<c<v$ and $\epsilon>0$ there exists by Lemma 3.1 a major function $Q_{1}(x)$ with respect to the basis A_{1} on the interval $[a, c]$ and a major function $Q_{2}(x)$ with respect to the basis A_{2} on the interval $[c, b]$ such that the functions $R_{1}(x) \equiv Q_{1}(x)-F_{1}(x)$ and $R_{2}(x) \equiv$ $Q_{2}(x)-F_{2}(x)$ satisfy the following inequalities:

$$
\left|R_{1}(x)\right|<\epsilon, \quad\left|R_{2}(x)\right|<\epsilon, \quad\left|R_{1(k)}(c-)\right|<\epsilon, \quad\left|R_{2(k)}(c+)\right|<\epsilon
$$

$k=1,2, \ldots, n-1$. Minor functions $q_{1}(x), q_{2}(x)$ satisfying analogous inequalities may be defined similarly,

Now define the functions R and r by

$$
\begin{gather*}
R(x)= \begin{cases}R_{1}(x)+\sum_{j=1}^{n / 2} \lambda\left(A_{1} ; x, d_{j}\right) \alpha_{j} \equiv R_{1}(x)+U(x), & a \leqq x \leqq c \\
R_{2}(x)+\sum_{j=n / 2}^{n-1} \lambda\left(A_{2} ; x, d_{j}\right) \alpha_{j} \equiv R_{2}(x)+V(x), & c \leqq x \leqq \dot{b}\end{cases} \tag{4.4}\\
r(x)= \begin{cases}r_{1}(x)+\sum_{\substack{j=1 \\
n / 2}\left(A_{1} ; x, d_{j}\right) \beta_{j} \equiv r_{1}(x)+u(x),} \quad a \leqq x \leqq c \\
r_{2}(x)+\sum_{j=n / 2}^{n-1} \lambda\left(A_{2} ; x, d_{j}\right) \beta_{j} \equiv r_{2}(x)+v(x), \quad c \leqq x \leqq b,\end{cases} \tag{4.5}
\end{gather*}
$$

where the constants α_{j} and β_{j} are to be determined so that $R_{(k)}(x), r_{(k)}(x)$ exist at $c, k=1,2, \ldots,(n-2)$ and $R(x)$ and $r(x)$ are n-smooth at c. There are thus ($n-1$) conditions to determine $(n-1)$ constants in each case (of course where the constants exist we will have the relations $\alpha_{j}=R\left(d_{j}\right)$ and $\left.\beta_{j}=r\left(d_{j}\right)\right)$.

From this point on we shall restrict our discussion to the function $R(x)$ analogous statements and proofs hold for $r(x)$.

The first step in showing that the constants α_{j} with the required properties exist will be to show that the $(n-1)$ conditions mentioned above together with properties of $R_{1}(x)$ and $R_{2}(x)$ are equivalent to the condition that $R_{(n-1)}(c)$ exist.

The condition of n-smoothness for $R(x)$ at $x=c$ is given by

$$
\begin{equation*}
\frac{1}{h^{n-1}}\left[\frac{R(c+h)+R(c-h)}{2}-\sum_{k=0}^{(n / 2)-1} \frac{h^{2 k}}{(2 k)!} D^{2 k} R(c)\right] \rightarrow 0, \quad \text { as } h \rightarrow 0 . \tag{4.6}
\end{equation*}
$$

Assuming the existence of $R_{(k)}(c), k=1,2, \ldots,(n-2)$, the left hand side of (4.6) may be re-written as

$$
\begin{aligned}
& \frac{1}{2 h^{n-1}}\left[R(c+h)-R(c)-\sum_{k=1}^{n-2} \frac{h^{k}}{k!} R_{(k)}(c+)\right] \\
& \quad-\frac{1}{2(-h)^{n-1}}\left[R(c-h)-R(c)-\sum_{k=1}^{n-2} \frac{(-h)^{k}}{k!} R_{(k)}(c-)\right] \\
&= \frac{1}{2 h^{n=1}}\left[R_{2}(c+h)-R_{2}(c)-\sum_{k=1}^{n-2} \frac{h^{k}}{k!} R_{2(k)}(c+)\right] \\
&+\frac{1}{2 h^{n-1}}\left[V(c+h)-V(c)-\sum_{k=1}^{n-2} \frac{h^{k}}{k!} V_{(k)}(c+)\right] \\
& \quad-\frac{1}{2(-h)^{n-1}}\left[R_{1}(c-h)-R_{1}(c)-\sum_{k=1}^{n-2} \frac{(-h)^{k}}{k!} R_{1(k)}(c-)\right] \\
& \quad \quad-\frac{1}{2(-h)^{n-1}}\left[U(c+h)-U(c)-\sum_{k=1}^{n-2} \frac{(-h)^{k}}{k!} U_{(k)}(c-)\right]
\end{aligned}
$$

Since the one sided derivatives of the polynomials $U(x)$ and $V(x)$ always
exist and since by construction $R_{2(n-1)}(c+)$ and $R_{1(n-1)}(c-)$ exist, it follows that if $R_{(k)}(c), k=1,2, \ldots,(n-2)$ exist, n-smoothness of $R(x)$ at c is equivalent to the existence and equality of $R_{(n-1)}(c+)$ and $R_{(n-1)}(c-)$.

The next step is to obtain $(n-1)$ equations in the $(n-1)$ unknowns, α_{j}, by differentiating equation (4.4) $(n-1)$ - times and setting $R_{(k)}(c-)=$ $R_{(k)}(c+), k=1,2, \ldots, n-1$. This yields (where for simplicity in notation we write $\left.\lambda_{(k)}\left(A_{1} ; x, d_{j}\right)\right|_{x=c} \equiv q_{(k)}\left(d_{j}\right)$ and $\left.\lambda_{(k)}\left(A_{2} ; x, d_{j}\right)\right|_{x=c} \equiv h_{(k)}\left(d_{j}\right)$, $j=1,2, \ldots, n-1$, and $k=1,2, \ldots, n-1)$,

$$
\begin{aligned}
& \sum_{j=1}^{n / 2} \alpha_{j} g_{(k)}\left(d_{j}\right)-\sum_{j=n / 2}^{n-1} \alpha_{j} h_{(k)}\left(d_{j}\right)=R_{2(k)}(c+)-R_{1(k)}(c-) \equiv \theta_{k}, \\
& \left(g_{(k)}\left(d_{n / 2}\right)-h_{(k)}\left(d_{n / 2}\right)\right) \alpha_{n / 2}+\sum_{j=1}^{(n / 2)-1} \alpha_{j} g_{(k)}\left(d_{j}\right)-\sum_{j=(n / 2)+1}^{n-1} \alpha_{j} h_{(k)}\left(d_{j}\right)=\theta_{k},
\end{aligned}
$$

$k=1,2, \ldots, n-1$.
To show that these $(n-1)$ equations have a unique solution we must show that the corresponding determinant is not zero, i.e., the determinant which has as its i th column the following

$$
\begin{gathered}
g_{(i)}\left(d_{n / 2}\right)-h_{(i)}\left(d_{n / 2}\right) \\
g_{(i)}\left(d_{1}\right) \\
\cdots \\
g_{(i)}\left(d_{n / 2-1}\right) \\
h_{(i)}\left(d_{n / 2+1}\right) \\
\cdots \\
h_{(i)}\left(d_{n-1}\right),
\end{gathered}
$$

for $i=1,2, \ldots, n-1$. But this is clearly equivalent to the condition that the polynomials

$$
\begin{equation*}
\lambda\left(A_{1} ; x, c\right)-\lambda\left(A_{2} ; x, c\right), \quad \lambda\left(A_{2} ; x, d_{j}\right), d_{j}>c, \quad \lambda\left(A_{1} ; x, d_{j}\right), d_{j}<c, \tag{4.7}
\end{equation*}
$$

be linearly independent on $[a, b]$.
If the polynomials (4.7) were linearly dependent there would exist constants $\gamma_{1}, i=0,1,2, \ldots,(n-1)$, such that

$$
\begin{align*}
\gamma_{0} \lambda\left(A_{1} ; x, c\right)+ & \sum_{j=1}^{(n / 2)-1} \gamma_{j} \lambda\left(A_{1} ; x, d_{j}\right) \tag{4.8}\\
& =\gamma_{0} \lambda\left(A_{2} ; x, c\right)+\sum_{j=(n / 2)+1}^{n-1} \gamma_{j} \lambda\left(A_{2} ; x, d_{j}\right), \quad x \in[a, b]
\end{align*}
$$

where each side of the expression is a polynomial of degree $n-1$ at most. But then (4.8) may be rewritten (in the notation introduced in the previous section) as:

$$
(x-a) m(x) \prod_{i=2}^{n / 2}\left(x-c_{i}\right)=(x-b) n(x) \prod_{i=(n / 2)+1}^{n-1}\left(x-c_{i}\right), \quad x \in[a, b]
$$

where $m(x)$ and $n(x)$ are polynomials of degree at most $(n / 2)-1$. Thus the left hand side has $n / 2$ zeros and the right hand side has $n / 2$ zeros, all distinct. This would imply that the left hand side which is a polynomial of degree at most $(n-1)$, has at least n zeros, an impossibility. It follows that the polynomials (4.7) are linearly independent.

This shows that the constants $\alpha_{j}=R\left(d_{j}\right)$ may be determined so that $R(x)$ is n-smooth at c and so that the unsymmetric derivatives up to order $(n-2)$ exist and are finite at c. Moreover

$$
\begin{equation*}
R\left(d_{j}\right)=\sum_{k=1}^{n-1} A_{k}^{j}\left(R_{2(k)}(c+)-R_{1(k)}(c-)\right), \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
r\left(d_{j}\right)=\sum_{k=1}^{n-1} A_{k}^{j}\left(r_{2(k)}(c+)-r_{1(k)}(c-)\right), \tag{4.10}
\end{equation*}
$$

for each d_{j}, where the $A_{k}{ }^{j}$ depends on $\left\{d_{j}\right\}$ but not on f, R_{1}, R_{2}, r_{1}, or r_{2}.
It is clear therefore that the original choice of $R_{1}(x)$ and $R_{2}(x)$, may be made so that

$$
\begin{equation*}
|R(x)|<\epsilon / 2 \quad \text { and } \quad|r(x)|<\epsilon / 2, \quad x \in[a, b] . \tag{4.11}
\end{equation*}
$$

Now we claim that $Q(x)=F(x)+R(x)$ is a P^{n}-major function for $f(x)$ on $[a, b]$ with respect to the basis $\left(a, c_{2}, c_{3}, \ldots, c_{n-1}, b\right)$.

Both $F(x)$ and $R(x)$ obviously satisfy conditions (2.4.2) of Definition 2.1. That they are continuous and possess derivatives $F_{k}(x), R_{k}(x), 1 \leqq k \leqq n-2$, follows from their definitions (cf. equations (3.7) and (4.4)). Moreover since we may write

$$
Q(x)= \begin{cases}F_{1}(x)+R_{1}(x)+\Theta_{1}(x)=Q_{1}(x)+\Theta_{1}(x), & x \in[a, c] \tag{4.12}\\ F_{2}(x)+R_{2}(x)+\theta_{2}(x)=Q_{2}(x)+\theta_{2}(x), & x \in[c, b]\end{cases}
$$

where $\theta_{1}(x)$ and $\Theta_{2}(x)$ are polynomials of degree at most $(n-1), Q(x)$ inherits the required n-smoothness property of condition (2.4.1) from $Q_{1}(x)$ and $Q_{2}(x)$.

It may be shown also from (4.12) that $Q(x)$ satisfies conditions (2.4.3) and (2.4.4) of Definition 2.1. Since $F(x)$ satisfies condition (2.4.5) at $x=c$ [cf. (3.7) and Theorem 3.3] and $R(x)$, by definition, is n-smooth at $x=c$, it follows that $Q(x)$ satisfies condition (2.4.5) (i).

Similarly $q(x)=F(x)-r(x)$ can be shown to be a P^{n}-minor function for $f(x)$ on $[a, b]$ with respect to the basis $\left(a, c_{2}, c_{3}, \ldots, c_{n-1}, b\right)$.

Because of (4.11) we have furthermore that

$$
|Q(x)-q(x)|=|R(x)-r(x)|<\epsilon, \quad x \in[a, b]
$$

which completes the proof that $f(x)$ is P^{n}-integrable on $[a, b]$.

Remark. The lemma corresponding to Skvorcov's Lemma 3 referred to in the introduction of this paper would say that if f is integrable on $[a, c]$ and on $[c, b]$ then functions $R_{1}(x)$ and $R_{2}(x)$ (as defined in Lemma 3.1) exist satisfying the inequalities (3.10). If such functions exist for integrable f our methods can be used to prove the result for P^{n}-integrals corresponding to Theorem 2 [6]:

Let $f(x)$ be P^{n}-integrable over $\left(a_{i} ; x\right)$ with associated integral $F_{1}(x)$ and over $\left(b_{i} ; x\right)$ with associated integral $F_{2}(x)$. Then $f(x)$ is P^{n}-integrable on $[a, b]$ if and only if there exist constants $\left\{\theta_{j}\right\}, j=1,2, \ldots, n-1$ such that the function

$$
F(x)= \begin{cases}F_{1}(x)+\sum_{j=1}^{n / 2} \lambda\left(A_{1} ; x, d_{j}\right) \theta_{j}, & a \leqq x \leqq c \\ F_{2}(x)+\sum_{j=n / 2}^{n-1} \lambda\left(A_{2} ; x, d_{j}\right) \theta_{j}, & c \leqq x \leqq b\end{cases}
$$

is n-smooth and possesses Peano unsymmetric derivatives up to order $n-2$ at $x=c$. If such numbers exist then the function $F(x)$ is the associated P^{n}-integral of $f(x)$ over $\left(l_{1}, l_{2}, \ldots, l_{n}\right)$.

References

1. P. S. Bullen, A criterion for n-convexity, Pacific J. Math. 36 (1971), 81-98.
2. P. S. Bullen, and C. M. Lee, The $S C_{n} P$-integral and the P^{n+1}-integral, Can. J. Math. 25 (1973), 1274-1284.
3. G. E. Cross, The P^{n}-integral, Can. Math. Bull. 18 (1975), 493-497.
4. R. D. James, Generalized nth primitives, Trans. Amer. Math. Soc. 76 (1954), 149-176.
5. -_Summable trigonometric series, Pacific J. Math. 6 (1956), 99-110.
6. V. A. Skvorcov, Concerning the definition of P^{2-} and $S C P$-integrals, Vestnik Moskov. Univ. Ser. 1 Mat. Heh. 21 (1966), 12-19.

University of Waterloo
Waterloo, Ontario

[^0]: Received April 22, 1977 and in revised form, August 12, 1977.

