A GENERALIZATION OF HILBERT'S THEOREM 94

HIROSHI SUZUKI

In this paper we shall prove the following theorem conjectured by Miyake in [3] (see also Jaulent [2]).

Theorem. Let k be a finite algebraic number field and K be an unramified abelian extension of k, then all ideals belonging to at least [$K: k$] ideal classes of k become principal in K.

Since the capitulation homomorphism is equivalently translated to a group-transfer of the galois group (see Miyake [3]), it is enough to prove the following group-theoretical verison:

Theorem (The group-theoretical version). Let H be a finite group and N be a normal subgroup of H containing the commutator subgroup H^{c} of H. Then $[H: N]$ divides the order of the kernel of the group-transfer $V_{H \rightarrow N}: H^{a b} \rightarrow N^{a b}$.

Hilbert's theorem 94 and the principal ideal theorem immediately follow from our theorem.

§1. Notations and two lemmas

For a group H, we denote the commutator group of H by H^{c}, and the augmentation ideal of the integral group algebra $\mathrm{Z}[H]$ by I_{H}. Put also

$$
\begin{aligned}
H^{a b} & =H / H^{c} \\
\operatorname{Tr}_{H} & =\sum_{g \in H} g \in \mathbf{Z}[H]
\end{aligned}
$$

and

$$
A_{H}=\mathbf{Z}[H] /\left(\operatorname{Tr}_{H}\right) .
$$

For a $\mathbf{Z}[H]$-module M, we denote the $\mathbf{Z}[H]$-submodule consisting of all the H-invariant elements of M by M^{H} and the Pontrjagin dual of M by

Received March 28, 1990.
M^{\wedge}. The $\mathbf{Z}[H]$-module generated by $v_{1}, \cdots, v_{m} \in M$ is denoted by $\left\langle v_{1}, \cdots, v_{m}\right\rangle$. We denote the cardinality of a finite set S by ${ }^{\#} S$.

In this section we shall prove the following two lemmas:
Lemma 1. Let G be a finite abelian group and M be a monogenerated $\mathrm{Z}[G]$-module of finite order. Then the order of $H^{-1}(G, M)$ divides the order of $H^{0}(G, M)$.

Proof. For a natural number r, we define a standard perfect pairing on the group algebra over the quotient ring $\mathbf{Z} / r \mathbf{Z}$,

$$
\mathbf{Z} / r \mathbf{Z}[G] \times \mathbf{Z} / r \mathbf{Z}[G] \longrightarrow \mathbf{Q} / \mathbf{Z}
$$

by $(g, h)=1 / r \cdot \delta_{g, h}$ for $g, h \in G$. Then for $v, w, w^{\prime} \in \mathbf{Z} / r \mathbf{Z}[G]$, we can see

$$
\left(u w, w^{\prime}\right)=\left(w, \operatorname{inv}(u) \cdot w^{\prime}\right)
$$

where inv: $\mathbf{Z}[G] \cong \mathbf{Z}[G]$ is the inverted isomorphism given by $\operatorname{inv}(g)=g^{-1}$ for $g \in G$. Since $\mathbf{Z} / r \mathbf{Z}[G]$ is self-dual by this pairing, we have an injective homomorphism $i: M \hookrightarrow \oplus^{m} \mathbf{Z} / r \mathbf{Z}[G]$, by taking the dual of a $\mathbf{Z} / r \mathbf{Z}[G]-$ presentation of rank m of M^{\wedge} for some natural numbers r and m; here $\oplus^{m} \mathbf{Z} / r \mathbf{Z}[G]$ is a direct sum of m-copies of the algebra $\mathbf{Z} / r \mathbf{Z}[G]$. We define a perfect pairing

$$
\stackrel{m}{\oplus} \mathbf{Z} / r \mathbf{Z}[G] \times \stackrel{m}{\oplus} \mathbf{Z} / r \mathbf{Z}[G] \longrightarrow \mathbf{Q} / \mathbf{Z}
$$

by

$$
\left(w, w^{\prime}\right)=\sum_{i=1}^{m}\left(w_{i}, w_{i}^{\prime}\right),
$$

where

$$
w=\left(w_{1}, \cdots, w_{m}\right), \quad w^{\prime}=\left(w_{1}^{\prime}, \cdots, w_{m}^{\prime}\right) \in \stackrel{m}{\oplus} \mathbf{Z} / r \mathbf{Z}[G]
$$

Take a generator $v=\left(v_{1}, \cdots, v_{m}\right) \in \oplus^{m} \mathbf{Z} / r \mathbf{Z}[G]$ of M. Then for $w=$ $\left(w_{1}, \cdots, w_{m}\right) \in \oplus^{n} \mathbf{Z} / r \mathbf{Z}[G]$ and $a \in \mathbf{Z}[G]$,

$$
\begin{aligned}
& (a v, w)=0 \\
\Longleftrightarrow & (\forall a \in \mathbf{Z}[G]) \\
\Longleftrightarrow & \left(\left(a v_{1}, \cdots, a v_{m}\right),\left(w_{1}, \cdots, w_{m}\right)\right)=0 \\
\sum_{i=1}^{m}\left(a v_{i}, w_{i}\right)=0 & (\forall a \in \mathbf{Z}[G]) \\
\Longleftrightarrow\left(a, \sum_{i=1}^{m} \operatorname{inv}\left(v_{i}\right) \cdot w_{i}\right)=0 & (\forall a \in \mathbf{Z}[G]) \\
\Longleftrightarrow \sum_{i=1}^{m} \operatorname{inv}\left(v_{i}\right) \cdot w_{i}=0 . & (\forall a \in \mathbf{Z}[G]) \\
&
\end{aligned}
$$

Hence the orthogonal M^{\perp} of M is given by

$$
M^{\perp}=\operatorname{Ker}(\operatorname{inv}(v) \cdot: \stackrel{m}{\oplus} \mathbf{Z} / r \mathbf{Z}[G] \longrightarrow \mathbf{Z} / r \mathbf{Z}[G])
$$

where inv (v). is the homomorphism defined by

$$
\operatorname{inv}(v) \cdot w=\sum_{i=1}^{m} \operatorname{inv}\left(v_{i}\right) \cdot w_{i}
$$

for $w=\left(w_{1}, \cdots, w_{m}\right) \in \oplus^{m} \mathbf{Z} / r \mathbf{Z}[G]$. Then we have

$$
M^{\wedge} \cong \operatorname{Im} \operatorname{inv}(v)
$$

and

$$
\left(M^{G}\right)^{\wedge} \cong \operatorname{Im} \operatorname{inv}(v) \cdot / I_{G} \operatorname{Im} \operatorname{inv}(v) \cdot
$$

Since we have $\operatorname{inv}\left(I_{G}\right)=I_{G}$, the isomorphism inv: $\mathbf{Z}[G] \cong \mathbf{Z}[G]$ induces an isomorphism

$$
\left(M^{G}\right)^{\wedge} \cong \operatorname{Im} v \cdot / I_{G} \operatorname{Im} v \cdot
$$

where $v \cdot: \oplus^{m} \mathbf{Z} / r \mathbf{Z}[G] \rightarrow \mathbf{Z} / r \mathbf{Z}[G]$ is the homomorphism given by

$$
v \cdot w=\sum_{\imath=1}^{m} v_{i} \cdot w_{i}
$$

for $w=\left(w_{1}, \cdots, w_{m}\right) \in \oplus^{m} \mathbf{Z} / r \mathbf{Z}[G]$.
Put

$$
q={ }^{*} \operatorname{Im} v \cdot / I_{G} \operatorname{Im} v .
$$

Then we have

$$
\begin{aligned}
q & ={ }^{\#} \operatorname{Im} v \cdot / I_{G} \operatorname{Im} v . \\
& ={ }^{\#} \operatorname{Im} \operatorname{inv}(v) \cdot / I_{G} \operatorname{Im} \operatorname{inv}(v) . \\
& ={ }^{\#}\left(M^{G}\right)^{\wedge} \\
& ={ }^{\#} M^{G} .
\end{aligned}
$$

Now there exist two matrices $U \in \mathrm{M}(m, \mathbf{Z})$ and $J \in \mathrm{M}\left(m, I_{G}\right)$ such that

$$
v U=v J \quad \text { and } \quad \operatorname{det} U=q
$$

because $\operatorname{Im} v \cdot=\left\langle v_{1}, \cdots, v_{m}\right\rangle=\mathbf{Z} v_{1}+\cdots+\mathbf{Z} v_{m}+I_{G} \operatorname{Im} v \cdot$, and $I_{G} \operatorname{Im} v$. $=I_{G} v_{1}+\cdots+I_{G} v_{m}$. Therefore we have

$$
\operatorname{det}(U-J) v=0 \quad \text { in } \underset{i=1}{m} \mathbf{Z} / r \mathbf{Z}[G]
$$

This implies

$$
q \cdot M / I_{G} M=0
$$

because $\operatorname{det}(U-J) \equiv \operatorname{det} U \equiv q \bmod I_{G} . \quad$ Since $M=\mathbf{Z}[G] v=\mathbf{Z} v+I_{G} M$, the order of $M / I_{G} M$ divides $q={ }^{\#} M^{G}$. Furthermore we have

$$
{ }^{\#} M / \operatorname{Ker}\left(\operatorname{Tr}_{G}: M \longrightarrow M\right)={ }^{*} \operatorname{Tr}_{G} M,
$$

because ${ }^{\text {\# }} M$ is finite. Therefore

$$
\begin{aligned}
{ }^{\sharp} H^{\circ}(G, M) & =q /{ }^{*} \operatorname{Tr}_{G} M \\
& \left.={ }^{*} \operatorname{Ker}^{\left(\operatorname{Tr}_{G}: M \longrightarrow\right.} M\right) / I_{G} M \cdot q /{ }^{*} M / I_{G} M \\
& =\left.{ }^{*} H^{-1}(G, M) \cdot q\right|^{*} M / I_{G} M
\end{aligned}
$$

is divisible by ${ }^{\sharp} H^{-1}(G, M)$.
Lemma 2. Let G be a finite abelian group, and put $n={ }^{*} G$ and $A_{G}=$ $\mathbf{Z}[G] /\left(\operatorname{Tr}_{G}\right)$. Then for any m-generated $\mathbf{Z}[G]$-submodule Y of $\oplus^{m-1} A_{G} \otimes_{\mathbf{Z}} \mathbf{Q}$, the order of $Y \mid I_{G} Y$ divides n^{m-1}.

Proof. Let $\left\{y_{1}, \cdots, y_{m}\right\}$ be a set of generators of Y. For each maximal ideal \mathfrak{m} of $A_{G} \otimes_{\mathbf{z}} \mathbf{Q}$, take an element $c_{\mathfrak{m}} \in A_{G} \backslash \mathfrak{m}$ which belongs to all the other maximal ideals of $A_{G} \otimes_{\mathbf{z}} \mathbf{Q}$. Then c_{m} becomes 0 at every maxi$m a l$ ideal except \mathfrak{m}. If, for some \mathfrak{m},

$$
\left(\left\langle y_{1}, \cdots, y_{m-1}\right\rangle \otimes_{\mathbf{z}} \mathbf{Q}\right)_{\mathrm{m}} \neq\left(Y \otimes_{\mathbf{z}} \mathbf{Q}\right)_{\mathrm{m}},
$$

the $\left(A_{G} \otimes_{\mathbf{z}} \mathbf{Q}\right)_{\mathrm{m}}$-dimension of the space in the left hand is less than $m-1$. If we take an omissible $\left(A_{G} \otimes_{\mathrm{z}} \mathbf{Q}\right)_{\mathrm{m}}$-generator and put $i=i(\mathfrak{n})$, then we have

$$
\left(\left\langle y_{1}, \cdots, y_{i-1}, y_{i}+c_{\mathrm{m}} y_{m}, y_{i+1}, \cdots, y_{m-1}\right\rangle \otimes_{\mathbf{z}} \mathbf{Q}\right)_{\mathrm{m}}=\left(Y \otimes_{\mathbf{z}} \mathbf{Q}\right)_{\mathrm{m}}
$$

and we may change the generator y_{i} to $y_{i}+c_{\mathrm{m}} y_{m}$. Thus we may assume

$$
\left(\left\langle y_{1}, \cdots, y_{m-1}\right\rangle \otimes_{\mathbf{Z}} \mathbf{Q}\right)_{\mathbf{m}}=\left(Y \otimes_{\mathbf{z}} \mathbf{Q}\right)_{\mathrm{m}}
$$

for every \mathfrak{m}, namely

$$
\left\langle y_{1}, \cdots, y_{m-1}\right\rangle \otimes_{\mathbf{z}} \mathbf{Q}=Y \otimes_{\mathbf{z}} \mathbf{Q}
$$

Let $\pi: \oplus^{m-1} A_{G} \otimes_{\mathbf{Z}} \mathbf{Q} \rightarrow Y \otimes_{\mathbf{Z}} \mathbf{Q}$ be the $\mathbf{Z}[G]$-homomorphism which maps the standard i-th generator $\bar{e}_{i}=(0, \cdots, 0,1,0, \cdots, 0)$ to y_{i} for every $i=1, \cdots, m-1$. Take an element $y \in \oplus^{m-1} A_{G} \otimes_{\mathbf{Z}} \mathbf{Q}$ such that $\pi(y)=y_{m}$, and put

$$
Y^{\prime}=\left\langle\bar{e}_{1}, \cdots, \bar{e}_{m-1}, y\right\rangle \subseteq \oplus^{m-1} A_{G} \otimes_{\mathbf{Z}} \mathbf{Q} .
$$

Then $\pi\left(Y^{\prime}\right)=Y$ shows that the order ${ }^{\#} Y \mid I_{G} Y$ divides the order ${ }^{\#} Y^{\prime} \mid I_{G} Y^{\prime}$. Now taking Y^{\prime} in place of Y, we may further assume that

$$
y_{i}=\bar{e}_{i}
$$

is the standard i-th generator of $\oplus^{m-1} A_{G}$ for each $i=1, \cdots, m-1$, and the last element

$$
y_{m}=y
$$

is an arbitrary element of $\oplus^{m-1} A_{G} \otimes_{\mathbf{Z}} \mathbf{Q}$. Now we may naturally identify $A_{G} \otimes_{\mathbf{Z}} \mathbf{Q}$ with the direct summand $I_{G} \otimes_{\mathbf{Z}} \mathbf{Q}$ of $\mathbf{Q}[G]$; its unit element is

$$
e=1-1 / n \cdot \operatorname{Tr}_{G}=\sum_{g \in G}-1 / n \cdot(g-1)
$$

Let

$$
\begin{aligned}
\operatorname{pr}: \oplus \oplus_{G} A_{G} \otimes_{\mathbf{Z}} \mathbf{Q} & \longrightarrow \oplus_{\oplus}^{m-1} A_{G} \otimes_{\mathbf{Z}} \mathbf{Q} / \oplus^{m-1} I_{G} \\
& =\oplus_{\oplus}^{m-1} I_{G} \otimes_{\mathbf{z}} \mathbf{Q} / \mathbf{Z}
\end{aligned}
$$

be the natural projection. In a direct forward way, it is easy to see that

$$
\left(\oplus_{\oplus}^{m-1} I_{G} \otimes_{\mathbf{Z}} \mathbf{Q} / \mathbf{Z}\right)^{G}=\left\langle\operatorname{pr}\left(\bar{e}_{1}\right), \cdots, \operatorname{pr}\left(\bar{e}_{m-1}\right)\right\rangle \cong{ }^{m-1} \mathbf{Z} / n \mathbf{Z}
$$

In particular $I_{G}\left\langle\operatorname{pr}\left(\bar{e}_{1}\right), \cdots, \operatorname{pr}\left(\bar{e}_{m-1}\right)\right\rangle=0$. Let M be the $\mathrm{Z}[G]$-submodule of $\oplus^{m-1} I_{G} \otimes_{\mathbf{z}} \mathbf{Q} / \mathbf{Z}$ generated by the single element $\operatorname{pr}(y)$. Then we have

$$
\begin{aligned}
& { }^{\#} Y \mid I_{G} Y={ }^{\#} \operatorname{pr}(Y) / I_{G} \operatorname{pr}(Y) \\
& ={ }^{\#}\left(M+\left\langle\operatorname{pr}\left(\bar{e}_{1}\right), \cdots, \operatorname{pr}\left(\bar{e}_{m-1}\right)\right\rangle\right) / I_{G} M \\
& ={ }^{\#}\left(M+\left({ }^{m-1} I_{G} \otimes_{\mathbf{z}} \mathbf{Q} / \mathbf{Z}\right)^{G}\right) / I_{G} M \\
& ={ }^{\#} M / I_{G} M \cdot{ }^{\#}\left(M+\left({ }^{m-1}{ }^{\oplus} I_{G} \otimes_{\mathbf{z}} \mathbf{Q} / \mathbf{Z}\right)^{G}\right) / M \\
& \left.\left.={ }^{\#} M / I_{G} M \cdot \stackrel{\#-1}{\oplus} I_{G} \otimes_{\mathbf{z}} \mathbf{Q} / \mathbf{Z}\right)^{G} / \# M \cap \stackrel{m-1}{\oplus}_{\oplus} I_{G} \otimes_{\mathbf{z}} \mathbf{Q} / \mathbf{Z}\right)^{G} \\
& =n^{m-1} \cdot{ }^{\#} H^{-1}(G, M){ }^{\#} H^{0}(G, M) \text {. }
\end{aligned}
$$

Since M is a monogenerated $\mathbf{Z}[G]$-module of finite order, Lemma 1 im plies Lemma 2.

§2. Proof of the theorem

2.1. Put $G=H / N$. We may assume that G is an abelian p-group, for some rational prime number p. Put $n={ }^{*} G$.

Let $\left(f_{g, h}\right)$ be a 2 -cocycle in the cohomology class of the group extension

$$
1 \longrightarrow N^{a b} \longrightarrow H / N^{c} \longrightarrow G \longrightarrow 1 .
$$

Let $\left\{x_{g} \mid g \in G \backslash\{1\}\right\}$ be a set of symbols parametrized by $G \backslash\{1\}$, and W be the $\mathbf{Z}[G]$-module

$$
N^{a b} \oplus\left(\underset{g \in G \backslash\{1\}}{\oplus} \mathbf{Z} \cdot x_{g}\right)
$$

with group action

$$
g \cdot x_{h}=x_{g \cdot h}-x_{g}+f_{g, h} \quad(g, h \in G) .
$$

Then we have an exact sequence

$$
0 \longrightarrow N^{a b} \longrightarrow W \longrightarrow I_{G} \longrightarrow 0
$$

by assigning $g-1 \in I_{G}$ to x_{g} for $g \in G \backslash\{1\}$; furthermore we also have $W / I_{G} W \cong H^{a b}$; and the trace homomorphism $\operatorname{Tr}_{G}: W / I_{G} W \rightarrow N^{a b}$ coincides with the group-transfer $V_{H \rightarrow N}: H^{a b} \rightarrow N^{a b}$ (see Artin-Tate [1] and Miyake [3], § 3, for example). Therefore it is enough to show ${ }^{*} H^{-1}(G, W) \geq n$.

Let

$$
H^{a b}=W / I_{G} W \cong \oplus_{i=1}^{m} \mathbf{Z} / q_{i} \mathbf{Z}
$$

and take a $\mathbf{Z}[G]$-homomorphism $\varphi: \oplus^{m} \mathbf{Z}[G] \rightarrow W$ which maps the i-th generator $e_{i}=(0, \cdots, 0,1,0, \cdots, 0)$ of $\oplus^{m} \mathbf{Z}[G]$ to a representative of the i-th generator $h_{i}=(0, \cdots, 0,1,0, \cdots, 0)$ of $\oplus_{i=1}^{m} \mathbf{Z} / q_{i} \mathbf{Z}$. Then we have a commutative diagram

with exact rows. Moreover Nakayama's lemma shows that the localization of φ at (p) is surjective. Namely the cokernel of φ is a $\mathbf{Z}[G]$ module of finite order s prime to p. Hence there exists an element $u_{i} \in$ $\operatorname{Ker} \varphi$ such that $u_{i} \equiv s \cdot q_{i} \cdot e_{i} \bmod \oplus^{m} I_{G}$ for each $i=1, \cdots, m$. Put $U=$ $\left\langle u_{1}, \cdots, u_{m}\right\rangle$, and denote the p-primary part of a finite $\mathbf{Z}[G]$-module A by A_{p} in general. Then identifying by the isomorphism $\left(\oplus^{m} \mathbf{Z}[G] /(U+\right.$ $\left.\left.\oplus^{m} I_{G}\right)\right)_{p} \cong\left(W / I_{G} W\right)_{p}$ induced by φ, we have

$$
\begin{aligned}
H^{-1}(G, \stackrel{m}{\oplus} \mathbf{Z}[G] / U) & =\operatorname{Ker}\left(\operatorname{Tr}_{G}: \stackrel{m}{\oplus} \mathbf{Z}[G] /\left(U+\stackrel{m}{\oplus} I_{G}\right) \longrightarrow \text { Ker nat } \circ \varphi / U\right)_{p} \\
& \subseteq \operatorname{Ker}\left(\operatorname{Tr}_{G}: W / I_{G} W \longrightarrow N^{a b}\right)_{p} .
\end{aligned}
$$

Therefore it is enough to show ${ }^{\#} H^{-1}\left(G, \oplus^{m} \mathbf{Z}[G] / U\right) \geq n={ }^{\#} G$. Put $\tau=$ nat $\circ \varphi$, and $t_{i}=s \cdot q_{i}$ for each i.
2.2. The $\mathbf{Z}[G]$-homomorphism $\tau: \oplus^{m} \mathbf{Z}[G] \rightarrow I_{G}$ has a finite cokernel. Therefore $I_{G} \operatorname{Im} \tau$ is also of finite index in I_{G}. Since

$$
0 \longrightarrow \operatorname{Ker} \tau \cap \stackrel{m}{\oplus} I_{G} \longrightarrow \stackrel{m}{\oplus} I_{G} \longrightarrow I_{G} \operatorname{Im} \tau \longrightarrow 0
$$

is exact and $I_{G} \otimes_{\mathbf{z}} \mathbf{Q}=A_{G} \otimes_{\mathbf{Z}} \mathbf{Q}$ is a finite direct sum of finite field extensions of \mathbf{Q}, we have

$$
\begin{equation*}
\left(\operatorname{Ker} \tau \cap \oplus_{\oplus}^{m} I_{G}\right) \otimes_{\mathbf{Z}} \mathbf{Q} \cong \oplus^{m-1} I_{G} \otimes_{\mathbf{Z}} \mathbf{Q}=\oplus_{\oplus}^{m-1} A_{G} \otimes_{\mathbf{Z}} \mathbf{Q} \tag{2.2.1}
\end{equation*}
$$

In particular Lemma 2 holds for $\operatorname{Ker} \tau \cap \oplus^{n} I_{G}$ in place of $\oplus^{m-1} A_{G} \otimes_{\mathbf{z}} \mathbf{Q}$.
We are now in the following situation.
(2.2.2) We may assume that there exist a natural number t_{i} and an element u_{i} of $\operatorname{Ker} \tau$ such that $u_{i} \equiv t_{i} \cdot e_{i} \bmod \oplus^{m} I_{G}$ for each $i=1, \cdots, m$, where e_{i} is the standard i-th generator of $\oplus^{m} \mathbf{Z}[G]$. Put $U=\left\langle u_{1}, \cdots, u_{m}\right\rangle$ and $W_{0}=\oplus^{m} \mathbf{Z}[G] / U$.

Now it is enough to prove the following:
Lemma 3. Under the situation (2.2.2), the order n of G divides the order of $H^{-1}\left(G, W_{0}\right)$.

Proof. Since we have

$$
\begin{aligned}
H^{-1}\left(G, W_{0}\right) & \cong H^{0}(G, U) \\
& \cong H^{0}(G, n U) \\
& \cong H^{-1}\left(G, \oplus \begin{array}{|c}
\oplus \\
\mathbf{Z}[G] / n U)
\end{array}\right.
\end{aligned}
$$

we may take $n U$ instead of U. In particular, we may assume that n divides t_{i} for every i. Put $d_{i}=t_{i} / n$.

The fact $\operatorname{Tr}_{G} \equiv n \bmod I_{G}$ shows that $\operatorname{Ker} \operatorname{Tr}_{G} \cap W_{0} / I_{G} W_{0} \subseteq{ }_{n}\left(W_{0} / I_{G} W_{0}\right)$, where ${ }_{n} A$ means the submodule consisting of all the elements of A of order dividing n. By the assumption $n \mid t_{i},{ }_{n}\left(W_{0} / I_{G} W_{0}\right)$ is isomorphic to $\oplus^{m} \mathbf{Z} / n \mathbf{Z}$ and generated by the elements $d_{i} \cdot e_{i} ; i=1, \cdots, m$. Put $y_{i}=$ $d_{i} \cdot \operatorname{Tr}_{G} \cdot e_{i}-u_{i}$ for each $i=1, \cdots, m$, and let Y be the $\mathrm{Z}[G]$-module generated by all the y_{i}. Then we have

$$
Y=\left\langle y_{1}, \cdots, y_{m}\right\rangle \subseteq \stackrel{m}{\oplus} I_{G} \cap \operatorname{Ker} \tau
$$

and $I_{G} Y=I_{G} U$. By the choice of u_{i}, we also have

$$
\begin{aligned}
U / U \cap \stackrel{m}{\oplus} I_{G} & \cong U+\stackrel{m}{\oplus} I_{G} / \stackrel{m}{\oplus} I_{G} \\
& \cong \stackrel{m}{\oplus} \mathbf{Z} \cong U / I_{G} U .
\end{aligned}
$$

Therefore $U \cap \oplus^{m} I_{G}$ must coincide with $I_{G} U=I_{G} Y$, because $I_{G} U \subseteq U \cap$ $\oplus^{m} I_{G}$. By the following identification

$$
\begin{aligned}
\left(\operatorname{Ker} \tau \cap\left(U+\stackrel{m}{\oplus} I_{G}\right)\right) / U & \cong \operatorname{Ker} \tau \cap \stackrel{m}{\oplus} I_{G} / U \cap \stackrel{m}{\oplus} I_{G} \cap \operatorname{Ker} \tau \\
& =\left(\operatorname{Ker} \tau \cap \stackrel{m}{\oplus} I_{G}\right) / I_{G} Y,
\end{aligned}
$$

we have the commutative diagram

where η is the $\mathbf{Z}[G]$-homomorphism which maps the standard i-th generator $(0, \cdots, 0,1,0, \cdots, 0)$ of $\oplus^{m} \mathbf{Z} / n \mathbf{Z}$ to $y_{i} \bmod I_{G} Y$. Then we have

$$
\operatorname{Ker}\left(\operatorname{Tr}_{G}: W_{0} / I_{G} W_{0} \longrightarrow \operatorname{Ker} \tau / U\right)=\operatorname{Ker} \eta
$$

Since Y is a m-generated submodule of $\operatorname{Ker} \tau \cap \oplus^{m} I_{G}$, (2.2.1) shows that the order ${ }^{\#} Y / I_{G} Y$ divides n^{m-1}. Since we have

$$
\begin{aligned}
{ }^{\#} H^{-1}\left(G, W_{0}\right) & ={ }^{\#} \operatorname{Ker} \eta \\
& =n^{m} /\left(Y \mid I_{G} Y\right),
\end{aligned}
$$

the order of $H^{-1}\left(G, W_{0}\right)$ is certainly divided by n.
Q.E.D.

Thus our theorem is also proved.
Remark. In the above proof, it is easy to see that there exists a finite group H such that ${ }^{*} \operatorname{Ker} V_{H \rightarrow N}=[H: N]$, if each q_{i} is divisible by n.

References

[1] E. Artin and J. Tate, Class Field Theory, Benjamin, 1967.
[2] J.-F. Jaulent, L'état actuel du problem de la capitulation, Séminaire de Théorie des Nombres de Bordeaux, 1987-1988 Exp. no. 17, 1988.
[3] K. Miyake, Algebraic investigations of Hilbert's theorem 94, the principal ideal theorem and the capitulation problem, Expo. Math., 7 (1989), 289-346.

Department of Mathematics
Faculty of Science
Tokyo Metropolitan University
Fukasawa Setagaya-ku, Tokyo 158
Japan

