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A GENERALIZATION OF HILBERT'S THEOREM 9 4

HIROSHI SUZUKI

In this paper we shall prove the following theorem conjectured by

Miyake in [3] (see also Jaulent [2]).

THEOREM. Let k be a finite algebraic number field and K be an

unramified abelίan extension of k, then all ideals belonging to at least

[K: k] ideal classes of k become principal in K.

Since the capitulation homomorphism is equivalently translated to a

group-transfer of the galois group (see Miyake [3]), it is enough to prove

the following group-theoretical verison:

THEOREM (The group-theoretical version). Let H be a finite group

and N be a normal subgroup of H containing the commutator subgroup

Hc of H. Then [H: N] divides the order of the kernel of the group-transfer

VH^N: Hab-+NaK

Hubert's theorem 94 and the principal ideal theorem immediately

follow from our theorem.

§ 1. Notations and two lemmas

For a group H, we denote the commutator group of H by H% and

the augmentation ideal of the integral group algebra Z[H] by IH. Put

also

Hab = HIHC,

and

AH = Z[H]l{ΊτH).

For a Z[i/]-module M, we denote the Z[i/]-submodule consisting of all

the iϊ-invariant elements of M by MH and the Pontrjagin dual of M by
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M Λ . The Z[ίf]-module generated by υl9 , υm e M is denoted by

<̂ i> * •> vm) We denote the cardinality of a finite set S by *S.

In this section we shall prove the following two lemmas:

LEMMA 1. Let G be a finite abelian group and M be a monogenerated

Z[G]-module of finite order. Then the order of H~ι{G, M) divides the order

of H°(G, M).

Proof. For a natural number r, we define a standard perfect pairing

on the group algebra over the quotient ring Z/rZ,

Z/rZ[G] X Z/rZ[G] > Q/Z

by (#> h) = l/r δg,h for g, heG. Then for v, w, wf e Z/rZ[G], we can see

(uw, wf) = (w, inv (u) u/),

where inv: Z[G] ^ Z[G] is the inverted isomorphism given by inv (g) = g'1

for geG. Since Z/rZ[G] is self-dual by this pairing, we have an injective

homomorphism i: M<^-+ 0 m Z/rZ[G], by taking the dual of a Z/rZ[G]-

presentation of rank m of MA for some natural numbers r and m; here

© m Z/rZ[G] is a direct sum of m-copies of the algebra Z/rZ[G]. We

define a perfect pairing

771 m

0 Z/rZ[G] X 0 Z/rZ[G] — > Q/Z

by
(w, w') = Σ (u;(, wd ,

i = l

where
m

w = (u;,, , wm), w' = (wί, • • , O e 0 Z/rZ[G] .

Take a generator u = (ϋj, •• ) ι » » ) e ® m Z/rZ[G] of M. Then for «; =

(a;,, • , wm) e © M Z/rZ[G] and a e Z[G],
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Hence the orthogonal ML of M is given by

M± = Ker (inv (v) •: 0 Z/rZ[G] • Z/rZ[G]),

where inv (u) is the homomorphism defined by

inv (v) - w = 2 i n v (ϋi)' ̂ 4
ί = l

for w = (wu , wm) e © w Z/rZ[G]. Then we have

M Λ ^ Im inv (u) ,

and

(MG)A ^ Im inv (u) \IG Im inv (y) .

Since we have inv(/σ) = IG) the isomorphism inv: Z[G] = Z[G] induces an

isomorphism

(MG)A s lmι; .// f l lmι; . ,

where ι> : 0 m Z/rZ[G] -* Z/rZ[G] is the homomorphism given by

for α; = (ιι;1, . . , wm) e 0 W Z/rZ[G].

Put

g = #Im y / JG Im v .

Then we have

(7 = #Im υ-IIβlmυ

= *Im inv (y) //σ Im inv (y)

Now there exist two matrices UeM(m, Z) and JeM(m,IG) such that

uC7 = uJ and det U = q ,

because Im v = <y1? , um> = Zυx + + Zum + J G Imu , and IG Im v-

= /̂ ĵ + + IGvm. Therefore we have

det (U - J)υ = 0 in © Z/rZ[G] .
i = l

This implies
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because det (U - J) = det U == g mod 7σ. Since Af = Z[G]ϋ = Zv + IGM,

the order of M\IGM divides q = *MG. Furthermore we have

*M/Ker (Trσ: M > M) = *TrG M,

because *M is finite. Therefore

m\G, M) = g/*TrG M

: Af • M)\IGM- q\*M\IGM

= *H'ι(G,M).ql*MIIβM

is divisible by *H-1(G, M).

LEMMA 2. Lei G be a finite abelian group, and put n — *G and AG =

Z[G]/(Tr0). Then for any m-generated Z[G]-submodule Y of ®m~x AG (x)z Q,

the order of Y/IGY divides nm~\

Proof, Let {yu -,ym} be a set of generators of Y. For each maxi-

mal ideal m of AG (x)z Q, take an element cm e AG\m which belongs to all

the other maximal ideals of Ao (x)z Q. Then cm becomes 0 at every maxi-

mal ideal except m. If, for some m,

the (Aσ (x)z Q)w-dimension of the space in the left hand is less than m — 1.

If we take an omissible (AG (g)z Q)m-generator and put ί = ί(m), then we

have

•• ,y ί -i,^ + cmym,y<+1, •• ,yw-i>(8)zQ)m =

and we may change the generator yi to yt + cmym. Thus we may assume

for every m, namely

Let TΓ: φ 7 7 1 " 1 ^ (g)zQ~> Y(g)zQ be the Z[G]-homomorphism which

maps the standard έ-th generator e< = (0, , 0,1, 0, , 0) to yt for every

ί = 1, , m — 1. Take an element y e φ7 7 1"1 AG (g)z Q such that π(y) — yw,

and put

ϊ " = <«i, ',em-uy> £ Θ1 A* <g>* Q.
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Then τr(F) = Y shows that the order *Y/IGY divides the order *Y'IIaY'.

Now taking Y' in place of Y, we may further assume that

is the standard i-th generator of ©m~"* AG for each ί = 1, , m — 1, and

the last element

is an arbitrary element of 0 m " 1 A β ( g ) z Q . Now we may naturally iden-

tify AG (x)z Q with the direct summand IG (x)z Q of Q[G] its unit element is

e = I — lln-ΎτG = Σ — V^'ig — 1)

Let

m - l m - l m - l

pr: © AG (x)z Q > φ Ao ® z Q/φ /0

be the natural projection. In a direct forward way, it is easy to see that

m — l nι — 1

( Θ la ®z Q/Z)° = <pr (g,), , pr (g..,)) S ® Z//»Z .

In particular 7G<pr(e!), ,pr(em_!)> = 0. Let M be the Z[G]-submodule

of © m " ! Iβ ΘzQ/Z generated by the single element pr( y). Then we have

m - l

= *(M + <pr (g,), , pr (em.,)
m - l

= *(M+(Θ

= *MII0M-*(M +(®Ia®z QIZ)°)/M
m—1 m—1

= «M/IGM-*(® IQ ®Z Q/Zy/*M fl ( © JG

= ri*-l-*H-l{G, M)I*H\G, M).

Since M is a monogenerated Z[G]-module of finite order. Lemma 1 im-

plies Lemma 2.

§ 2. Proof of the theorem

2.1. Put G = H/N. We may assume that G is an abelian p-group,

for some rational prime number p. Put n = #G.
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Let (fglh) be a 2-cocycle in the cohomology class of the group ex-

tension

1 > Nab > H/Nc > G > 1.

Let {xg\ge G\{1}} be a set of symbols parametrized by G\{1}, and W be

the Z[G]-module

with group action

g-xh = xg.h - xg + fgth (g, heG).

Then we have an exact sequence

0 >Nab > W >IG >0

by assigning g—leIG to xg for geG\{l}; furthermore we also have

W/IGW £ Hab; and the trace homomorphism ΎrG: WjIGW'-> Nab coincides

with the group-transfer VH_N: Hab -> Nab (see Artin-Tate [1] and Miyake

[3], § 3, for example). Therefore it is enough to show *H~ι(G, W) > n.

Let

Ha* -

and take a Z[G]-homomorphism <p: ®m Z[G]-> W which maps the i-th

generator et = (0, , 0, 1, 0, , 0) of 0 m Z[G] to a representative of the

i-th generator ht = (0, , 0, 1, 0, , 0) of ©f=1 Z/g,Z. Then we have a

commutative diagram

0 - _ > Ker nat o φ — > © Z[G] — — > Ia

0 > Nab > W n a t > IG >0

with exact rows. Moreover Nakayama's lemma shows that the localiza-

tion of φ at (p) is surjective. Namely the cokernel of φ is a Z[G]-

module of finite order s prime to p. Hence there exists an element ut e

Ker φ such that ut = s g4 e€ mod 0 m IG for each ί = 1, -, m. Put U =

(uu - , um}, and denote the p-primary part of a finite Z[G]-module A by

Av in general. Then identifying by the isomorphism (0mZ[G]/([/ +

®mIG))p = (W/IGW)P induced by φ, we have
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m m m

H'KG, © Z[G\/U) = Ker (TrG: © Z[G]/(U + © IG) > Ker nat o φ/U)p

c Ker (TrG: W/IGW > Nab)p .

Therefore it is enough to show *if-1(G, © m Z[G]/U) > n = *G. Put τ =

natop, and tt = s-Qt for each i.

2.2. The Z[G]-homomorphism τ: © m Z[G] -> IG has a finite cokernel.

Therefore IG Im r is also of finite index in IG. Since

m m

0 > Ker r ί l φ / f l > © I σ > h Im r > 0

is exact and IG (x)z Q = AG (x)z Q is a finite direct sum of finite field ex-

tensions of Q, we have

in ra — 1 m — 1

(2.2.1) (Ker r Π © h) Θz Q S © 4 (g)z Q = © A, (g)z Q .

In particular Lemma 2 holds for Ker r Π © m /G i« /?/αce o/ @m~1 AG ® z Q.

We are now in the following situation.

(2.2.2) We may assume that there exist a natural number tt and an ele-

ment ut of Ker τ such that ut = tt et mod ©TO IG for each i = 1, , m,

where et is the standard i-th generator of © m Z[G]. Put U = (uu , um}

and Wo = ©mZ[G]/C7.

Now it is enough to prove the following:

LEMMA 3. Under the situation (2.2.2), the order n of G divides the

order of H~\G, Wo).

Proof. Since we have

H~\G, Wo) s H\G, U)

S H°(G, nU)

S H-KG, 0 Z[G]/nU), ,

we may take nU instead of U. In particular, we may assume that n

divides tt for every ί. Put dt = tjn.

The fact ΎrG = ^mod/G shows that KerTrG Π W0/IGW0 c n(Wo//GWo),

where nA means the submodule consisting of all the elements of A of

order dividing n. By the assumption n\tu n(WJIσW^) is isomorphic to

© m Z/nZ and generated by the elements d^e*; i = 1, , m. Put yi =

di'ΎτG-ei — ut for each i = 1, , m, and let Y be the Z[G]-module gener-

ated by all the yt. Then we have
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Y = (yl9 • . . j m ) c @ J G n Ker τ ,

and /ί?Y= JGC/. By the choice of uu we also have

m m m

UjU pi 0 j σ ^ u + 0 /σ/0 /0
m

Therefore U Π φ w IG must coincide with IGU = IGY, because IGU c [/ I

0 m /G. By the following identification

m ?re m

(Kerr Π (J7+ ®7G))/C/S Kerr Π ®/G/i7n ® /β Π Kerr

= (Kerr Π ®Io)HoY,

we have the commutative diagram

XT \ & /Try
ΓΊ (C7+ Ker r/t/

Kerr Π ®m I0HβY

ί
where η is the Z[G]-homomorphism which maps the standard i-th gener-

ator (0, , 0,1, 0, , 0) of φ m Z/raZ to yi mod IG Y. Then we have

Ker (ΎxG: WJIG WQ • Ker τ/U) = Ker η .

Since F is a w-generated submodule of Kerr Π © m IG, (2.2.1) shows that

the order *Y/IGY divides nm~\ Since we have

Q.E.D.

= n»l*(YIIGY),

the order of H'ι(G, WQ) is certainly divided by n.

Thus our theorem is also proved.

Remark. In the above proof, it is easy to see that there exists a

finite group H such that *Ker VH_N = [H: N], if each qt is divisible by n.

https://doi.org/10.1017/S0027763000003445 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003445


HILBERT'S THEOREM 94 169

REFERENCES

[ 1 ] E. Artin and J. Tate, Class Field Theory, Benjamin, 1967.
[ 2 ] J.-F. Jaulent, L'etat actuel du problem de la capitulation, Seminaire de Theorie

des Nombres de Bordeaux, 1987-1988 Exp. no. 17, 1988.
[ 3 ] K. Miyake, Algebraic investigations of Hilbert's theorem 94, the principal ideal

theorem and the capitulation problem, Expo. Math., 7 (1989), 289-346.

Department of Mathematics
Faculty of Science
Tokyo Metropolitan University
Fukasawa Setagaya-ku, Tokyo 158
Japan

https://doi.org/10.1017/S0027763000003445 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003445



