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Abstract

Background. Major depressive disorder (MDD) is a polygenic disorder associated with brain
alterations but until recently, there have been no brain-based metrics to quantify individual-level
variation in brain morphology. Here, we evaluated and compared the performance of a new
brain-based ‘Regional Vulnerability Index” (RVI) with polygenic risk scores (PRS), in the context
of MDD. We assessed associations with syndromal MDD in an adult sample (N = 702,
age = 59 =+ 10) and with subclinical depressive symptoms in a longitudinal adolescent sample
(baseline N = 3,825, age = 10 =+ 1; 2-year follow-up N = 2,081, age = 12 £ 1).

Methods. MDD-RVIs quantify the correlation of the individual’s corresponding brain metric
with the expected pattern for MDD derived in an independent sample. Using the same
methodology across samples, subject-specific MDD-PRS and six MDD-RVIs based on different
brain modalities (subcortical volume, cortical thickness, cortical surface area, mean diffusivity,
fractional anisotropy, and multimodal) were computed.

Results. In adults, MDD-RVIs (based on white matter and multimodal measures) were more
strongly associated with MDD (f = 0.099-0.281, Pgpr = 0.001-0.043) than MDD-PRS
(6 = 0.056-0.152, Prpr = 0.140-0.140). In adolescents, depressive symptoms were associated
with MDD-PRS at baseline and follow-up (8 = 0.084-0.086, p = 1.38 x 10 *—4.77 x 10~ *) but
not with any MDD-RVIs (f < 0.05, p > 0.05).

Conclusions. Our results potentially indicate the ability of brain-based risk scores to capture a
broader range of risk exposures than genetic risk scores in adults and are also useful in helping us
to understand the temporal origins of depression-related brain features. Longitudinal data,
specific to the developmental period and on white matter measures, will be useful in informing
risk for subsequent psychiatric illness.

Introduction

Major depressive disorder (MDD) is a serious psychiatric disorder that significantly contributes
to global disease burden [1, 2]. Large-scale neuroimaging approaches, such as the Enhancing
Neuro Imaging Genetics through Meta-Analysis (ENIGMA) consortium, have greatly advanced
the field by contributing robust findings on brain structural abnormalities associated with MDD
[3-6]. However, these findings have limited clinical utility as they are based on group-level
inferences and cannot be generalized across individuals that can have very different MDD
profiles. This reflects the need for a more personalized approach to improve understanding of
the biological origins of MDD. Recently, several novel brain-based metrics have been introduced
to capture individual-level variation in brain morphology [7-11]. We focus here on the Regional
Vulnerability Index (RVI) [9-11].

RVI is a personalized score that quantifies the degree of similarity (i.e., a correlation
coefficient) between an individual’s brain pattern and the expected pattern of brain differences
seen in a disorder, as determined by case-control effect sizes derived from large-scale meta-
analyses (e.g., ENIGMA). Higher RVI indicates a stronger correlation and therefore, a higher
vulnerability to the given disorder. An example would be that RVI based on white matter
microstructural measures has been shown to differentiate schizophrenia patients from controls
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in clinical samples [9, 10] and also MDD cases from healthy
individuals in a large epidemiological sample [11].

In this study, we derived six MDD-RVIs using different brain
modalities (subcortical volume, cortical thickness, cortical surface
area, mean diffusivity (MD), fractional anisotropy (FA), and
multimodal) and examined their associations with syndromal
MDD in a large adult sample. The comparison across modalities
will help in identifying tissue types that are most implicated in
MDD. Besides comparing MDD-RVTs, this study also evaluated
the performance of MDD-RVIs relative to polygenic risk scores
(PRS) for MDD. PRS is derived from the weighted sum of the
number of risk alleles in an individual and has been shown to be
associated with MDD across samples [12, 13]. We were therefore
interested in using MDD-PRS as a benchmark to evaluate the
validity of MDD-RVI in terms of effect sizes and sought to
ascertain if both scores combined could account for more vari-
ation in disease risk than when used in isolation. Our hypothesis
was that MDD-RVIs will show stronger associations with MDD
than MDD-PRS, as the dynamic nature of brains structure across
the lifespan may capture signals of additional risk factors beyond
genetic risk that influence disease course.

Additionally, we repeated the analysis in a large adolescent
sample, given that adolescence is the peak period for the onset of
MDD [14-16]. However, adolescent MDD is often undiagnosed as
symptoms are covert [17], resulting in continuity to adulthood
[18]. We considered the investigation of MDD-RVI and MDD-
PRS in the younger sample as exploratory, to determine the
association between these personalized scores with cross-sectional
and subsequent subclinical depressive symptoms. Specifically,
MDD-RVIs for adolescents will be derived using effect sizes based
on the adult meta-analyses in ENIGMA, to ensure sufficient
statistical power and to see if brain features of vulnerable adoles-
cents are similar to the adult MDD brain phenotypes. If brain-
psychopathology associations are beginning to be established, this
would have important implications for the identification of ado-
lescents at increased risk of MDD. A continuous measure of
depressive symptoms was used for the younger sample to better
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accommodate diagnostic uncertainty and capture the entire spec-
trum of severity [19].

Methods
Participants

GS-Imaging

Adult participants were from the deeply phenotyped imaging sub-
sample of Generation Scotland: the Scottish Family Health Study
(GS-Imaging). GS-Imaging received ethical approval from the NHS
Tayside research ethics committee and all participants provided
informed consent (reference 14/SS/0039). Information on the
recruitment, assessment, and brain imaging procedures for this
sample has been provided elsewhere [20]. The full GS-Imaging
sample included 1,188 adults recruited across two sites in Scotland.
The currently analysis comprised 702 unrelated and neurologically
healthy individuals of European ancestry (age: 59 £ 10, 59%
female). Further details are in Table 1 and in the Supplementary
Materials.

ABCD

Participants were from the Adolescent Brain and Cognitive Devel-
opment (ABCD) study. The baseline sample comprised 11,875
youths recruited across 21 sites in the United States. Ethical approval
was obtained from a central or local institutional review board
[21]. Informed consent and assent were obtained from all parents
and participants. Baseline and follow-up data from curated annual
release 2.0 and 3.0, respectively, were obtained through the NDA
database (https://nda.nih.gov/general-query.html?q=query=fea
tured-datasets:Adolescent%20Brain%20Cognitive%20Development
%20Study%20(ABCD); Federal-Wide Assurance: FWA00018101).
The analysis sample comprised 3,825 unrelated and neurologically
healthy individuals of European ancestry at baseline (age: 10 £ 1,
47% female) and a subset of 2,081 individuals (age: 12 &+ 1, 44%
female) at 2-year follow-up. Further details are in Table 1 and in the
Supplementary Materials.

Table 1. Demographic information for GS-Imaging, ABCD (baseline), and ABCD (2-year).

Unit GS-Imaging ABCD (Baseline) ABCD (2-year)
Demographics Sample size N 702 3,825 2,081
Age Years + SD 59 £ 10 10+1 12+1
Sex % Females 59 47 44
MDD-RVI Subcortical N (healthy) 702 (524) 3,825 (3,218) 2,081 (1,732)
Cortical N (healthy) 702 (524) 3,825 (3,218) 2,081 (1,732)
DTI N (healthy) 686 (508) 3,630 (3,056) 2,032 (1,698)
MDD-PRS MDD-PRS N 702 3,825 2,081
Depressive phenotypes Lifetime-MDD N (cases/controls) 602 (223/379) - —
TotalQIDS N 702 — —
Mean £ SD 45+£37 — —
CBCL-DSM depressed N — 3,825 2,081
Mean £ SD — 1.3+£20 1.6 £23

Note: For the calculation of MDD-RVIs in our sample, subjects were deemed as healthy if they did not self-report any psychiatric diagnoses and were not taking antidepressants at the point of

assessment.
Abbreviations: DTI, diffusion tensor imaging.
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Imaging measures

GS-Imaging

T1-weighted imaging and diffusion imaging data were obtained
using the same protocol at either the Aberdeen study site
(3T Philips Achieva TX-series MRI system Philips Healthcare, Best,
the Netherlands) or the Dundee study site (Siemens 3T Prisma-FIT
Siemens, Erlangen, Germany). T1 scans were processed using Free-
Surfer 5.3.0 and the Desikan-Killiany atlas [22] was used for sub-
cortical segmentation and cortical parcellation. FA and MD for white
matter tracts were derived using TBSS toolkit within FSL following
the ENIGMA DTI analysis protocol (http://enigma.ini.usc.edu/
protocols/dti-protocols/). The John Hopkins University white mat-
ter atlas [23] was used to define white matter tracts. Full details on
image acquisition and quality control measures are described in the
Supplementary Materials and elsewhere [20, 24, 25].

ABCD

Minimally processed data for baseline and 2-year follow-up from
the ABCD repository were used. Participants were scanned at
21 sites using 3T Siemens Prisma, General Electric 750 or Phillips
scanner. Data acquisition and image processing methods were
harmonized between sites and scanners [26, 27]. T1 scans were
processed using FreeSurfer 5.3.0 and the Desikan-Killiany atlas was
used for subcortical segmentation and cortical parcellation. Major
white matter tracts were labeled using AtlasTrack [28]. Quality
control was conducted following recommendations from the
ABCD data team [26], and full details are in the Supplementary
Materials.

Regional Vulnerability Index

MDD-related alterations in subcortical volume [3], cortical surface
area and thickness [4], and tract-based MD and FA measures [5]
were established by ENIGMA. Case-control effect sizes from these
meta-analyses (Supplementary Tables S1-S4) were used as the
reference data. MDD-RVIs were computed using the RVIpkg
package (version 0.2.3) in R (https://cran.r-project.org/web/pack
ages/RVIpkg/RVIpkg.pdf) and following the procedures specified
by Kochunov et al. [10]. Briefly, for each brain region used in the
calculation of an MDD-RVT type, the effects of covariates were first
regressed out (see Supplementary Materials) and the residuals were
z-normalized using the mean and standard deviation of healthy
individuals in the sample. Subject-specific MDD-RVI was then
calculated as a single Pearson’s correlation coefficient between
the vector of the region-wise z-values and the corresponding
regional effect sizes in the ENIGMA meta-analyses (see
Figure 1A and the Supplementary Materials for details). The pro-
cedures were conducted separately for GS-Imaging and ABCD to
define six MDD-RVIs for each subject: RVI-Sub for subcortical
volumes, RVI-CorTH for cortical thickness, RVI-CorSA for cor-
tical surface area, RVI-MD for mean diffusivity, RVI-FA for frac-
tional anisotropy, and RVI-Multi, a multimodal index calculated as
the average of the five RVIs (Figure 1B). GS-Imaging and ABCD
were not part of the ENIGMA meta-analyses, thus ensuring no
overlap between the discovery and testing samples.

Polygenic risk scores

GS-Imaging
MDD-PRS was calculated for the full GS cohort, as detailed in
Howard et al. [13]. Briefly, standard quality control measures and
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imputation using the Haplotype Reference Consortium dataset [29]
were undertaken before deriving MDD-PRS using Plink v1.90b4
[30]. For the current analysis, only MDD-PRS for individuals
within the GS-Imaging sample was included. Six p-value thresholds
(pT_0.001, pT_0.01, pT_0.05, pT_0.1, pT_0.5, and pT_1) were
considered, but only results for pT_0.1 are reported as the score
at this threshold outperformed scores at different thresholds in this
analysis in terms of effect sizes.

ABCD

The ABCD team conducted quality control on the genotyped
data following the Ricopili pipeline [31] and then imputation
using mixed ancestry and Eagle v2.4 phasing on the TOPMed
imputation server using the full sample. Here, we only used
imputed genetics data from unrelated individuals of European
ancestry. In this subsample, we did post-imputation quality
control by filtering out variants with INFO < 0.8 and minor allele
frequency < 0.005. PRSice v2.1.11 [32] was used to calculate
MDD-PRS using summary statistics by Howard et al. [13] using
the clumping and thresholding method (clump-p = 1, clump-
r2 = 0.25, clump-kb = 250 kb). A description of the phenotypes
used in the summary statistics can be found in the Supplemen-
tary Materials. A linkage disequilibrium reference panel using
the 1,000 Genomes central European population [33] was spe-
cified. MDD-PRS was obtained across the same p-value thresh-
olds as in GS-Imaging, and pT_0.1 was chosen for subsequent
analysis.

Depressive phenotypes

GS-Imaging

Participants rated their symptoms over the past 7 days using a four-
point Likert scale on the Quick Inventory of Depressive Symptom-
atology (QIDS) [34]. The total score (TotalQIDS) was used as a
dimensional measure of current depressive symptoms. Categorical
lifetime diagnosis of MDD (Lifetime-MDD) was determined using
the Composite International Diagnostic Interview Short Form
(CIDI-SF) [35] and the Structured Clinical Interview for DSM
disorders (SCID) [36]. Both assessments were administered at
overlapping intervals and were thus used to detect more MDD
cases. Participants were defined as cases if they met the diagnostic
criteria for CIDI or SCID, and controls if they did not meet the
criteria for both.

ABCD

The primary caregiver completed the Child Behaviour Checklist
(CBCL) [37] by rating the child’s behavior over the last 6 months
using a three-point Likert scale [38]. Only caregiver-reported scores
were used, as child-reported scores were not available. Other
instruments completed by both caregiver and child were considered
suboptimal, as binary measures may not be as effective in accom-
modating diagnostic uncertainty in adolescents. The total raw
scores for the CBCL DSM-oriented depressive problems subscale
(CBCL-DSM-Depressed) obtained at baseline and 2-year follow-up
were used as dimensional measures of current depressive psycho-
pathology.

Statistical analysis

All statistical analyses were conducted using R (version 3.6.3). The
associations between MDD-RVIs/MDD-PRS with depressive
phenotypes were assessed separately in GS-Imaging and ABCD.
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Example on how the Regional Vulnerability Index (RVI)* is derived
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7 regions of interest looking at alterations in subcortical volume ( R1,

. R7)

REFERENCE DATA

®

®

TARGET SAMPLE

@ | CALCULATE SUBJECT-SPECIFICRVI

Case-control effect sizes (Cohen’s d)
obtained from ENIGMA after adjusting
for covariates (e.g., age, sex, site)

“ Mixture of cases and controls

Tabulated data showing subcortical volume

RVI = Degree of similarity betweenan
individual's pattern of neuroimaging traits and
the expected pattern determined by ENIGMA

of each brain region for each subject

STEP 3: Calculate correlation coefficient for

Region Cohen’s d ID R1 R7 each subject
R1 D, SUB-1 5 3 7
SUB-2 7 5 3 RVI = Correlation Coefficient
R7 D, SUB-100 | 3 5 1 <3
E <
STEP 1: Obtain residuals by regressing [C] E R7 (27, D7)
out same covariates used by ENIGMA zZ ]
STEP 2: For each subject, calculate z-
@ COMBINE DATA scores for each region using the mean R1(Z,, D,)
and standard deviation of 1 1 1 1 1 -
Each subject will have a vector of 7 region-wise ' ' ' ' ' '
z-values corresponding to ENIGMA effect sizes SUB-1 score

Region [ ENIGMA | SUB-1 | Sug-> SUB-100
R1 D, z, z, z,
R7 D, z, z, z,

Higher RVI = greater similarity to the expected
pattern for the given disorder seen in ENIGMA

v

Indicative of individual vulnerability to the
given disorder

*Kochunov P, Fan F, Ryan MC, Hatch K S, Tan S, Jahanshad N, et al. Translating ENIGMA schizophrenia findings using the regional vulnerability index: Association
with cognition, symptoms, and disease trajectory. Hum Brain Mapp 2020; 43: 566-575.

Flowchart on how each MDD-RVI was derived

B

ENIGMA-MDD case-control effect sizes

ENIGMA [ [ | |
Subcortical Cortical Cortical Mean Fractional
volume thickness surface area diffusivity anisotropy
| | ] | |
. GS-Imaging GS-Imaging GS-Imaging GS-Imaging GS-Imaging | Average | Gs-Imaging
eing RVI-Sub RVI-CorTH RVI-CorSA RVI-MD RVI-FA — > RVI-Multi
ABCD + ABCD + ABCD + ABCD + ABCD Average ABCD
RVI-Sub RVI-CorTH RVI-CorSA RVI-MD RVI-FA > RVI-Multi

Figure 1. (A) A brief explanation on how MDD-RVIs for each modality are calculated, using alterations in subcortical volume as an example. The RVI method was developed by
Kochunov et al. [10]. (B) The different types of MDD-RVIs that were derived for the GS-Imaging and ABCD samples, using MDD case-control effect sizes from ENIGMA meta-analyses.

For GS-Imaging, we used linear and logistic regression for models
with TotalQIDS and Lifetime-MDD as outcomes, respectively.
For ABCD, study site was modeled as a random effect in linear
mixed models to account for the nested structure of the data. In
GS-Imaging, site was included as a covariate as subjects were
recruited only across two sites. In all models, covariates included
age, age’, sex, site (for GS-Imaging), individual/parent education
level and family income [10]. We additionally controlled for the
top 15 genetic principal components and genotype plate number
for analyses that included MDD-PRS as predictor. False discovery
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rate (FDR) correction was applied within each MDD-RVI type
and within the selected MDD-PRS p-value threshold (pT_0.1).
The change in R* was used to quantify the individual and com-
bined explanatory power of MDD-RVI/MDD-PRS in terms of
improvements in model fit relative to the null model (which only
included covariates). The McFadden’s pseudo R* and marginal R
were used for logistic and linear mixed models, respectively.
Analysis using the Akaike information criterion (AIC) was con-
ducted to provide further evidence for the R* analysis. The above
analytic approach was repeated for ABCD baseline and 2-year
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follow-up. We examined associations with CBCL-DSM-
Depressed at each time point and with the change in symptoms
between assessments. For the latter, we adopted a residualized
change approach [39], whereby we residualized the 2-year CBCL-
DSM-Depressed scores by regressing out baseline scores, sex, age
difference, parent education, family income, and study site.
Residuals were then regressed against baseline MDD-RVIs and
MDD-PRS.

Results
Association between MDD-RVIs and depressive phenotypes

GS-Imaging

Lifetime-MDD was strongly associated with RVI-MD (5 = 0.281,
PFDR = 0001), RVI-FA (ﬂ = 0.206, PFDR = 0043), and RVI-Multi
(f = 0.241, Prpgr = 0.021) (Figure 2A). Similar results were found
for TotalQIDS for RVI-FA (8 = 0.085, Prpr = 0.043) and RVI-
Multi (8 = 0.099, Prpr = 0.021), but not RVI-MD (8 = 0.052,
Prpr = 0.169). Subcortical and cortical-based RVIs had no associ-
ations with either depressive phenotype (Prpg > 0.05).

ABCD

CBCL-DSM-Depressed score was not associated with any MDD-
RVIs either at baseline or at the 2-year follow-up (5 < 0.05, p > 0.05,
Figure 3A).

Association between MDD-PRS and depressive phenotypes

GS-Imaging

MDD-PRS (at pT_0.1) was not associated with Lifetime-MDD
(6 =0.152, Prpg = 0.140) and TotalQIDS (f = 0.056, Prpr = 0.140,
Figure 2A). The results for other p-value thresholds of PRS are
reported in Supplementary Figure S3. This finding may be related
to reduced power in the imaging sample as analyses using the full
unrelated GS sample (N = 6,946, including non-imaged partici-
pants) [13] revealed strong associations between MDD-PRS and
lifetime MDD at all p-value thresholds (5 0.182-0.204,
p =114 x 1077—1.57x 10", Supplementary Figure S4A).

ABCD
MDD-PRS was associated with CBCL-DSM-Depressed score at
baseline (8 = 0.086, p = 4.77x10"*) and at 2-year follow-up

A GS-Imaging B GS-Imaging
T 0.1 -
P = 20.0 | . PRS . RVI . PRS+RVI
o 15.0 4
RVI-CorTH - - <
3
RVI-CorSA - = g 10.01
o
0.0 -
1
RVI-Multi - = * RVI-Sub RVI-CorTH RVI-CorSA RVI-MD  RVI-FA  RVI-Multi
Predictor Variables
TotalQIDS C GS—Imaging
pT_0.1 = TotaIQIDS
RVI-Sub - =
RVI-CorTH - = 4.0 ~
RVI-CorSA - | 3.0 -
[ | o
o
RVI-MD - = 2.0 -
RVI-FA - 3
E
RVI-Multi - = * -
0.0 -
1 1 1 1 1 1 1
-02 -01 0.0 01 02 03 04 RVI—Sub RVI- CorTH RVI- CorSA RVI MD RVI FA RVI- Multl

Standardised Beta

Predictor Variables

Figure 2. (A) Association between MDD-RVIS/MDD-PRS with Lifetime-MDD and TotalQIDS in GS-Imaging. The x-axis represents the standardized effect sizes and the y-axis
represents the different MDD-RVIs and the MDD-PRS calculated at pT_0.1 threshold. (B) The change in McFadden Pseudo-R? (in %) contributed by each variable type (PRS, RVI, or

PRS + RVI) when compared to a null model (i.e., covariates only) for Lifetime-MDD. (C) Th
compared to a null model (i.e., covariates only) for TotalQIDS.
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ABCD

CBCL-DSM-Depressed

. PRS . RVI . PRS+RVI

aujjeseg

6
A ABCD B
CBCL-DSM-Depressed
3.0
pT_0.1 4
RVI-Sub -
RVI-CorTH - 2.0 4
@
&
RVI-CorSA - o
=
(]
RVI-MD - 1.0 4
RVI-FA
a
RVI-Multi - o«
= 0.0 -
£
(2]
£ 3,0
pT_0.1 - 3 g
RVI-Sub - ..
RVI-CorTH A B 2.0 1
RVI-CorSA -
RVI-MD - 1.0 4
RVI-FA L
RVI-Multi -
| | 0.0 -

1

-0.10 -0.05 0.00 0.05 0.10 0.15
Standardised Beta

RVI-Sub RVI-CorTH RVI-CorSA RVI-MD

RVI-FA  RVI-Multi

Predictor Variables

Figure 3. (A) Association between MDD-RVIs/MDD-PRS with CBCL-DSM-Depressed in ABCD at baseline and at 2-year follow-up. The x-axis represents the standardized effect sizes
and the y-axis represents the different MDD-RVIs and the MDD-PRS calculated at pT_0.1 threshold. (B) The change in marginal R? (in %) contributed by each variable type (PRS, RVI,
or PRS + RVI) when compared to a null model (i.e., covariates only) for CBCL-DSM-Depressed. The results at baseline and 2-year follow-up are reported.

(8 =0.084, p = 1.38 x 10~ * Figure 3A). Results for other p-value
thresholds are reported in Supplementary Figure S6.

Comparing associations of MDD-RVI and MDD-PRS with
depressive phenotypes

GS-Imaging

The effect sizes for the associations of RVI-MD, RVI-FA, and
RVI-Multi with Lifetime-MDD (8 = 0.206-0.281, Prpg = 0.001-
0.043) were higher than for MDD-PRS (at pT_0.1) (§ = 0.152,
Prpr = 0.140, Figure 2A). The same was observed for RVI-Multi
(B = 0.099, Prpr = 0.021) and MDD-PRS (8 = 0.056,
Prpr = 0.140, Figure 2A) in their associations with TotalQIDS.

ABCD

The effect sizes for the association between CBCL-DSM-Depressed
for all RVIs (f < 0.05, p > 0.05) were consistently lower than those
for MDD-PRS (at pT_0.1) at both time points (f = 0.084-0.086,
p = 1.38x107*~4.77x10"*, Figure 3A) and for other p-value
thresholds (Supplementary Figure S6).
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Comparing change in R? and AIC values of different model types
using MDD-RVI and MDD-PRS as individual or combined
predictors of depressive phenotypes

GS-Imaging

In models with Lifetime-MDD as the outcome, each MDD-RVI
individually contributed to a greater change in R*> (Pseudo-
R* = 2.5-9.5%) than MDD-PRS (Pseudo-R*> = 0%), with the
strongest effect from RVI-Multi (Figure 2B). All MDD-RVIs con-
tributed toward an improvement in model fit individually (com-
pare M1 and M2) and additively with MDD-PRS (compare M3,
M4, and M5) given the relative decrease in AIC values upon the
addition of MDD-RVIs (Table 2). RVI-Multi contributed toward
the largest decrease in AIC value in the full model relative to the null
model. A similar pattern was observed with TotalQIDS as the
outcome: all MDD-RVIs contributed toward an improvement in
model fit individually and in combination with MDD-PRS
(Table 2). Likewise, RVI-Multi contributed the largest change in
R? individually (R* = 1.8%, Figure 2C) and had the largest additive
contribution with MDD-PRS (Table 2), compared to other
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Table 2. Absolute AIC values for each model type (M1-M5) when MDD-PRS and MDD-RVIs are used as predictors individually or in conjunction with each other

M1 Covs (for RVI) 655.568 1,770.973
M2 RVI+Covs (for RVI) 617.14 631.196 641.74 633.603 637.521 597.874 1,648.444 1,681.766 1,733.443 1,718.084 1,714.972 1,596.433
M3 Covs 672293 1,792.363
M4 PRS+Covs 671.93 1,792.09
M5 PRS+RVI-+Covs 633.582 647.215 659.033 649.654 652.779 613.38 1,667.764 1,701.706 1,753.004 1,737.658 1,735.256 1,614.54

M1 Covs (for RVI) 4,970.509 5,791.486
M2 RVI+Covs (for RVI)  4,972.006 4,972.475 4970297  4,713.946  4717.684 4717155  5793.091 5,792.503 5793486 5628348 5629907  5,629.424
M3 Covs 5,117.664 5,808.395
M4 PRS+Covs 5,106.279 5,795.573
M5 PRS+RVI+Covs 5,107.171 5,108.268 5106.773 4852654 43856309 4855112  5797.077 5,796.307 579755  5630.852 5632173  5631.698

Note: AIC is a metric used to select the most parsimonious model that best explains the variance in the dependent variable. For example, the relative increase in AIC with the addition of new variable to the model would mean that the new predictor does not
help to explain additional variance in the dependent variable. For model comparison, relative lower AIC values (typically at least two AIC units lower) are indicative of better model fit. The results for both GS-Imaging and ABCD are reported. *Covs:
Covariates; “Covs (for RVI)” models do not include the 15 genetic principal components and genotype plate number that were included in the “Covs” models.

Abbreviations: AIC, Akaike information criterion.
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MDD-RVIs and MDD-PRS. Further calculations using delta AIC
can be found in Supplementary Table S7.

ABCD

For both time points, among the MDD-RVTIs, RVI-MD, RVI-FA,
and RVI-Multi had the largest change in R* when added to the
model individually (baseline R* = 0.3-0.5%, 2-year R> = 0.3-0.4%,
Figure 3B). These three MDD-RVIs also contributed toward an
improvement in model fit individually (compare M1 and M2) and
in combination with MDD-PRS (compare M3, M4, and M5) at
both time points, in contrast to the other MDD-RVIs (Table 2).
MDD-PRS, however, accounted for a greater change in R* than
each individual MDD-RVI at baseline (MDD-PRS R* = 0.7%,
MDD-RVIs R* = 0-0.5%, Figure 3B) and at 2-year follow-up
(MDD-PRS R> = 0.7%, MDD-RVIs R*> = 0-0.4%, Figure 3B).
MDD-PRS also contributed toward an improvement in model fit
individually at both time points (Table 2).

Association of MDD-RVIs and MDD-PRS with symptom
change in ABCD

Mean CBCL-DSM-Depressed scores increased slightly from base-
line (1.3 & 2.0) to 2-year follow-up (1.6 & 2.3). No MDD-RVTs nor
MDD-PRS at any p-value thresholds was associated with symptom
change (§ < 0.05, p > 0.05, Supplementary Table S8).

Discussion

This study examined associations between MDD-RVIs/MDD-PRS
and depressive phenotypes in adults and further explored their
utility in adolescents. White matter integrity-based MDD-RVIs
(RVI-MD, RVI-FA) and RVI-Multi had the strongest associations
among the MDD-RVIs in adults. These MDD-RVIs outperformed
MDD-PRS in terms of effect sizes and contributed additively with
MDD-PRS to model fit. This pattern did not generalize to early
adolescence, where no significant associations were observed for
any MDD-RVIs. MDD-PRS was, however, associated with adoles-
cent depressive symptoms cross-sectionally but not with symptom
change.

Our key findings on white matter integrity-based MDD-RVIs
having the strongest associations with MDD phenotypes in adults
are in line with results reported by previous studies looking at other
adult cohorts using standard approaches [40, 41]. This suggests that
reduced white matter integrity may be an important neurobio-
logical feature of adult MDD and provides a rationale to look into
finer details of the brain’s structural connectivity (e.g., connec-
tomes) to elucidate the underlying mechanisms. Our findings also
broadly replicate prior reports of RVI methods applied to UK
Biobank, which reported significant associations between MDD
and RVI-FA and RVI-Multi [11]. Notably, the FA and MD meas-
ures of individual tracts (rather than as a combined risk score) had
very small effect sizes and no significant associations with symptom
severity scores in the original ENIGMA meta-analysis [5] (see
Supplementary Tables S5 and S6). This suggests that brain-based
deviation of small effect sizes when considered collectively and
across modalities can create individualized summary scores that
are better measures of psychopathology than individual brain
metrics in isolation.

Our results also support the role of MDD-PRS as an indicator of
depressive phenotypes across the lifespan. The absence of any
significant association in adults in this study is likely due to the
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lack of power given the relatively small sample size, and since
MDD-PRS has been shown to be predictive in larger case—control
studies [12, 13], including here in the larger GS sample. However,
we considered it necessary to restrict the sample to individuals with
both imaging and genetic data to ensure a fair comparison between
MDD-RVIs and MDD-PRS. Given that MDD-PRS in adults also
generalizes to adolescents (i.e., effect sizes for continuous depres-
sive phenotypes were comparable in this study) [42], MDD-PRS
may be useful as an early indicator of adolescent depression. The
lack of association between MDD-PRS and the change in depressive
symptoms in adolescents could be due to lower statistical power at
the 2-year follow-up, or it could suggest that the changes are
minimal due to the short time interval. Future work can consider
following these young individuals over a longer time period for a
more robust assessment of genetic contributions to MDD risk.

In evaluating the comparative performance of MDD-RVIs and
MDD-PRS in adults, RVI-MD, RVI-FA, and RVI-Multi had
higher associations with depressive phenotypes compared to
MDD-PRS, especially for lifetime MDD. This may be because
MDD-PRS and MDD-RVI operate on different timescales,
with MDD-PRS being a snapshot one’s genetic susceptibility that
is fixed since birth and MDD-RVI capturing the cumulative
effects of non-genetic factors (e.g., environmental, biological) on
the brain across the lifespan. The additive contribution to model
fit by MDD-RVI and MDD-PRS, and the absence of a correlation
between them (Supplementary Figure S2), indeed suggest that
they each contribute toward unique variance. As such, it could
be argued that MDD-RVI may be a useful additional measure of
MDD risk in adults, since non-genetic risk factors can have an
important influence on MDD risk, especially with the increase in
exposure with age [43]. For example, depressed individuals who
face stressful life events may have reductions in white matter
integrity [44], which may play a mediating role between the
environmental exposure and clinical outcome that is not captured
to the same extent by genetic risk scores [45]. Given the significant
role of environmental factors, future work could explore the
effects of different environmental exposures on brain structural
connectivity, such as through the use of methylation risk scores
[46], which can also be combined with MDD-RVI and MDD-PRS
to study their additive effects on MDD risk.

Notably, MDD-RVIs were not associated with depressive symp-
toms in the adolescent sample and underperformed compared to
the MDD-PRS. This could be due to the use of effect sizes from the
adult ENIGMA meta-analyses to derive the MDD-RVIs. The effect
sizes were based on cases with established MDD and such estimates
may not be directly relevant to cases with milder and less chronic
depressive symptoms like in ABCD. Given that adults are likely to
have more episodes and longer disease duration, the estimates may
be more relevant within age group instead—for example, GS-
Imaging cases with lifetime MDD, on average, have had three
episodes of depression, each lasting for approximately 20 weeks
(Supplementary Figure S5). In line with the above, adolescents may
not yet demonstrate the same degree of detectable brain structural
changes associated with depressive symptoms as adults, as psycho-
pathology in adolescents can be transient and diagnostically uncer-
tain [47, 48]. They might also have had lesser exposure to
environmental/biological stressors of MDD, thereby cumulating
lesser detrimental changes to the brain which are harder to detect.
Given that adolescent brains are still undergoing significant devel-
opmental structural changes [49], the accuracy of the MDD-RVIs
could have also been compromised due to the incorporation of
variation attributed to neurodevelopment. As such, with the
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increase in sample sizes over the coming years, deriving adolescent
MDD-RVIs using adolescent-specific effect sizes would be some-
thing important to look at in future, in order to identify brain-
psychopathology associations, if any, that are unique to this age
group. Nonetheless, it is interesting that adolescent RVI-MD, RVI-
FA, and RVI-Multi (i.e., the best performing MDD-RVIs in the
adult sample) had the highest proportion of variance explained
among the other MDD-RVIs and were the only ones that contrib-
uted toward improved model fit individually and in combination
with MDD-PRS. It is of interest to continue monitoring this lon-
gitudinal sample to see if the results become increasingly compar-
able to those seen in adults. We consider these findings critical for
furthering the understanding of the role of neurodevelopment in
shaping brain-psychopathology associations.

It is important to note that both MDD-RVI and MDD-PRS still
only capture a small proportion of variance within the clinical
phenotype and are not of clinical utility at present, either indi-
vidually or in combination [50, 51]. Brain-based measures like
MDD-RVI, however, are still potentially clinically useful, given
our findings that effects of non-genetic risk factors can be cap-
tured by changes in brain structure. Its clinical potential may be
enhanced in the near future, considering the steady increase in
sample sizes of imaging studies (and genome wide association
studies), which is indicative of a corresponding increase in power
to detect more brain deviations (and genetic variants) that can
hopefully contribute toward higher explained variance [52,
53]. Though not directly clinically useful yet, observations from
such brain-based measures still inform our understanding of the
biology of depression, which may aid in the development of future
diagnostic biomarkers.

Strengths and limitations

Strengths of this study include the large sample sizes, comparison of
imaging and genetic predictors across different age groups, and the
use of longitudinal data. Our findings should however be inter-
preted in the context of some limitations. Both GS-Imaging and
ABCD are community-based samples consisting mainly of healthy
individuals. We thus may not have captured the effects of moderate
to severe MDD, but our results have the benefit of higher general-
izability to the community. Our results may also not generalize to
other ethnic groups as our sample was restricted to individuals of
European ancestry. Future work can replicate this study in multi-
ethnic cohorts when discovery data and analysis tools become more
widely available. Additionally, we note that multiple factors, such as
variations in protocols, can influence the reproducibility of imaging
findings across sites. However, it was recently noted that neuroi-
maging findings, especially from large-scale studies, are generally
consistent [54]. For RVI specifically, it has been shown that the
method was effective when applied in different cohorts [9-
11]. Along with the increase in adoption of standardized protocols
(e.g., the use of ENIGMA’s DTI protocol in this study), there is
more confidence in the replicability and applicability of results
across sites [55-57].

Conclusion

This study presents a comprehensive comparison of brain-based
and genetic risk scores in terms of their association with MDD at
different stages of the lifespan. MDD-RVTs, mainly those derived
from white matter microstructural measures, had stronger
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associations with MDD and outperformed MDD-PRS in adults.
While the contrary is true for adolescents, white matter-based
MDD-RVIs, like in adults, contributed toward the highest pro-
portion of variance explained among the MDD-RVIs. These
findings are significant, as they inform our understanding of the
temporal origins of depression-related brain features. They also
highlight the importance of longitudinal studies for developing
measures of risk for psychiatric illness, and the increasing influ-
ence of environmental exposures on brain structure and MDD
risk across the lifespan.

Supplementary Materials. To view supplementary material for this article,
please visit http://doi.org/10.1192/j.eurpsy.2022.2301.
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