TOTALLY REAL SUBFIELDS OF p-ADIC FIELDS HAVING THE SYMMETRIC GROUP AS GALOIS GROUP

BY
HOWARD KLEIMAN

I. Introduction. In this paper, an elementary proof is given of the following proposition:

Theorem 1. If Q_{p} is an arbitrary field of p-adic numbers, then it contains normal subfields $L_{n}(2 \leq n \leq p)$ which have symmetric groups S_{n} as their respective Galois groups over Q, the field of rational numbers. Furthermore, each L_{n} may be chosen to be totally real.

Theorem 1 is contained in my Ph.D. dissertation at the University of London. I would like to express my deep appreciation to Professor A. Fröhlich for his advice and encouragement throughout that venture.
II. Preliminaries. In order to prove Theorem 1, I shall need the following two theorems by Perron [1] and Weisner [2] as lemmas which I now state without proof:

Lemma 1 (Perron). Let $k_{1}, k_{2}, \ldots, k_{n}$ be n integers, and $p_{1}, p_{2}, \ldots, p_{n-1}$ be $n-1$ distinct rational prime integers such that for $v=1,2, \ldots, n-2$, the v numbers

$$
p_{1} k_{1}, p_{1} p_{2} k_{2}, \ldots, p_{1} p_{2} \ldots p_{v} k_{v}
$$

are incongruent modulo p_{v+1} and relatively prime to p_{v+1}. Furthermore, suppose none of p_{1}, \ldots, p_{n-1} divides k_{n}. Then if

$$
f(x)=x\left(x-p_{1} k_{1}\right)\left(x-p_{1} p_{2} k_{2}\right) \ldots\left(x-p_{1} p_{2} \ldots p_{n-1} k_{n-1}\right)+p_{1} p_{2} \ldots p_{n-1} k_{n}
$$

$f(x)$ has the symmetric group over Q.
Lemma 2 (Weisner). Let

$$
f(x)=a x\left(x-a_{1}\right) \ldots\left(x-a_{n-1}\right) \pm k
$$

where $a, k, a_{1}, \ldots, a_{n-1}$ are positive and the a_{j} 's are distinct. If the inequalities

$$
\begin{aligned}
& 2 n k<a a_{1} a_{2} \ldots a_{n-1} \\
& 2 n k<a a_{j} \prod_{\substack{i=1 \\
i \neq j}}\left|a_{j}-a_{i}\right| \quad(j=1,2, \ldots, n-1)
\end{aligned}
$$

are satisfied, the roots of $f(x)$ are all real and lie within the intervals

$$
\left[-\frac{1}{2}, \frac{1}{2}\right], \quad\left[a_{j}-\frac{1}{2}, a_{j}+\frac{1}{2}\right] \quad(j=1,2, \ldots, n-1) .
$$

Proof of Theorem 1. We must first consider the solution of the linear diophantine equation

$$
\begin{equation*}
a x=b y+c \tag{1}
\end{equation*}
$$

A necessary and sufficient condition for a solution in integers x and y is that if d is the greatest common divisor of a and b, then d divides c. Thus, given distinct rational primes p_{1}, \ldots, p_{n}, p where $\left|p_{j}\right|>p \geq n$, we can find nonzero integers $k_{1}, k_{2}, \ldots, k_{n-1}, m_{1}, m_{2}, \ldots, m_{n-1}$ such that

$$
\begin{equation*}
\left(p_{1} p_{2} \ldots p_{j}\right) k_{j}=\left(p_{j+1} p_{j+2} \ldots p_{n} p\right) m_{j}+j \tag{2}
\end{equation*}
$$

where j ranges from 1 through $n-1$. Furthermore, let $k_{n}=p$. Then the conditions of Lemma 1 on $f(x)$ are met. Since $f(x)$ splits separably into linear factors modulo p, by Hensel's lemma the splitting field of $f(x)$ over Q is contained in Q_{p}. In each solution (k_{j}, m_{j}) of (2), we can choose k_{j} positive and arbitrarily large. By Lemma 2, $f(x)$ can therefore be chosen to have roots which are real and distinct, yielding the second portion of the theorem.

References

1. O. Perron, Algebra, de Gruyter, Berlin, 2 (1951), p. 220.
2. L. Weisner, Irreducibility of polynomials of degree n which assume the same value n times, Bull. Amer. Math. Soc. 41 (1935), 238-252.

Queensborough Community College, Bayside, New York

