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Abstract. The unit sum number u(R) of a ring R is the least k£ such that every
element is the sum of k units; if there is no such k then u(R) is w or co depending
whether the units generate R additively or not. If g M is a left R-module, then the unit
sum number of M is defined to be the unit sum number of the endomorphism ring of
M. Here we show that if R is a ring such that R/J(R) is semisimple and Z, is not a
factor of R/J(R) and if P is a projective R-module such that JP « P, then u(P)=2. As
a result we can see that if P is a projective module over a perfect ring then u(P)=2.

2000 Mathematics Subject Classification. 13C10, 16D40, 16D10, 16G10, 16W20.

1. Introduction. The focus of this paper is on finding the unit sum number of a
certain class of modules. All rings in this paper will have identity elements, all modules
are unitary and considered as left R-modules. We use the symbol U(R) to denote the
group of units of R and J(R) for the Jacobson radical of R. We write the ring of
n x n matrices over R as M,,(R) and Endg(M) for the ring of endomorphisms of the
R-module M.

The unit sum number of rings and modules was first introduced by B. Goldsmith
et al. [4]. Recall that an element r € R is said to be k-good if r = u; + - - - + uy with
uy, ..., u € U(R), and the ring R is said to be k-good if every element of R is k-good.

DEFINITION 1.

(i) For a ring R the unit sum number u(R) is given as
e min{k | Ris k-good} if R is k-good for some k > 1;
e w if Ris not k-good for any k, but every element of R is k-good for some k, (i.e.
when at least U(R) generates R additively);
e oo otherwise (i.e. when U(R) does not generate R additively).
(i) For an R-module M, the unit sum number of M is denoted by u(M) and defined
to be the unit sum number of Endg(M).

There is a considerable body of literature on this topic. Some are without the
terminology used above including [2], [3], [4], [5], [6] and [7]. In 1954 Zelinsky [7]
showed that for a vector space V" over a division ring D, u(}’) = 2 unless the dimension
of Vis 1 and D is the field of two elements. Recently C. Meehan proved this statement
for any free R-module when u(R) = 2. In fact he proved [6, Theorem 2.7] that if m is
a positive integer and a free R-module of finite rank m has unit sum number equal
to 2 then a free R-module of any infinite rank also has unit sum number equal to 2.
Here, by using the results above, we shall prove similar statements for some classes of
projective modules.
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DEFINITION 2. Let M be an R-module and K a submodule of M. We say K is
superfluous (or small) in M, written K < M in case, for every submodule L < M, we
have

K+ L=M implies L= M.
DEFINITION 3. Let M be a left R-module. Then the radical of M is defined as
Rad(M) = ("|{K < M | K is maximal in M}.

From [1, Proposition 17.10] we know that if R is a ring with J(R) = J and Pis a
projective module, then Rad(P) = JP. In fact, we shall prove that if R is a ring such
that R/J(R) is semisimple and does not have Z, as a factor and if P is a projective
R-module such that JP <« P, ( JP small in P), then u(P) = 2. As a result we can see
that any projective R-module P over a perfect ring that does not have Z, as a factor
has unit sum number 2; also if R/J(R) is semisimple and does not have Z, as a factor
and P is a finitely generated projective module, then again, u(P) = 2.

2. The unit sum number of some projective modules. Before discussing the main
results we need some properties of the unit sum number of rings and modules.

LEMMA 4. Let R be a ring and let I be an ideal of R. Then u(R/I) < u(R) with
equality if I is contained in the Jacobson radical of R.

Proof. See [2, F2]. ]

Note that since u(Z,) = w, if Z, is a factor of R then, by Lemma 4, the unit sum
number of R cannot be finite and it is w or co. Hence having Z, as a factor is a strong
tool in determining whether u(R) is finite or not.

LEMMA 5. If the ring R is a finite product of the rings Ry, ..., R,, then u(R) >
max{u(Ry), ..., u(R,)}, with equality holding if the right hand side is either finite or co.

Proof. See [2, F5]. O

LEMMA 6. Let R be a ring and xkM = []._,; M; a finite direct product of R-modules.
For alli # j, let Hom(M;, M;) = 0. Then
u(M) > max{u(M,), ..., u(M,)},

with equality holding if the right hand side is either finite or co.

Proof. As Hom(M;, M;) = 0, for i # j, Endg(M) = [[._, Endg(M,). Now, clearly
by the definition of the unit sum number of modules and Lemma 5, the result
follows. O

PROPOSITION 7. Let rX be a simple module and R = X", for some n € N, and let M
be an R-module. Then u(M) = 2 unless M = X as modules and Endg(X) = Z; as rings.

Proof. As X issimpleitisclear that R = X" is semisimple. Let F be a free R-module.
There is a set B such that F = R® and, since R = X", F = X for some set S. As any
R-module is a homomorphic image of a free R-module, by [1, Proposition 9.4] there is
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a set A such that M = X, for some set A. If | 4| is infinite, then we have
X = x ) = (xymAD = R,

Therefore it is clear that g M is a free R-module. Now, since X is simple, Endz(X) is a
division ring which we denote by D. Hence, viewed as rings,

R = Endg(R) = Endg(X") = M, (D).

By [4, Proposition 1.2(c)] the unit sum number of R is 2. Therefore, by [6, Theorem 2.7],
u(M) =2 as well. Now if | 4| is finite, then for some integer 7, M = X' and so
Endz(M) = Endg(X") = M,(D). Hence w(M) = 2. 0

PROPOSITION 8. Let D; be a division ring, for every i=1,...,k, and let R =
M, (D1) x My,(D2) X -+ x My, (Dy). If M is an R-module and 7, is not a factor of
R, thenu(M) = 2.

Proof. By the theory of categories it is well known that if we denote the category
of all R;-modules by g, M and the category of all R,-modules by g, M then we have

RIM X R, M ;Rlsz M.

Now, since M is an R-module, there are submodules M; which are M,,,(D;) -modules,
such that M = My x M> x --- x M, and Hom(M;, M;) =0 for i #j. Now if for
each i we set R; = M,,(D;), then there are simple R;-modules X; such that R; = X"
as R;-modules. By Proposition 7, u(M;) =2 for each i. Therefore u(M) =2, by
Lemma 5. ]

All that remains is to prove the main theorem.

THEOREM 9. Let R be a ring such that R/J(R) is semisimple and 7, is not a factor
of R/I(R). If P is a projective R-module with JP < P, then u(P) = 2.

Proof. We write J = J(R) for the Jacobson radical of R. From [1, Corollary 17.12]
we know that

Endg(P)/J(Endgr(P)) = Endr(P/JP) = Endg,,(P/JP).

As R/J is semisimple, by Wedderburn’s Second Theorem we know that R/J is a finite
direct product of simple Artinian rings. In fact there are division rings Dy, ..., Dy
such that R/J = ]_[f:1 M,,(D;). By Proposition 8 it is clear that u(Endg/,(P/JP)) = 2.
Hence u(Endg(P)/J(Endg(P))) = 2 and so, by Lemma 4, u(Endz(P)) = 2. This gives
u(P) =2. O

In the following results we can see some classes of projective modules that satisfy
the Main Theorem’s conditions.

COROLLARY 10. Let R be a perfect ring and assume that 7 is not a factor of R. If P
is a projective R-module, then u(P) = 2.

Proof. Since R is a perfect ring, by [1, Theorem 28.4] we can conclude that R/J(R)
is semisimple, where J(R) is left T-nilpotent, which implies that JP <« P. Now, since
Z, is not a factor of R, it is not a factor of R/J(R), so that the result clearly follows
from Theorem 9. U
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COROLLARY 11. Let R be a ring such that R/J(R) is semisimple and Z is not a factor
of R. If P is a finitely generated projective R-module, then u(P) = 2.

Proof. In this case, since P is a finitely generated projective module, JP « P and
therefore the result follows from Theorem 9. O

COROLLARY 12. Let R be a semiprimary ring (i.e. R/J(R) is semisimple and J(R) is
nilpotent). If P is a projective R-module and 7, is not a factor of R, then u(P) = 2.

Proof. Since R is a semiprimary ring, we can see that rad(P) = JP <« P. Hence the
result again follows from Theorem 9. O
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