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The use of graphs in the study of groups is well-established. In this paper, we wish to
indicate how certain graph-like objects may be used in a similar way. A diagram is a
pseudograph which may have some free edges, i.e. edges with just one end.

We discuss two kinds of diagram related to some Fuchsian groups. In the first section,
we define D-diagrams for finitely generated Fuchsian groups of the first kind. From these,
various kinds of information can be obtained. The technique is equivalent to the
permutation description in [7] and [12]. Such diagrams were used in [11] for the modular
group, and in [9] for a wider class of groups. In the second section, we define L-diagrams
for the modular group, with a brief indication of the extension to other groups. Such
diagrams were used in [6] for special subgroups of the modular group.

If F is a finitely generated Fuchsian group of the first kind, then it has a presentation

l,..., Ef,Pu ... ,Ph,Au Bu ..-., Ag, Bg:

£ ? • = . . . = E ? ' = r i ^ f i p t n [Ak, Bfc]=A (i)
i = l (=1 k = l /

where nu..., rif are integers greater than one. Elements which are F-conjugate to a
non-trivial power of some Et (resp. some Pt) are called elliptic (resp. parabolic). All other
elements of F-{7) are called hyperbolic. See [5].

1. D-diagrams. In this section, we do not allow free edges. Suppose that D is a
directed diagram in which each edge and loop is coloured by one of a finite set C of
colours. Then D is well-coloured by C if, for each ceC, each vertex of D has a c-loop or
is the initial point of one c-edge and the end point of one c-edge.

If D is well-coloured by C, then each ceC induces a permutation TT(C) of V(D), the
vertex set of D. For ceC, we put c"1 for a c-loop or c-edge of D traversed in the
opposite direction. Clearly, (ir(c))~1 = 'jr(c~1). Put C1 = {c~1:ceC\.

A walk (over C) is a finite sequence of elements of C U Q . The walk w = cu..., c,,
corresponds to the permutation -n-(w) = 7r(cn)... TT(C^).

Suppose that F has presentation (1). Let C be a set of / + h + 2 g colours labelled by
the generators of F. Then D is a D-diagram for F if

(a) D is a directed diagram with a finite or countable vertex set and a distinguished
vertex P,

(b) D is well-coloured by C,
(c) for i = 1 , . . . , / , ME?1) is the identity,
(d) ir(Eu...,Ef, Pu...,Ph, AT\ BT\ Aa, BU...,A;\ B " \ \ , Bs) is the

identity,
(e) D is connected.
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104 W. W. STOTHERS

Condition (c) may be restated as
(c') for i = 1 , . . . , / , the Et-edges form m-gons, where m | r^.

An Ej-loop or an E{ -polygon with fewer than rt; sides is a degenerate polygon.
Any element of F can be expressed as a product of elements of CUC, and so

determines a walk over C. The conditions on a D-diagram guarantee that two expressions
for the same element of F give the same permutation of the vertex set. Given a
D-diagram D, it is clear that, if we use the same symbol for an element of F and for a
corresponding walk, then

G(D) = {weF: ir(w) fixes P}
= {w e F : edges of w determine a closed path at P}

is a subgroup of F. Each right coset consists of elements which give a path from P to a
fixed vertex of D. Hence, the index of G(D) in F is equal to the number of vertices of D.

Conversely, a subgroup G of F determines D(G), a D-diagram for F in the following
way. We begin with a set of vertices labelled by the right cosets of G in F, with G as the
special vertex. For each X e C, we add loops and edges of colour X to indicate the effect
of post-multiplication by X on the cosets. The conditions (a) to (e) are clearly satisfied, (b)
and (c) corresponding to the relations of F. Since GX = G if and only if XeG,
G(D(G)) = G. Also, if D is a diagram for F, then D(G(D)) = D, up to the labelling
introduced on the former during the construction. We therefore have

THEOREM 1.1. There is a 1-1 correspondence between subgroups of index n in F and
D -diagrams for F with n vertices.

The proof we have sketched is similar to that in [15] for the modular group. It is
simpler than that in [1] in that it avoids Schreier systems. The generalization beyond the
modular group is the graphical analogue of [8].

In itself, Theorem 1.1 is of use only for counting arguments, but we can also obtain
geometric and algebraic information from D-diagrams.

Consider the elements of finite order in a subgroup G of F. The elements of finite
order in F are precisely the elliptic elements. We observe that XE^X"1 e G if and only if
the walk E|" has ir(E?)(GX) = GX. If m is the least positive integer with XE^X"1 € G,
then m | Mf, G has an element of order njm and D(G) has a simple closed m-gon of
colour Ej at vertex GX. The element is non-trivial if and only if the polygon at GX is
degenerate. Also, since VE\ = E[ V with V e F, r^ 0 (mod rtj) implies that V = E\, it is easy
to see that XE^X"1 and YE"Y~X are G-conjugate if and only if i = j , m = n and
GY = GXE\ for some r. The last condition means that GX and GY are on the same
Et-polygon in D(G). Hence

THEOREM 1.2. If G is a subgroup of F, the conjugacy classes of maximal finite
subgroups of G are in 1-1 correspondence with the degenerate polygons of D(G).

Similarly, on considering the parabolic elements, we have

THEOREM 1.3. If G is a subgroup ofF, then the conjugacy classes of maximal parabolic
subgroups of G are in 1-1 correspondence with finite polygons of colour Pf in D(G).
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COROLLARY 1.4. If D(G) has h0 finite polygons in colours Pu...,Ph, then the
fundamental domain for G has h0 inequivalent parabolic cusps.

It should be clear that the location of the cusps and elliptic vertices for a subgroup
can be deduced from the D-diagram and knowledge of those for F. See Example 1 below.

The complete D-diagrams are inconvenient from an algebraic point of view. Two
different simplifications can be useful.

Consider first the case where F has parabolic elements, i.e. h>0. We can omit the
generator Pt and the final relation from (1). Then F is presented as a free product:

F = C n i xC n 2 x . . .xC n ,x(CJ h + 2 g - 1 . (2)

We write C for the reduced set of colours. A Dt-diagram for F is obtained from a
D-diagram for F by deleting the Px-loops and edges. Then a Dj-diagram is a structure
satisfying (a), (b), (c) and (e). Given a Dx-diagram, we can recover a unique D-diagram by
adding Pi-loops and edges to satisfy (d). There are obvious analogues of 1.1 and 1.2.

Suppose that D is a Dj-diagram for F. A route is a walk w over C such that TT(W)
fixes P and which does not contain c, c"1 as consecutive terms. Any walk w for which
TT(VV) fixes P determines a unique route (obtained by deleting instances of c, c"1 as often
as possible). Given routes ru r2, the walk "rt then r2" gives a route which we call rtr2.
With this operation, the routes of D form a group 9i (D).

To determine the structure of 98 (D), we can adapt a standard graph theoretic
technique. Given a Dx-diagram D, we take a spanning tree T by deleting all loops and as
many edges as necessary. Let Q be any vertex of D. Then there is a sequence t(Q) of
edges of T leading from P to Q. As T is a tree, t(Q) is well-defined. If QiQ2 is an edge of
D not in T, then it is a chord of T and we associate with it the route r(QxQ2) =
t(Qi), QiQ2, f(Q2)~1- If e is a loop at Q, then there is a route r(e) = r(Q), e,

THEOREM 1.5. IfD is a D-diagram and T a spanning tree, then Sfc(D) is the free group
generated by the routes derived from the loops of D and the chords of T.

The proof for a conventional graph is well known (see [2]); the extension requires no
new ideas.

Some of the routes in a D-diagram come from the relations of F. For example, if w
is any walk, then wEpw'1 defines a route. Let Sfc(F, D) denote the subgroup of 0t{D)
generated by such routes. Clearly, 9?(F, D) is normal and we have

THEOREM 1.6. If D is a D-diagram, then G(D) = 9t(D)/9l(F,D).

COROLLARY 1.7. (i) / / G is a subgroup of a finitely generated free group F, then G is
free.

(ii) If, further, G has index n<°°, then G has rank l + n(h + 2g —2).

Proof. The first part is obvious since, in this case, 9?(F, D(G)) = (I).
The second follows since D(G) has n(h + 2 g - l ) loops and edges, while a spanning

tree requires exactly n -1 edges.
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106 W. W. STOTHERS

This corollary is a special case of the classic theorem of Schreier. Jn fact, the complete
theorem can be proved by relaxing the cardinality conditions in (1) and (a) above.

THEOREM 1.8. Let Fbe a free product with expansion (2), and let Gbe a subgroup ofF.
Then G is a free product of finite cyclic groups (each with order dividing some rtj) and of
infinite cyclic groups.

Proof. Let D be the Di-diagram for G, and let T be a spanning tree for D. Suppose
that 0* is an m-gon of colour Ej. As T is a tree, 0> has at least one edge not in T. Suppose
that the edges of 0* not in T are, in order, eu..., ek. Then, if ex has initial point Q,

r(e,), r(e2) , . . . . r(ek) = t(Q), ET, t(Q)"1.

Figure 1 gives an example, a formal proof is tedious. In the figure, the solid edges are
edges belonging to T.

Figure 1

Since the r(e,) are independent (by 1.5), we can obtain a new basis on replacing r(ej)
by t(Q), EJ", t(Q)~\ If the vertex Q has an Erloop, then r(Q) = t(Q), E,, t(Q)~\ In the
quotient 9t{D)l^t(F, D), t(Q), ET, t(Q)~l can be ignored if m = fij, and is of order njm
otherwise. Since all other generators are of infinite order and we have taken into account
the generators of 9i(F, D), the result follows.

COROLLARY 1.9. If, further, G has finite index, then G is a finite free product.

Proof. Since D is finite, the set of generators of 2ft(D) is finite.

EXAMPLE 1. We recall that the classical modular group T has presentation

T = (El,E2,P1:E\ = E3
2 = E1E2P1 = I). (3)

We realise F as a group of bilinear transformations by taking

The usual fundamental domain for T has elliptic vertices of order 2 (resp. 3) at i
(resp. <p =|(\/3i —1)), and a parabolic cusp at ioo.

Figure 2 shows a Dj-diagram for T. Here, as later, Ex-edges occur in oppositely
directed pairs. Such a pair is shown by a single undirected edge.
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3

By Theorem 1.1, the corresponding subgroup G has index 7. By Theorem 1.2, G has
one class of subgroups of order 2, including (Et), and one of subgroups of order 3,
including <E3 = (E1E2)

3E2(ElE2)~
3). The corresponding Pledges are (P, 3), (3,6), (6,5),

(5,1), (1, P), (2,4), (4,2). Using Theorem 1.3, we have 2 inequivalent parabolic cusps,
one at i« fixed by <Pi> and one at - 1 = E\\i <») fixed by ({E\PlE2)'

1). Elliptic vertices occur
at i and at (231.E2)

3(<p).
To describe the group G, we take the spanning tree consisting of the starred edges in

Fig. 2. We obtain

G = <E1S E3, E^ElE^ : E? = E | = I).

The third generator happens to be parabolic, being E\P\E2. To obtain a presentation of
type (1), some manipulation is needed.

An advantage of the Dj-diagrams is that they can be combined in a very simple way.
Suppose that we have n^ vertices with E^ -loops in a collection of D1-diagrams, with at
least one loop in each diagram. Then we can remove these loops and replace them with an
Ej-coloured, directed Mj-gon. The result is a Dj-diagram. Only one Pi-polygon is affected
at each vertex, so the number of classes of elliptic and parabolic subgroups can be
calculated from those in the original parts. This technique, known as joining, has been
exploited in [11], where we have given an indication of the group theoretic interpretation.

Similar techniques can be used with D-diagrams for non-parabolic groups (i.e. groups
with h=0). In such a case, the need to have condition (d) in the result causes some
complication. One procedure, with many examples, is described in [10].

For internal consistency, we have described diagrams which differ slightly from those
of [10], [11]. In those papers, we have taken the parabolic generator to be E^. Here,
this is Pi1, so the green edges of those papers are the reverse of the Pt-edges in the
present one. This does not affect the number or sizes of the polygons involved. Also, the
pairs of Ej-edges correspond to the red edges of earlier papers.

In the case of a group with elliptic elements, i.e. with / > 0 , it may be useful to
remove one of the Ef from the generating set in (1). The diagram obtained by removing
the Ej -loops and edges is a D2-diagram. The conditions for a D2-diagram are obtained by
deleting from (c) the condition involving Ee, and by replacing (d) by

(d') (ir(E,+ 1, . . . , Ef, Pu ..., Ph, A 7 \ . . . , Bg, Eu ..., E^T' = 1.

These diagrams have the advantage that the parabolic structure of the subgroup is clear.
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108 W. W. STOTHERS

Analogues of 1.5 and 1.6 are straight-forward. With care, a nice generating set can be
obtained, see [11]. We shall use D2-diagrams in the next section.

An obvious question about all these diagrams is the significance of the choice of
special vertex. Suppose that D is a D-diagram with a vertex Q^P. Let w be an element
of F such that TT(W)(P) = Q. Then a walk v is closed at Q if and only if wow'1 is closed at
P, i.e. belongs to G(D). Hence the group obtained from D with Q as distinguished vertex
is conjugate to G(D). An unlabelled D-diagram is a D-diagram with the label P
removed. We have

THEOREM 1.10. The conjugacy classes of subgroups of index n in F are in 1-1
correspondence with the unlabelled D-diagrams for F with n vertices.

It is clear that a subgroup is normal if and only if its D-diagram is not changed by
moving the special vertex. This is equivalent to requiring that the automorphism group of
the D-diagram is vertex-transitive. When the subgroup is normal, the D-diagram is a
Cayley colour graph for the quotient group (see [13] for a discussion of such graphs).
There does not seem to be an easy characterisation of the diagrams of normal subgroups.

The core c(G) of a subgroup G of the group F is the largest normal subgroup of F
contained in G. Clearly, c(G)= n^pX-'Gx. Since it is enough to take the intersection
over coset representatives, c(G) is the intersection of the subgroups obtained by varying
the distinguished vertex in D(G). With the observation before Theorem 1.1,

c(G) = {w e F : TT(VV) fixes all points of D(G)}.

As a corollary, F/c(G) is isomorphic to the group of permutations determined by the
generators of F. Thus, F/c(G) is determined by D(G).

If we have groups HQG^F, with F having presentation (1), then the diagrams
corresponding to H and to G are related as follows. Each coset of G in F is the union of
cosets H, so that G induces a partition of the vertices of D(H) (labelled as for Theorem
1.1). Suppose that X is a generator of F. If HY, HZ belong to the same G-class GY, then
HYX and HZX belong to GYX, so the edge structure in D(H) is compatible with the
partition. Thus, D(G) is a "quotient diagram" of D(H). A D-diagram is imprimitive if the
vertex set has a partition compatible with the edge structure, otherwise it is primitive.

THEOREM 1.11. The maximal subgroups of F are in 1-1 correspondence with the
primitive D-diagrams for F.

Although we have described these diagrams in algebraic terms, there is also a
geometric description. This may explain why both kinds of information can be obtained.
We write f(F) for a fundamental polygon of the Fuchsian group F. If G is a subgroup of
F, then we can take f(G) as a simply connected union of F-translates of f(F). With the
identification of the sides of f(G) indicated by the elements of G, we obtain a surface
tesselated by copies of f(F). Within each copy, we choose a point, adding edges and loops
where copies meet along a side. Since the sides of f(F) are paired by elements of F, we
can direct and colour the loops and edges of the pseudograph obtained. Depending on the
choice of /(F), we get one of our Df-diagrams drawn on the surface f(G).
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As an example, we can take

/(D = {zeC: | z |> l and -3<Re(z)<5>.

The generator Pj sends the side {zeC:Re(z) = | , |z |>l} to the side {zeC:Re(z) = - i
|z |>l} . The generator Et interchanges the sides {zeC:|z| = l, Re(z)>0}, {zeC:\z\ = l,
Re(z)<0}. Using this fundamental polygon, we obtain the D2-diagram for the subgroup.

Figure 3 shows a fundamental domain for the subgroup whose diagram is shown in
Fig. 2. The lower part shows the derived D2-diagram. The broken edges correspond to El3

the solid edges to P,.

8

C2
8 i 1°

Figure 3

Besides providing an alternative approach to diagrams, this also shows that, when the
genus of /(G) can be defined, the D2-diagram can be drawn without intersection on a
surface of this genus. Thus, the subgroups of genus zero in the modular group are
precisely those with planar diagrams.

In certain circumstances, a pseudograph may be interpreted as a diagram for more
than one Fuchsian group. Suppose that F has the presentation (1), and that F* has a
presentation of similar type with generators and parameters distinguished by asterisks.
Suppose, further, that

(ii) / * / * ,
(iii) ni\n*,i =
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110 W. W. STOTHERS

Then a diagram for F is (up to renaming of colours) a diagram for F* since the
conditions on the former clearly include those on the latter. This is a diagramatic
interpretation of the fact that F = F*/N, where N is the normal closure in F* of the set

EXAMPLE 2. Let A be the (2,3,7)-triangle group, i.e.

A = (E*, E*, ES: E*2 = E f = Ef = E*E*E* = I).

Then we can take F = A, F* = T, so that (i), (ii) and (iii) are satisfied.

Figure 4

Figure 4 shows a D2-diagram for A. The corresponding subgroup Gx has index 9 in A
and is a congruence subgroup (corresponding to the prime (2) in the real subfield of
Q(exp(Tri/7))). The figure also represents a subgroup G2 of index 9 in T. Since there are
three parabolic classes, of width 1, 1 and 7, G2 has level 7. By Wohlfahrt's Theorem, a
congruence subgroup of level 7 in T must have index dividing 168, so that G2 is
non-congruence (see [14]). This example shows that it is not possible to give a general rule
for identifying diagrams belonging to congruence subgroups.

Since A/c(d) and T/c(G2) can be obtained from the diagram, they are isomorphic. It
is not difficult to see that Fig. 4 shows the only unlabelled D2-diagram for A with 9
vertices. Since PSL(2,23) is a (2,3,7) group with a subgroup of index 9, this must be the
factor group.

In this case, it is quite easy to see that the subgroups of T which come from diagrams
for A are precisely those of level 7 (see [10]).

2. L-diagrams. We consider the modular group with presentation (3). As in [11], we
associate with a subgroup G of T a list of non-negative integers (r, s, tu h0, hj), the short
specification of G. By Theorem 1.2, r (resp. s) is equal to the number of Et (resp. E2)
loops in D(G). The group G acts in the obvious way on Q* = Q U { H The elements of
Q* fall into h = h0+hao classes. Within each class, the stabilizers are G-conjugate. By
Theorem 1.3, h0 is the number of classes with non-trivial stabilizer. Each such stabilizer is
generated by a T-conjugate of Pi for a positive integer c. This c is the cusp-width of the
relevant class. The sequence of cusp-widths is the cusp-split of G, (c ( l ) , . . . , c(h0)). The
specification of G is the list (r, s, tu h0, hm c ( l ) , . . . , c(h0)). For j = l, we put h(j) =
{ k : l < k < h 0 , c(k) = j}, so that D(G) has h(l) Pj-loops, h(2) Pt-coloured 2-gons, etc..

A K-diagram is a finite or countable diagram such that the edges incident with the
vertex A are labelled by Z (mod n), where n is the degree of A. We allow n =°°. The
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labelling of multiple edges is straight-forward, while a loop receives 2 labels and so
contributes 2 to the degree of the vertex. A free edge has just one label. In many cases, it
is possible to draw the K-diagram with the edges ordered clockwise at each vertex. This
avoids the need for explicit labelling.

Suppose that K is a K-diagram, and that A is a vertex of K. For an integer a, the
edge a +1 at A is the successor of edge a at A. Then K has the triangle property if, when
AC is the successor of AB at A, then there is an edge BC such that BC is the successor
of AC at C and AB the successor of BC at B. Note that A, B and C need not be distinct
since a loop or free edge may be involved. Also, the edges AB, BC, AC need not be
distinct. Figure 5 shows three cases of degeneracy.

Figure 5

In each case, only the relevant edges and vertices are shown. In the first case, A has
degree 1 and XA contributes 2 edges to a single "triangle". In the second case, there is a
free edge at B. This is in just one triangle. In the third case, the loop at C is one side of
triangle CYC, and itself constitutes a degenerate triangle at C.

An L-diagram is a K-diagram with the triangle property. We note that, if an
L-diagram has no degenerate triangles or loops and can be drawn without intersections
and properly ordered incidences on a plane, then we have a triangulation of the plane.

Suppose that G is a subgroup of F and that D = D(G). Using D, we can construct an
L-diagram L. Each vertex of L corresponds to a Px polygon (perhaps infinite) in D. Two
vertices in L are joined if there is a pair of E t edges in D joining vertices in the
corresponding polygons. The labels are determined by the orientation of the Px polygons.
An Ej loop gives rise to a free edge. Figure 6 shows the L-diagram corresponding to the
diagram in Fig. 4.

Figure 6

Given an L-diagram L, we can recover a D2-(and hence a D-) diagram. Round each
vertex of L we draw a small circle meeting only the loops and edges from that vertex.
Each intersection is a vertex of a new diagram D. Round each of the circles, the vertices
are joined to give a polygon which is coloured Pt and directed according to the labelling
of the edges and loops in L. The portions of loops and edges outside the circles give pairs
of edges which are coloured E^ Free edges give Ei-loops. The triangle property in L
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guarantees that D is a D2-diagram, i.e. we can add E2 loops and edges to get a D-diagram
for F, at least up to the choice of a special vertex in D. From earlier results we have

THEOREM 2.1. (i) There is a 1-1 correspondence between conjugacy classes of subgroups
of F and L-diagrams.

(ii) If G is a subgroup of T and L a corresponding L-diagram, then
(a) r is the number of free edges in L,
(b) s is the number of degenerate triangles in L,
(c) h is the number of vertices of L and, for each positive integer j , h(j) is the
number of vertices of degree j . Thus h0 is the number of vertices of finite degree.

The analysis of L-diagrams is complicated by the possibility of loops and free edges.
In a later paper, we hope to discuss some of the results which can be obtained. At present,
we concentrate on the construction of L-diagrams to give two existence results which
extend the main theorem in [11].

THEOREM 2.2. If S — (c(i): i = 1 ,2 , . . . . ) is a sequence of integers each at least 6, then
there is a subgroup of T with r = s = h*, = 0 and with 3> as its cusp-split.

Proof. By 2.1, we have to construct an L-diagram without free edges and degenerate
triangles. Since each such feature implies the existence of a loop (see Fig. 5), an
L-diagram without loops has r = s = 0. To get h*. = 0 and cusp-split 3>, we must ensure that
the vertices have degrees c(l), c(2)

The L-diagram is drawn in stages. Let C(k), k = 0 , 1 , . . . , denote the circle with
centre P and radius k. For; ^ 1, we construct a pseudograph SO) lying in and on CO). For
j > 2 , SO") is a subgraph of S0 + 1)-

The vertex set of S(l) consists of P and c(l) points on C(l). The edge set consists of
the arcs of C(l) and radii joining P to each of the points on C(l). We may as well take
S(l) symmetrical.

Suppose that we have constructed SO) and that
(a) the vertices inside CO) have degrees c ( l ) , . . . , cfa),
(b) the vertices on CO) are numbered n, + 1 , . . . , n̂  + m, (clockwise), with vertex k

having degree a(fc) = 3 or 4,
(c) the edges within CO) each belong to two triangles,
(d) the edges on CO) each belong to one triangle, and their union is the whole of

CO).
If X and Y are adjacent vertices on CO), we add a vertex v{X, Y} on the arc of C0 +1)
within the sector bounded by PX and PY. If, further, Y is vertex k on CO) and lies
between X and Z, then we join Y to u{X, Y}, to v{Y, Z}, and to c(fc)-a(k)-2 (>0 by (b))
points on the arc v{X, Y}, v{Y, Z}. In each case, we choose the smaller of the possible
arcs. The other edges of SO +1) are the arcs of CO +1) joining adjacent vertices. It should
be clear that the v{X, Y] have degree 4 while the other vertices on C0 +1) have degree 3,
so SO' + l) can be numbered as in (b). From the construction, S0 + 1) also satisfies (a), (c)
and (d), so that the construction can proceed.
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In the obvious sense, the limit of the S(/) is an L-diagram. It is clear that it is of the
required type since, after the yth stage, the degrees of vertices within C(j) are not
changed.

THEOREM 2.3. If $ is as in 2.2, then there is a subgroup of T with r = s = 0, h^ = 1 and
with cusp-split J.

Proof. As in 2.2, we construct an L-diagram in stages, but here we add an infinite set
of vertices at each stage.

We take the origin of the coordinate plane as the vertex P. Let DO) be the line y = j
0&1). The DO) replace the CO) of 2.2.

The vertex set of S(l) consists of P and the points {(i, 1): i 6 Z} on D(l). The edge set
of S(l) consists of the segments of D(l) together with edges joining P to each vertex on
D(l). The vertex (i, 1) is labelled 2i +1 and has degree 3 (in S(l)).

Now consider J > 1 . Suppose that X(x, /), Y(y, j) and Z(z, j) are vertices of SO) with
V adjacent to X and to Z, that Y is labelled by (the integer) k and has degree a(k). We
add new vertices A@(x + y), j + 1), B(£(y+ z), j + 1) and edges AX, AY, BX, BY. On the
segment AB of D 0 +1), we add c(k)-a(k)-2 further vertices, each joined to Y. Then Y
has degree c(fc) in S(j + 1). We repeat this process for each such triple of vertices of SO).
We add edges between each adjacent pair of vertices on DO' + l) to complete the
construction of S0 + 1)- All the new vertices have degree 3 or 4 in S0 + 1), so that the
construction can continue. The added vertices are labelled by the integers {2'(2i + l ) : i e
Z}.

Once again, the "limit" of the SO) is an L-diagram and gives a cusp-split of the
required type.

Minor alterations in the above proofs would allow us to consider sequences with
some terms equal to 5. More detailed considerations lead to more general existence
theorems. Observe that the construction in 2.2 is a generalisation of that in [6].

The idea behind L-diagrams extends to groups of type (2, m, °°), i.e. to the groups
F(m, °°) with presentations

F(m, oo) = (X, Y: X2 = Ym = I).

Suppose that K is a K-diagram and that AB is edge b at B and the successor of edge
a at A. Then (B, b) is the first successor of (A, a). For an integer n >2, the nth successor
of (A, a) is the (n —l)th successor of the first successor. A K-diagram has the m-gon
property if, for each vertex-integer pair (A, a), the mth successor of (A, a) is (A, a). This
means that the successive edges at the vertices form (possibly degenerate) m-gons.

Exactly as for 2.3, we have

THEOREM 2.4. There is a 1-1 correspondence between K-diagrams with the m-gon
property and conjugacy classes of subgroups of F(m, oo).

The degrees of the vertices of such a diagram correspond to the "cusp-split" of the
associated subgroup, i.e. to the "cycle pattern" of XY.
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We can further extend the notion to the groups

F(m, n) = <X, Y: X2 = Ym = (XY)n = I).

The correspondence is now with K-diagrams which have
(i) the m-gon property, and
(ii) the degree of each vertex divides n.
These restrictions are so strong that it is doubtful whether the diagrams are of much

practical value. Some results have been obtained for F(3,7) by L. A. Best using
(essentially) K-diagrams. Best's results are unpublished, but include a review of all
subgroups of index <42.

POSTSCRIPT. The methods of the first section have been used for more general groups,
see [3], [4]. These contain proofs of the full Kurosh Subgroup Theorem. The restriction to
our Fuchsian groups leads to the relatively simple proof of 1.8. The second of these
papers has many interesting applications of the method.
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