Canad. Math. Bull. Vol. 14 (3), 1971

TOTALLY REAL SUBFIELDS OF *p*-ADIC FIELDS HAVING THE SYMMETRIC GROUP AS GALOIS GROUP

BY

HOWARD KLEIMAN

I. Introduction. In this paper, an elementary proof is given of the following proposition:

THEOREM 1. If Q_p is an arbitrary field of p-adic numbers, then it contains normal subfields $L_n (2 \le n \le p)$ which have symmetric groups S_n as their respective Galois groups over Q, the field of rational numbers. Furthermore, each L_n may be chosen to be totally real.

Theorem 1 is contained in my Ph.D. dissertation at the University of London. I would like to express my deep appreciation to Professor A. Fröhlich for his advice and encouragement throughout that venture.

II. **Preliminaries.** In order to prove Theorem 1, I shall need the following two theorems by Perron [1] and Weisner [2] as lemmas which I now state without proof:

LEMMA 1 (Perron). Let $k_1, k_2, ..., k_n$ be *n* integers, and $p_1, p_2, ..., p_{n-1}$ be n-1 distinct rational prime integers such that for v = 1, 2, ..., n-2, the *v* numbers

$$p_1k_1, p_1p_2k_2, \ldots, p_1p_2 \ldots p_vk_v$$

are incongruent modulo p_{v+1} and relatively prime to p_{v+1} . Furthermore, suppose none of p_1, \ldots, p_{n-1} divides k_n . Then if

$$f(x) = x(x-p_1k_1)(x-p_1p_2k_2)\dots(x-p_1p_2\dots p_{n-1}k_{n-1}) + p_1p_2\dots p_{n-1}k_n,$$

f(x) has the symmetric group over Q.

LEMMA 2 (Weisner). Let

$$f(x) = ax(x-a_1)\dots(x-a_{n-1})\pm k$$

where $a, k, a_1, \ldots, a_{n-1}$ are positive and the a_j 's are distinct. If the inequalities

$$2nk < aa_{1}a_{2}...a_{n-1}$$

$$2nk < aa_{j}\prod_{\substack{i=1\\i\neq j}} |a_{j}-a_{i}| \quad (j = 1, 2, ..., n-1)$$

are satisfied, the roots of f(x) are all real and lie within the intervals

$$\begin{bmatrix} -\frac{1}{2}, \frac{1}{2} \end{bmatrix}$$
, $\begin{bmatrix} a_j - \frac{1}{2}, a_j + \frac{1}{2} \end{bmatrix}$ $(j = 1, 2, \dots, n-1).$
441

HOWARD KLEIMAN

Proof of Theorem 1. We must first consider the solution of the linear diophantine equation

$$ax = by + c.$$

A necessary and sufficient condition for a solution in integers x and y is that if d is the greatest common divisor of a and b, then d divides c. Thus, given distinct rational primes p_1, \ldots, p_n, p where $|p_j| > p \ge n$, we can find nonzero integers $k_1, k_2, \ldots, k_{n-1}, m_1, m_2, \ldots, m_{n-1}$ such that

(2)
$$(p_1p_2...p_j)k_j = (p_{j+1}p_{j+2}...p_np)m_j + j$$

where j ranges from 1 through n-1. Furthermore, let $k_n = p$. Then the conditions of Lemma 1 on f(x) are met. Since f(x) splits separably into linear factors modulo p, by Hensel's lemma the splitting field of f(x) over Q is contained in Q_p . In each solution (k_j, m_j) of (2), we can choose k_j positive and arbitrarily large. By Lemma 2, f(x) can therefore be chosen to have roots which are real and distinct, yielding the second portion of the theorem.

References

1. O. Perron, Algebra, de Gruyter, Berlin, 2 (1951), p. 220.

2. L. Weisner, Irreducibility of polynomials of degree n which assume the same value n times. Bull. Amer. Math. Soc. 41 (1935), 238-252.

QUEENSBOROUGH COMMUNITY COLLEGE, BAYSIDE, NEW YORK

442