
Compositio Math. 142 (2006) 1351–1372
doi:10.1112/S0010437X06002247

Diophantine properties of real numbers generated by

finite automata

Boris Adamczewski and Julien Cassaigne

Abstract

We study some Diophantine properties of automatic real numbers and we present a
method to derive irrationality measures for such numbers. As a consequence, we prove that
the b-adic expansion of a Liouville number cannot be generated by a finite automaton, a
conjecture due to Shallit.

1. Introduction

The seminal work of Turing [Tur37] gives rise to a rough classification of real numbers. On one side
we find computable real numbers, that is, real numbers whose binary (or more generally b-adic)
expansion can be produced by a Turing machine, while on the other side lie uncomputable real
numbers which, in some sense, ‘escape to computers’. Although most real numbers belong to the
second class (the first being countable), classical mathematical constants are usually computable.
By classical constants, we mean real numbers such as

√
2 (or more generally algebraic real numbers),

π and ζ(3). Note that the notion of period as considered by Kontsevitch and Zagier [KZ01] could
offer an interesting framework for (most of) these mathematical constants. Following the pioneering
ideas of Turing, Hartmanis and Stearns [HS65] proposed to emphasize the quantitative aspect of
the notion of computability, and to take into account the number T (n) of operations needed by a
(multitape) Turing machine to produce the first n digits of the expansion. In this regard, a real
number is considered all the more simple as its b-adic expansion can be produced very fast by a
Turing machine. A general problem is then to determine where our mathematical constants take
place in such a classification. It is a source of challenging open questions such as the Hartmanis–
Stearns problem which asks whether there exists an irrational algebraic number computable in
real-time, that is, with T (n) = O(n). In the same spirit, we mention [BT98] where similar questions
are addressed for formal power series with coefficients in a finite field.

The present paper is partly motivated by the related question of how such a classification of
real numbers based on Turing machines and theoretical computer science fits into that based on
Diophantine approximation which was developed by Mahler [Mah31, Mah32a] during the 1930s.
More modestly, we will focus on a special class of Turing machines of a particular interest: finite
automata. They are one of the most basic models of computation and thus take place at the bottom
of the hierarchy of Turing machines. In particular, such machines produce sequences in real-time.
Roughly speaking, an infinite sequence a = (an)n�0 is generated by a k-automaton if an is a finite-
state function of the base-k representation of n. Consequently, automatic sequences share deep links
with number theory as explained in detail in the book of Allouche and Shallit [AS03].

A real number is generated by a finite automaton (or, in short, automatic), if there exists a pos-
itive integer b � 2 such that its b-adic expansion can be generated by a finite automaton. Particular
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attention was paid to these numbers since the following statement related to the Hartmanis–Stearns
problem was suggested by Cobham [Cob68] in 1968: no irrational algebraic number can be generated
by a finite automaton. Previously referred to as the Loxton–van der Poorten conjecture because of
some attempts by these authors (see, for instance, [LV82, LV88]), this result was recently proved in
[AB, ABL04]. However, it is still unknown whether constants such as π, ζ(3) or e are automatic.

Our main purpose is to introduce a method to derive Diophantine properties for all automatic
real numbers. This uses some of the ideas in [AB, ABL04] together with classical techniques from
Diophantine approximation and a careful combinatorial study of automatic sequences. In particular,
we will prove that no Liouville number can be generated by a finite automaton, a result conjectured
by Shallit [Sha99]. Actually, our approach is much more precise and it will provide an explicit
general upper bound for the irrationality measure of any automatic real number.

This article is organized as follows. We first present our main results, including a proof of
Shallit’s conjecture, in § 2. In § 3, we state a partial result towards a more general conjecture on
automatic real numbers. This conjecture suggested by Becker involves Mahler’s classification of real
numbers and we will thus briefly recall some facts about it. A background on finite automata, words
and morphisms can be found in § 4. Section 5 is devoted to the proofs of our main results. As an
application of our method, we derive an irrationality measure for the Thue–Morse–Mahler numbers
in § 6. Some comments and generalizations are gathered in § 7. Finally, outlines of the proofs of
these latter results end this paper.

2. Main results

Diophantine approximation is essentially devoted to the estimate of the approximation of a given
real number by rationals p/q, as a function of q. A useful notion to tackle this question is the
irrationality measure of a real number ξ, that we will denote by µ(ξ). It is defined as the supremum
of the positive real numbers τ for which the inequality∣∣∣∣ξ − p

q

∣∣∣∣ <
1
qτ

has infinitely many solutions (p, q) ∈ Z2 with q > 1 and relatively prime integers p and q. Thus, µ(ξ)
measures the quality of the best rational approximations to ξ. Note that it is in general a challenging
problem to obtain an irrationality measure, that is, to bound from above the irrationality measure
of a given real number.

Let us recall some well-known facts about this notion. First, the theory of continued fractions
ensures that µ(ξ) � 2, for any irrational number ξ; while µ(ξ) = 1 for a rational number ξ. On the
other hand, algebraic irrational numbers all have an irrationality measure equal to two, as follows
from Roth’s theorem [Rot55]. Note that this is also the case for almost all real numbers (with respect
to the Lebesgue measure), a result due to Khintchine [Khi24] (see also [Khi64]).

At the opposite side, we find the Liouville numbers, introduced by Liouville in his famous 1844
paper [Lio44]. Such numbers can be very well approximated by rationals. In more concrete terms,
an irrational real number ξ is called a Liouville number if it has an infinite irrationality measure,
that is, if for any positive τ the inequality ∣∣∣∣ξ − p

q

∣∣∣∣ <
1
qτ

has at least one solution (p, q) ∈ Z2 with q > 1.
Our main result gives a positive answer to a conjecture of Shallit [Sha99].

Theorem 2.1. A Liouville number cannot be generated by a finite automaton.
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Actually, we will prove a quantitative version of Theorem 2.1. Indeed, our method provides the
following explicit general upper bound for the irrationality measure of any number generated by
a finite automaton. This bound only depends on three parameters which naturally appear in the
study of automatic sequences and whose definitions are postponed to § 4.

Theorem 2.2. Let k and b be two integers at least equal to two and let a = (an)n�0 be an infinite
sequence generated by a k-automaton and with values in {0, 1, . . . , b− 1}. Let m be the cardinality
of the k-kernel of the sequence a and let d be the cardinality of the internal alphabet associated to
a. Then, the irrationality measure µ(ξ) of the real number

ξ :=
+∞∑
n=0

an

bn

satisfies

µ(ξ) � dk(km + 1).

3. The classification of Mahler

In 1932, Mahler [Mah31, Mah32a] introduced the first relevant classification of real numbers with
respect to Diophantine approximation or more precisely with respect to their quality of approxi-
mation by algebraic numbers. According to Mahler’s classification, real numbers are split into four
classes, namely A-numbers, S-numbers, T -numbers, and U -numbers. We recall now how these four
classes can be defined as first considered by Mahler. The reader is referred to [Bug04], for example,
for a complete treatment of this topic.

Let n be a positive integer and ξ be a real number. Then, we define wn(ξ) as the supremum
of the real numbers ω for which there exist infinitely many integer polynomials P (X) of degree at
most n and such that

0 < |P (ξ)| � H(P )−ω,

where H(P ) denotes the height of the polynomial P (X), that is, the maximum of the moduli of its
coefficients. Note that according to this definition we have w1(ξ) = µ(ξ) − 1. Then, we set

w(ξ) = lim sup
n→∞

wn(ξ)
n

.

According to Mahler’s classification, we say that ξ is:

• an A-number, if w(ξ) = 0;
• an S-number, if 0 < w(ξ) < +∞;
• a T -number, if w(ξ) = +∞ and wn(ξ) < +∞ for every n � 1;
• a U -number, if wn(ξ) = +∞ for some n � 1.

In 1960, Wirsing [Wir60] proved that the class of A-numbers corresponds exactly to the set of
real algebraic numbers. It is also known since Mahler [Mah32b] that the set of S-numbers has full
Lebesgue measure. Thus, most real numbers have to be S-numbers. However, it is generally rather
delicate to prove that a given number lies in this class. The following conjecture was suggested by
Becker in his correspondence with Shallit in 1993. It claims that irrational automatic real numbers
should behave in the same way as almost all real numbers with respect to Mahler’s classification.

Conjecture 3.1. Automatic irrational real numbers are all S-numbers.

Since Liouville numbers are particular cases of U -numbers, this conjecture contains Theorem 2.1.
A first step towards Conjecture 3.1 has recently been taken in [AB] and [ABL04]. Their result can
be reformulated as follows.
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Theorem 3.2 (Adamczewski, Bugeaud and Luca [AB, ABL04]). The set of automatic irrational
real numbers does not contain any A-number.

By combining ideas of the proof of Theorem 2.2 with Theorem 3.2 and a result of Baker [Bak64],
we obtain the following result.

Theorem 3.3. Let b � 2 be an integer and a = (an)n�0 be a non-eventually periodic automatic
sequence. Let us assume that the internal sequence associated with a begins in an overlap (see § 4
for a definition). Then, the automatic irrational real number

ξ :=
+∞∑
n=0

an

bn

is either an S-number or a T -number.

We end this section by mentioning that very special examples of Conjecture 3.1 are already
known. Indeed, for any positive integer d � 2, the real number

ξ :=
+∞∑
n=0

1
2dn

is an S-number, as follows from the work of Nishioka [Nis91].

4. Finite automata, morphisms and Cobham’s theorem

Let k � 2 be an integer. An infinite sequence a = (an)n�0 is said to be k-automatic if an is a finite-
state function of the base-k representation of n. This means that there exists a finite automaton
starting with the k-ary expansion of n as input and producing the term an as output. A nice
reference on this topic is the book of Allouche and Shallit [AS03].

A more concrete definition of k-automatic sequences can be given as follows. Denote by Σk the
set {0, 1, . . . , k − 1}. By definition, a k-automaton is a 6-tuple

A = (Q,Σk, δ, q0,∆, τ),

where Q is a finite set of states, δ : Q × Σk → Q is the transition function, q0 is the initial state,
∆ is the output alphabet and τ : Q → ∆ is the output function. For a state q in Q and for
a finite word W = w1w2 . . . wn on the alphabet Σk, we define recursively δ(q,W ) by δ(q,W ) =
δ(δ(q, w1w2 . . . wn−1), wn). Let n � 0 be an integer and let wrwr−1 . . . w1w0 in (Σk)r+1 be the k-ary
expansion of n; thus, n =

∑r
i=0 wik

i. We denote by Wn the word w0w1 . . . wr. Then, a sequence
a = (an)n�0 is said to be k-automatic if there exists a k-automaton A such that an = τ(δ(q0,Wn))
for all n � 0.

A classical example of a 2-automatic sequence is given by the Baum–Sweet sequence (see [BS76])
a = (an)n�0 = 110110010100100110010 . . . . This sequence is defined as follows: an is equal to one if
the binary expansion of n contains no block of consecutive zeros of odd length, and zero otherwise.
The Baum–Sweet sequence can be generated by the 2-automaton

A = ({q0, q1, q2}, {0, 1}, δ, q0 , {0, 1}, τ),

where

δ(q0, 0) = q1, δ(q0, 1) = q0, δ(q1, 0) = q0, δ(q1, 1) = q2,

δ(q2, 0) = q2, δ(q2, 1) = q2,

and τ(q0) = τ(q1) = 1, τ(q2) = 0 (see, for instance, [AS03]).
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4.1 Morphisms and Cobham’s theorem
For a finite set A, we denote by A∗ the free monoid generated by A. The empty word ε is the neutral
element of A∗. Let A and B be two finite sets. A map from A to B∗ can be uniquely extended to
a homomorphism between the free monoids A∗ and B∗. We call morphism from A∗ to B∗ such a
homomorphism. If there is a positive integer k such that each element of A is mapped to a word
of length k, then the morphism is called k-uniform or simply uniform. Similarly, a map from A
to B can be uniquely extended to a homomorphism between the free monoids A∗ and B∗. Such a
homomorphism is called a coding (the term ‘letter-to-letter’ morphism is also used in the literature).
Thus, a coding is nothing else than a 1-uniform morphism.

A morphism σ from A∗ into itself is said to be prolongable if there exists a letter a such
that σ(a) = aW , where the word W is such that σn(W ) is a non-empty word for every n � 0.
In that case, the sequence of finite words (σn(a))n�0 converges in A∞ = A∗ ∪AN endowed with its
usual topology (see, for instance, [Lot02, ch. 2]) to an infinite word a denoted σ∞(a). This infinite
word is clearly a fixed point for σ (extended by continuity to infinite words) and we say that a is
generated by the morphism σ.

For instance, the Fibonacci morphism σ1 defined over the alphabet {0, 1} by σ1(0) = 01 and
σ1(1) = 1 is a non-uniform morphism which generates the celebrated Fibonacci infinite word

a = lim
n→+∞σn

1 (0) = 010010100100101001 . . . .

Uniform morphisms and automatic sequences are strongly connected, as the following result of
Cobham [Cob72] shows. Theorem 4.1 in particular implies that finite automata produce sequences
in real-time.

Theorem 4.1 (Cobham [Cob72]). A sequence is k-automatic if and only if it is the image under a
coding of a fixed point of a k-uniform morphism.

Thus, one can always associate to a k-automatic sequence a a 5-tuple (ϕ, σ, i,A,I), where σ is
a k-uniform morphism defined over a finite alphabet I, i is a letter of I, ϕ is a coding from I into
A, and such that

a = ϕ(i),

with i = σ∞(i). The set I and the sequence i are respectively called the internal alphabet and
the internal sequence associated to the 5-tuple (ϕ, σ, i,A,I). With a slight abuse of language,
we will say in the sequel that I (respectively i) is the internal alphabet (respectively internal
sequence) associated to a. Indeed, Cobham gives in fact a canonical way to associate with a a
5-tuple (ϕ, σ, i,A,I).

We recall now that the k-kernel of a sequence a = (an)n�0 is defined as the set Nk(a) of all
sequences (aki·n+j)n�0, where i � 0 and 0 � j < ki. This notion gives rise to another useful
characterization of k-automatic sequences which was first proved in [Eil74].

Theorem 4.2 (Eilenberg [Eil74]). A sequence is k-automatic if and only if its k-kernel is finite.

4.2 Words and repetitive patterns
We end this section with some notation about repetitions in combinatorics on words. Let A be a
finite set. The length of a word W on the alphabet A, that is, the number of letters composing W ,
is denoted by |W |. For any positive integer 
, we write W � for the word W . . . W (
 times repeated
concatenation of the word W ). More generally, for any positive real number x, we denote by W x the
word W �x�W ′, where W ′ is the prefix of W of length �(x−�x�)|W |	. Here, and in all what follows,
�y� and �y	 denote, respectively, the integer part and the upper integer part of the real number y.
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An overlap is a word of the form WWa where W is a non-empty finite word and a is the first letter
of W .

5. Proof of the main results

This section is devoted to the proof of our main results, namely Theorems 2.2 and 3.3. Before proving
Theorem 2.2, an auxiliary result that we state just below is needed. Roughly speaking, this result
will allow us to control the repetitive patterns occurring as prefixes of any k-automatic sequence as
a function of the size of its k-kernel. This result will also be used in the proof of Theorem 3.3.

Lemma 5.1. Let u be a non-eventually periodic k-automatic sequence defined on an alphabet A.
Let U ∈ A∗, V ∈ A+ and s ∈ Q be such that UV s is a prefix of the sequence u. Let m be the
cardinality of the k-kernel of u. Then,

|UV s|
|UV | < km.

Proof. Let u = (un)n�0 be a non-eventually periodic k-automatic sequence defined on an alphabet
A. A triple (h, p, l) of integers is said to be admissible (with respect to u) if the following conditions
hold:

(i) 1 � p � h � l;

(ii) for all integers n such that h � n < l, un−p = un;

(iii) ul−p 
= ul.

Let m be the cardinality of the set Nk(u). We shall prove that for every admissible triple (h, p, l),
l < hkm. Let us assume, on the contrary, that (h, p, l) is an admissible triple such that l � hkm and
we aim at deriving a contradiction.

For i ranging from zero to m, let us construct a triple (hi, p, li) admissible with respect to a
sequence u(i) of Nk(u). We start with u(0) = u, h0 = h and l0 = l. Then, given u(i) = (u(i)

n )n�0

and (hi, p, li), for 0 � i < m, let ri be the remainder in the division of li by k. We define u(i+1) =
(u(i)

kn+ri
)n�0 by extracting from u(i) letters at positions congruent to ri modulo k. Furthermore, we

set li+1 = �li/k� and hi+1 = li+1 + p − �(li + p − hi)/k�.
We are now going to prove by induction on i the following:

(a) u(i) ∈ Nk(u);

(b) hi � h0;

(c) li � h0k
m−i;

(d) (hi, p, li) is admissible with respect to u(i).

By assumption, these assertions are true for i = 0. Let us assume that they hold for some i,
0 � i < m, and let us prove that this also is the case for i + 1.

(a) It is first clear that u(i) ∈ Nk(u) implies that u(i+1) ∈ Nk(u).

(b) We now prove the useful fact that hi+1 � hi. Indeed, we have

hi − hi+1 = hi − p − li+1 + �(li + p − hi)/k�

=
⌊

k(hi − p − li+1) + li + p − hi

k

⌋

=
⌊

ri + (k − 1)(hi − p)
k

⌋
� 0,
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since ri � 0, k � 2 and, by assumption, hi � p. Consequently, hi+1 � hi � h0 and assertion
(b) holds.

(c) Since by assumption li � h0k
m−i, we have that li+1 = �li/k� � �(km−ih0)/k� = km−i−1h0.

(d) Now, let us prove that (hi+1, p, li+1) is admissible with respect to u(i+1). As p − hi � 0,
p−hi+1 = �(li + p−hi)/k�− li+1 � �li/k�− li+1 = 0. Moreover, we get from assertion (c) that

li+1 − hi+1 = �(li + p − hi)/k� − p �
⌊

h0k
m−i + p − hi

k

⌋
− p,

and since hi � h0 by assertion (b) and i < m, we obtain

li+1 − hi+1 �
⌊

hik
m−i + p − hi

k

⌋
− p =

⌊
hi(km−i − 1) − (k − 1)p

k

⌋

�
⌊

(hi − p)(k − 1)
k

⌋
� 0.

We thus have
1 � p � hi+1 � li+1. (1)

By assumption, we have u
(i)
n−p = u

(i)
n , for every integer n such that hi � n < li and, thus,

u
(i)
n−jp = u(i)

n , (2)

for all integers n and j such that j � 0 and hi + (j − 1)p � n < li. On the other hand, we get
that

khi+1 + ri = li + kp − k�(li + p − hi)/k� � hi + (k − 1)p.

Thus, u
(i)
n−kp = u

(i)
n , for every integer n such that khi+1 + ri � n < li, and it a fortiori follows

that u
(i)
k(n−p)+ri

= u
(i)
kn+ri

, for every integer n such that khi+1 + ri � kn + ri < kli+1 + ri. This
implies that

u
(i+1)
n−p = u(i+1)

n , (3)
for every integer n such that hi+1 � n < li+1.

Since kli+1+ri = li, we have u
(i+1)
li+1

= u
(i)
li

and u
(i+1)
li+1−p = u

(i)
li−kp. Moreover, li+1 � hi+1 implies

that �(li + p− hi)/k� � p and, thus, li � hi + (k − 1)p. Then, we obtain li − p � hi + (k − 2)p
and we infer from (2) that

u
(i+1)
li+1−p = u

(i)
li−kp = u

(i)
(li−p)−(k−1)p = u

(i)
li−p 
= u

(i)
li

= u
(i+1)
li+1

.

Together with (1) and (3), this proves that the triple (hi+1, p, li+1) is admissible with respect
to the sequence u(i+1), hence assertion (d).

We are now ready to end our proof by deriving a contradiction. Since Nk(u) contains m elements,
at least two of the sequences u(i), 0 � i � m, have to be the same. There thus exist two integers i and
j, 0 � i < j � m, such that (hi, p, li) and (hj , p, lj) are two admissible triples for the same sequence.
In particular, we have u

(i)
n = u

(j)
n for any non-negative integer n. Moreover, lj � h0k

(m−j) � h0 � hi,
while lj = �li/kj−i� < li. Thus, hi � lj < li, and condition (ii) gives that u

(i)
lj−p = u

(i)
lj

. On the other

hand, condition (iii) implies that u
(i)
lj−p = u

(j)
lj−p 
= u

(j)
lj

= u
(i)
lj

, a contradiction. If the word UV s is a

prefix of u, as u is non-eventually periodic, there exists a maximal s′ ∈ Q, s′ � s, such that UV s′ is
a prefix of u, and (|UV |, |V |, |UV s′ |) is an admissible triple. Therefore, |UV s′ | < |UV |km and, thus,
|UV s| < |UV |km since s′ � s. This concludes the proof.

Here and after in this paper, we will consider rational numbers defined thanks to their b-adic
expansion. Actually, we will often use the following construction: given two finite words U and V
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defined over the alphabet {0, 1, . . . , b − 1}, we define the rational number

p/q := 0.UV V V . . . V . . . ,

having preperiod U and period V in its b-adic expansion. It may happen that V = b−1 and in such
a case the b-adic expansion of p/q is usually defined by 0.a1 . . . (al +1), where U = a1a2 . . . al. In the
remainder of the paper, we allow inproper b-adic expansions of rational numbers, that is expansions
ending with (b−1) . . . (b−1) . . . . So, when writing p/q := 0.a1a2 . . . an . . . , with an ultimately equal
to b − 1, this will naturally mean p/q =

∑+∞
n=0 an/bn.

Before proving Theorem 2.2, we need to state the following result.

Lemma 5.2. Let b � 2 be an integer, U and V be two finite words defined over the alphabet
{0, 1, . . . , b − 1} with length respectively equal to r and s, and p/q be a rational number with
eventually periodic b-adic expansion

p

q
:= 0.a1a2 · · · = 0.UV V . . . V . . . .

Let ξ := 0.b1b2 . . . be a real number such that there exists a positive integer j > r satisfying:

(i) an = bn, for 1 � n < j;

(ii) aj 
= bj.

Then, ∣∣∣∣ξ − p

q

∣∣∣∣ >
1

bj+s
.

Proof. We set aj = l and bj = m. We first assume that l > m. Then, l is a positive integer and we
have

p

q
> 0.a1a2 . . . aj−1l 00 . . . 0 . . . 0︸ ︷︷ ︸

s − 1 times
l,

whereas

ξ � 0.a1a2 . . . aj−1(m + 1) � 0.a1a2 . . . aj−1l.

This yields
p

q
− ξ >

1
bj+s

.

Now, let us assume that m > l. Then, we have l < b − 1 and

p/q < 0.a1a2 . . . aj−1l (b − 1)(b − 1) . . . (b − 1)︸ ︷︷ ︸
s − 1 times

(l + 1)

� 0.a1a2 . . . aj−1l (b − 1)(b − 1) . . . (b − 1)︸ ︷︷ ︸
s times

,

whereas

ξ � 0.a1a2 . . . aj−1m � 0.a1a2 . . . aj−1(l + 1).

This gives

ξ − p

q
>

1
bj+s

,

concluding the proof.

We are now ready to prove our main result.
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Proof of Theorem 2.2. Let k and b be two integers at least equal to two and let a = (an)n�1 be
an infinite sequence generated by a k-automaton and with values in {0, 1, . . . , b − 1}. Let ξ be the
automatic real number defined by

ξ :=
+∞∑
n=1

an

bn
.

Without loss of generality, we can assume that a is not eventually periodic. Indeed, otherwise ξ
would be a rational number and we would have µ(ξ) = 1.

Following Cobham’s theorem (Theorem 4.1), there thus exist a k-uniform morphism σ defined
over a finite alphabet I, a letter i of I and a coding ϕ from I into {0, 1, . . . , b − 1} such that

a = ϕ(i),

where i = σ∞(i). Let us also denote by d the cardinality of the finite set I and by m the cardinality
of the k-kernel of the sequence a.

Let δ be a positive number and let (p, q) be a pair of positive integers. We shall prove that, for
q large enough, one always has ∣∣∣∣ξ − p

q

∣∣∣∣ � 1
qM+δ

, (4)

with M = dk(km +1). Then, we will deduce the following upper bound for the irrationality measure
of ξ:

µ(ξ) � M,

as claimed in Theorem 2.2.

We are first going to introduce a sequence of rational numbers converging quite quickly to ξ (see
inequality (6)) and whose denominators do not grow too fast (see inequality (7)). These rational
numbers are obtained thanks to Cobham’s theorem and they will play a central role in this proof.

It follows from the pigeonhole principle that there is a letter a that occurs at least twice in the
prefix of length d + 1 of the sequence i. There thus exists a prefix of the sequence i of the form
UaV a, where U and V are (possibly empty) finite words with |U | + |V | � d − 1. Then, for any
non-negative integer n, the finite word σn(UaV a) is a prefix of the sequence i. This implies that the
finite word ϕ(σn(UaV a)) is a prefix of the sequence a. Let Un = ϕ(σn(U)) and Vn = ϕ(σn(aV )). We
set rn = |Un|, sn = |Vn|, and tn = |ϕ(σn(a))|. Since σ is a k-uniform morphism and ϕ is a coding,
we get rn = kn|U |, sn = kn|aV | and tn = kn. We also set qn = brn(bsn − 1). An easy computation
shows that there exists a positive integer pn such that the rational number pn/qn has the following
eventually periodic b-adic expansion:

pn

qn
:= 0.UnVnVnVn . . . Vn . . .

or, in short,
pn

qn
= 0.UnVn.

Since the word ϕ(σn(UaV a)) is a common prefix of the sequence a and of UnVn, it follows that∣∣∣∣ξ − pn

qn

∣∣∣∣ <
1

brn+sn+tn
. (5)

Moreover,
tn

rn + sn
=

kn

kn|UaV | =
1

|UaV | � 1
d
.
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This implies that ∣∣∣∣ξ − pn

qn

∣∣∣∣ <
1

q
1+1/d
n

. (6)

On the other hand, rn+1 = krn and sn+1 = ksn. This implies that

qn+1 = bkrn(bksn − 1) < (brn(bsn − 1))k+ε = qk+ε
n , (7)

for any positive real number ε and any integer n large enough. Now, we fix a positive real number
ε that we choose small enough to ensure that

dε + dε2 + ε dkm + ε dk < δ/2. (8)

Let n0 be an integer such that (7) holds for any integer n � n0.

We now have to remark that Lemma 5.1 naturally gives rise to an upper bound for the ap-
proximation of ξ by pn/qn. By Lemma 5.1, if UnV s

n is a prefix of the sequence a, then |UnV s
n | <

|UnVn|km = (rn + sn)km. We deduce that ξ and pn/qn cannot have the same first |UnVn|km digits.
Following (5), the conditions of Lemma 5.2 are thus fulfilled with rn + sn + tn < j � (rn + sn)km.
Consequently, we get that∣∣∣∣ξ − pn

qn

∣∣∣∣ � 1
b(rn+sn)km+sn

>
1

(brn(bsn − 1))km+1+ε
=

1
qkm+1+ε
n

,

for n large enough. There thus exists a positive integer n1, n1 � n0, such that∣∣∣∣ξ − pn

qn

∣∣∣∣ >
1

qkm+1+ε
n

, (9)

for any n � n1.

We are now ready for the last step of the proof. Let us consider a rational number p/q with q
large enough and let us prove that inequality (4) holds. Let us assume that q satisfies the following
three inequalities: 2q � q

1/d
n1+1, q � 21+2M/δ and q � 21+dk+δ/2. Moreover, let us assume that∣∣∣∣ξ − p

q

∣∣∣∣ <
1

(2q)1+d(k+ε)
. (10)

First, note that if (10) is not satisfied, then (4) holds. Indeed, let us assume that (10) is not
satisfied by the rational p/q. We have dkm+1 > 2 and (8) implies that dε < δ/2. We thus derive
that 2 + d(k + ε) < M + δ, and since q � 21+dk+δ/2 > 21+dk+dε, we have

(2q)1+d(k+ε) < q2+d(k+ε) < qM+δ.

This ensures that inequality (4) is satisfied by the rational p/q.

Now, since by assumption 2q � q
1/d
n1+1, it follows from (7) that there exists a unique positive

integer n2 > n1 � n0 such that

qn2−1 � (2q)d < qn2 < qk+ε
n2−1. (11)

The triangle inequality gives ∣∣∣∣ξ − pn2

qn2

∣∣∣∣ �
∣∣∣∣
∣∣∣∣ξ − p

q

∣∣∣∣−
∣∣∣∣pn2

qn2

− p

q

∣∣∣∣
∣∣∣∣. (12)

If p/q and pn2/qn2 are two distinct rationals, we obviously get that∣∣∣∣pn2

qn2

− p

q

∣∣∣∣ � 1
qqn2

.
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Moreover, qn2 � qk+ε
n2−1 � (2q)d(k+ε) and we thus derive from the previous inequality that∣∣∣∣pn2

qn2

− p

q

∣∣∣∣ � 2
(2q)1+d(k+ε)

> 2
∣∣∣∣ξ − p

q

∣∣∣∣.
Then, (10) and (12) imply that, if p/q 
= pn2/qn2 ,∣∣∣∣ξ − pn2

qn2

∣∣∣∣ >
1

2qqn2

.

Now, we infer from (11) that 2q < q
1/d
n2 . This gives∣∣∣∣ξ − pn2

qn2

∣∣∣∣ >
1

q
1+1/d
n2

,

which is a contradiction with (6). It thus follows that, under the assumption (10), we necessarily
have p/q = pn2/qn2 . In that case, since n2 � n1, we infer from (9) that∣∣∣∣ξ − p

q

∣∣∣∣ =
∣∣∣∣ξ − pn2

qn2

∣∣∣∣ � 1
qkm+1+ε
n2

and since (2q)d(k+ε) � qn2, we obtain∣∣∣∣ξ − p

q

∣∣∣∣ � 1
(2q)d(k+ε)(km+1+ε)

.

We infer from (8) and from the assumption that q � 21+2M/δ that

(2q)d(k+ε)(km+1+ε) � (2q)M+δ/2 � qM+δ/22M+δ/2 � qM+δ

and this implies that ∣∣∣∣ξ − p

q

∣∣∣∣ � 1
qM+δ

.

Inequality (4) thus holds for any

q � max
{

q
1/d
n1+1

2
, 21+2M/δ , 21+dk+δ/2

}
.

This concludes the proof.

We end this section by proving Theorem 3.3. The proof follows the same lines as that of Theo-
rem 2.2. The key point is a general criterion to prove that a real number is not a U -number. This
result is due to Baker [Bak64] and we recall it now.

Theorem 5.3 (Baker [Bak64]). Let ξ be a real number, ε be a positive number and (pn/qn)n�1 be
a sequence of distinct rational numbers. Let us assume that the following conditions hold:∣∣∣∣ξ − pn

qn

∣∣∣∣ <
1

q2+ε
n

and

lim sup
n→∞

log(qn+1)
log(qn)

< +∞.

Then, ξ is not a U -number.

Proof of Theorem 3.3. We keep the notation of Theorem 2.2. Let us assume that the sequence i
begins in an overlap UUa, where U is a finite word and a is the first letter of U . Then, for any non-
negative integer n, the finite word ϕ(σn(UUa)) is a prefix of the sequence a. Let sn = |ϕ(σn(U))|.
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We also set qn = bsn − 1. There thus exists a positive integer pn such that the rational number
pn/qn has the following periodic b-adic expansion:

pn

qn
= 0.ϕ(σn(U)).

Since the word ϕ(σn(UUa)) is a prefix of the sequence a, it follows that∣∣∣∣ξ − pn

qn

∣∣∣∣ <
1

b2sn+tn
, (13)

where tn = |ϕ(σn(a))|. Moreover, since σ is a k-uniform morphism, sn = kn|U | and tn = kn, and
we get that ∣∣∣∣ξ − pn

qn

∣∣∣∣ <
1

q2+ε
n

, (14)

where ε = 1/|U |. On the other hand, the definition of qn implies that

lim sup
n→∞

log(qn+r)
log(qn)

= kr < +∞, (15)

for any positive integer r. We now infer from Lemmas 5.1 and 5.2 that∣∣∣∣ξ − pn

qn

∣∣∣∣ >
1

bsn(km+1)
. (16)

There thus exists a positive integer r large enough to ensure that the sequence (prn/qrn)n�0 consists
of distinct rational numbers. Indeed, let n′ > n � 0 be two integers such that pn/qn = pn′/qn′ . It
follows from (13) and (16) that 2sn′ + tn′ < sn(km + 1), which gives 2kn′ |U |+ kn′

< kn|U |(km + 1).
We thus have

kn′−n <
|U |(km + 1)

2|U | + 1
< km

and n′ < n + m.

Then, (14) and (15) show that the conditions of Theorem 5.3 are fulfilled. This implies that ξ is
not a U -number. On the other hand, we infer from Theorem 3.2 that ξ is not an A-number. This
ends the proof.

6. An emblematic example: the Thue–Morse–Mahler numbers

In Theorem 2.2, we have obtained a general upper bound for the irrationality measure of real
numbers generated by finite automata. It turns out that for a specific automatic real number the
method introduced in the proof of Theorem 2.2 will likely give rise to a better estimate. In the present
section, we choose to illustrate this general idea by considering the Thue–Morse–Mahler numbers
as a particular example.

For an integer b at least equal to two, we define the b-adic Thue–Morse–Mahler number ξb by

ξb =
+∞∑
k=0

ak

bk
,

where the sequence a = (an)n�0 is the Thue–Morse sequence. This sequence is defined as follows:
an is equal to zero (respectively to one) if the sum of the digits in the binary expansion of n
is even (respectively is odd). Thus, the b-adic expansion of ξb begins with 0.110100110010 . . . .
These numbers were first considered by Mahler who proved that they are transcendental in [Mah29]
(see also [Dek77]).
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It is easy to check that the Thue–Morse sequence can be generated by the 2-automaton

A = ({q0, q1}, {0, 1}, δ, q0 , {0, 1}, τ),

where

δ(q0, 0) = δ(q1, 1) = q0, δ(q0, 1) = δ(q1, 0) = q1,

and τ(q0) = 0, τ(q1) = 1. It is also well-known, as a consequence of Theorem 4.1, that this sequence
is the fixed point beginning with zero of the following binary 2-uniform morphism:

σ2

0 �−→ 01
1 �−→ 10

Theorem 2.2 thus implies that the irrationality measure of ξb satisfies µ(ξb) � 20 (independently of
the integer b), since in that case d = k = m = 2 (the fact that m = 2 is, for instance, proved in
[AS03]). However, a better use of the method described in the previous section leads to the following
improvement.

Theorem 6.1. For any b � 2, we have

µ(ξb) � 5.

Proof. From now on, we fix a positive integer b � 2 and we set ξ := ξb/b. Thus,

ξ = 0.a0a1a2a3 . . . .

It is obvious that ξ and ξb have the same irrationality measure. Let δ be a positive number. We
want to prove that the inequality ∣∣∣∣ξ − p

q

∣∣∣∣ <
1

q5+δ
(17)

has only finitely many solutions (p, q) ∈ Z2.
As in the proof of Theorem 2.2, we are first going to introduce an infinite sequence of rationals

converging to ξ. We can remark that σ3
2(0) = 01101001 and thus the sequence a begins in the word

011010. More generally, it follows that a begins in σn
2 (011010) for any non-negative integer n. Since

0110 is a prefix of σn
2 (0) for n � 2, we deduce that the word

σn
2 (011)σn

2 (01)0110 = (σn
2 (011)1+2/3)0110 (18)

is a prefix of a for n � 2. Now, we set qn = (b3·2n − 1). It follows from an easy computation that
there exists a positive integer pn such that the rational number pn/qn has the following periodic
b-adic expansion:

pn

qn
:= 0.σn

2 (011)σn
2 (011) . . . σn

2 (011) . . .

or, in short,
pn

qn
= 0.σn

2 (011).

The b-adic expansion of pn/qn begins with

σn
2 (011)σn

2 (011) = σn
2 (011)σn

2 (01)σn
2 (1)

and we deduce that it begins with

σn
2 (011)σn

2 (01)1001, (19)

when n � 2. Since σ2 is a 2-uniform morphism, we easily check that |σn
2 (W )| = 2n|W | for any finite

word W . We thus infer from (18) and (19) that the first (5 · 2n)th digits in the b-adic expansion of
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pn/qn and of ξ are the same while the following four digits are, respectively, 1001 and 0110. This
implies that

1
b5·2n+3

�
∣∣∣∣ξ − pn

qn

∣∣∣∣ <
1

b5·2n+2
.

Let ε be a positive number chosen small enough to ensure that

(2q)4+3ε/2 < (2q)5+11ε/2+3ε2/2 < q5+δ (20)

for any integer q large enough, say for any q � M > 2. The definition of qn implies that there exists
a positive integer n0 such that

1

q
1+2/3+ε
n

�
∣∣∣∣ξ − pn

qn

∣∣∣∣ <
1

q
1+2/3
n

(21)

for any n � n0. On the other hand, we also have

qn+1 = (b3·2n+1 − 1) < q2+ε
n (22)

for any integer n large enough, say n � n1 � n0.
Let us assume that there exists a rational number p/q satisfying inequality (17) and such that

the following two inequalities hold: 2q � q
2/3
n1 and q � M . We now aim at deriving a contradiction.

Since by assumption 2q � q
2/3
n1 , it follows from (22) that there exists a unique positive integer

n2 > n1 such that

qn2−1 � (2q)3/2 < qn2 < q2+ε
n2−1 � (2q)3/2(2+ε). (23)

The triangle inequality gives ∣∣∣∣ξ − pn2

qn2

∣∣∣∣ �
∣∣∣∣

∣∣∣∣ξ − p

q

∣∣∣∣ −
∣∣∣∣pn2

qn2

− p

q

∣∣∣∣
∣∣∣∣. (24)

Then, we infer from (17), (21) and (23) that p/q and pn2/qn2 are two distinct rationals. Otherwise
we would have from (21) that ∣∣∣∣ξ − p

q

∣∣∣∣ =
∣∣∣∣ξ − pn2

qn2

∣∣∣∣ � 1

q
1+2/3+ε
n2

and then (23) would give∣∣∣∣ξ − p

q

∣∣∣∣ � 1
(2q)3/2(2+ε)(1+2/3+ε)

=
1

(2q)5+11ε/2+3ε2/2
.

In such a case, (20) would give ∣∣∣∣ξ − p

q

∣∣∣∣ � 1
q5+δ

and we would reach a contradiction with (17). Thus, p/q and pn2/qn2 are distinct and we immediately
get that ∣∣∣∣pn2

qn2

− p

q

∣∣∣∣ � 1
qqn2

.

We then derive, using (23), (20) and (17), that∣∣∣∣pn2

qn2

− p

q

∣∣∣∣ � 2
(2q)1+3/2(2+ε)

=
2

(2q)4+3ε/2
>

2
q5+δ

> 2
∣∣∣∣ξ − p

q

∣∣∣∣.
Then, (17) and (24) imply that ∣∣∣∣ξ − pn2

qn2

∣∣∣∣ >
1

2qqn2

.
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Now, we infer from (23) that 2q < q
2/3
n2 . This gives∣∣∣∣ξ − pn2

qn2

∣∣∣∣ >
1

q
1+2/3
n2

,

which is a contradiction with (21). Thus, any rational p/q satisfying inequality (17) has a denomi-
nator q at most equal to max{M, q

2/3
n1 /2}. This ends the proof.

7. Some generalizations and concluding remarks

A first possibility of extension of the present approach is to focus on the representations of real
numbers in algebraic bases, that is, to replace the integer b with an algebraic real number β greater
than one. We can consider both the analog of the Loxton–van der Poorten conjecture and of the
Becker conjecture, the number field Q(β) taking the place of the field of rationals. For an algebraic
real number β and an automatic sequence (an)n�0 with values in {0, 1, . . . , �β�}, it is thus likely
that the real number

ξ :=
∑
n�0

an

βn

either lies in Q(β) or is transcendental (this is the analog of the Loxton–van der Poorten conjecture),
and is always an S-number in the latter case (this is the analog of Becker’s conjecture).

Actually, if we restrict our attention to the β-expansions introduced by Rényi [Ren57] and
on a Pisot or a Salem base, the analog of the Loxton–van der Poorten conjecture is proved in
[AB06b] following the approach of [AB]. Under the same restriction, our method is sufficient, without
introducing new ideas, to prove the following result. We recall that a Pisot (respectively a Salem)
number is a real algebraic integer, greater than one, whose complex conjugates lie inside the open
unit disc (respectively inside the closed unit disc, with at least one of them on the unit circle).

Theorem 7.1. Let β be a Pisot or a Salem number. Then, the β-expansion of a Liouville number
cannot be generated by a finite automaton.

Moreover, we could provide an explicit upper bound for the irrationality measure of ξ. Note also
that in [Bak64] Baker proved an analog of Theorem 5.3 for number fields. This yields the following
result. In the sequel, we will denote by dβ(x) the β-expansion of the real number x.

Theorem 7.2. Let β be a Pisot or a Salem number, and ξ be a real number that does not lie in
Q(β), and such that

dβ(ξ) = a0.a1a2 . . . an . . . ,

where a = (an)n�0 is an automatic sequence. Let us assume, moreover, that the internal sequence
associated with a begins in an overlap (see § 4 for a definition). Then, ξ is either a S-number or a
T -number.

However, new ideas are really needed for dealing with an arbitrary algebraic real number β.
Indeed, in the general case the approximants αn provided by an automatic β-expansion (see § 8)
are such that the inequality

|ξ − αn| � H(αn)−1−ε

does not necessarily hold. We recall that the height H(α) of an algebraic number α is defined as
the height of its minimal polynomial (see § 3 for a definition). Another difficulty also appears if we
want to replace the Rényi β-expansion by other representations in base β (such as, for instance,
that arising from the lazy algorithm). Indeed, it is not clear how to obtain the analog of Lemma 5.2
for such representations.
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We end this section with a digression on U -numbers and some other generalizations of the ap-
proach introduced in this paper. As was remarked by LeVeque [Lev53], the class of U -numbers can
be divided into infinitely many subclasses of interest, each of them corresponding to the approx-
imation by algebraic numbers whose degree is bounded by a fixed positive integer. The simplest
subclass, the class of U1-numbers, exactly corresponds to the Liouville numbers. Given a positive
integer m, a real number ξ is more generally called a Um-number if

wm(ξ) = +∞ and wn(ξ) < +∞, for 0 < n < m.

Thus, the set of U -numbers is exactly the infinite union on all of the positive integers n of the sets
formed by the Un-numbers. We refer the reader to § 3 for a definition of wn(ξ).

Another possible generalization of the present work consists of replacing the b-adic expansion
with the continued fraction expansion of real numbers. Then, this naturally leads one to consider
the notion of automatic continued fraction, that is, to consider real numbers whose continued
fraction expansion can be generated by a finite automaton. These real numbers were studied by
several authors (see, for instance, [AB05] and the references therein). In particular, it is believed but
not yet proved that such numbers are either quadratic or transcendental. This corresponds, in this
framework, to the analog of the Loxton–van der Poorten conjecture. In this way, Becker’s conjecture
can be translated as follows: non-quadratic automatic continued fractions are all S-numbers. Note
that it is obvious that no Liouville number can have an automatic continued fraction expansion, since
the latter numbers, by definition, have bounded partial quotients. Thus, the analog to Theorem 2.1
would be that the set of automatic continued fractions does not contain any U2-numbers. The
method introduced in this paper is sufficient to prove a first step toward such a result and would
even, in this particular case, provide an explicit upper bound for w2(ξ).

Theorem 7.3. Let a = (an)n�0 be an automatic sequence of positive integers. Let us assume
that the first letter of the internal sequence associated with a appears at least twice (see § 4 for a
definition). Then, the automatic continued fraction

ξ := [a0, a1, a2, . . . ]

is not a U2-number.

As an example, let us consider a uniform morphism σ defined from the monoid {a, b}∗ into
itself, where a and b are two distinct positive integers. Let us assume that the sequence a =
(an)n�0 is a non-eventually periodic fixed point for σ. Then, the real number ξ := [a0, a1, a2, . . . ] is
transcendental (this is proved in [AB05]) and is not a U2-number as a consequence of Theorem 7.3.

Note that it could also be interesting to consider continued fractions associated with regular
sequences as introduced by Allouche and Shallit [AS92]. These sequences provide a natural gener-
alization of automatic sequences for sequences with values lying in an infinite set.

8. Outlines of the proof of Theorems 7.1, 7.2, and 7.3

We begin with the main steps for proving Theorems 7.1 and 7.2. From now on, β denotes a Pisot
or a Salem number of degree l. Let ξ be a real number such that

dβ(ξ) = 0.a1a2 . . . an . . . ,

where a = (an)n�1 is an automatic sequence. Note that if the sequence a is eventually periodic,
then ξ belongs to Q(β) and cannot be a Liouville number. We keep the notation of the proof
of Theorem 2.2. Then, we first replace the sequence of rational approximants (pn/qn)n�0 with a
sequence of algebraic numbers (αn)n�0 lying in the same number field Q(β). We set

αn := 0.UnVn,

1366

https://doi.org/10.1112/S0010437X06002247 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002247


Diophantine properties of automatic real numbers

where 0.UnVn is a possibly inproper expansion in base β. There thus exists an integer polynomial
Pn(X) of degree at most rn + sn and such that

αn =
Pn(β)

βrn(βsn − 1)
.

Since β is a Pisot or a Salem number of degree l, one can use the product formula and the associated
notion of height to easily derive that H(αn) � (rn + sn)l−1βrn+sn (see, for instance, [Ada04] where
similar arguments are given). Moreover, we have

|ξ − αn| � 1
βrn+sn+tn

,

and, thus, for every positive ε, we obtain that

|ξ − αn| � 1
H(αn)1+1/d−ε

. (25)

We now want to apply a classical trick from Diophantine approximation, as stated in Lemma 8.1
(see for instance [Bug04, Gut68, Lev53] for more details). The proof of this result essentially relies
on the following Liouville type inequality (see, for instance, [Bug04, p. 227]). Let α and α′ be two
distinct algebraic numbers of degree, respectively, equal to i and j. Then, there exists a constant c
only depending on i and j such that

|α − α′| > cH(α)−jH(α′)−i.

Lemma 8.1. Let ξ be a real number. Let us assume that there exists an infinite sequence (αn)n�1

of algebraic numbers of degree r such that:

(i) H(αn) < H(αn+1) < H(αn)s;
(ii) H(αn)−η′

< |ξ − αn| < H(αn)−η.

Then, ξ is not a Ut-number for any integer t < η.

Here, we can choose ε small enough in (25) to ensure that η = 1 + 1/d − ε > 1, and we want to
prove that ξ is not a Liouville number or, equivalently, that ξ is not a U1-number. It thus remains
to prove that the sequence (αn)n�0 enjoys the two following properties:

• αn is not a too good approximation to ξ; this corresponds to the left-hand side of assumption
(ii);

• there exists a subsequence of (αn)n�0 satisfying assumption (i).

As in the proof of Theorem 2.2, both properties are ensured thanks to Lemma 5.1 and the
following analog of Lemma 5.2. Since this is not a classical result and some difficulties appear, we
choose to give below a complete proof of Lemma 8.2.

Lemma 8.2. Let β > 1 be a Pisot or a Salem number of degree l. Let U and V be two finite words
defined over the alphabet {0, 1, . . . , �β�} with length respectively equal to r and s, and α be the
element of Q(β) defined by

α :=
+∞∑
n=1

an

βn
,

where (an)n�1 is the eventually periodic sequence with preperiod U and period V . Let ξ be a real
number, 0 < ξ < 1, such that dβ(ξ) = 0.b1b2 . . . bn . . . , where (bn)n�1 is such that there exists a
positive integer j > r + s satisfying:

(i) an = bn, for 1 � n < j;

(ii) aj 
= bj.
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Then,

|ξ − α| >
1

(s + 1)l−1βj+s+l−1
.

Proof. The key observation is that for every non-negative integer r,

∑
n�r+1

bn

βn
<

1
βr

. (26)

Note that such an inequality is not, in general, satisfied by arbitrary representations in base β.
However, it holds when one considers the β-expansion (as a by-product of the fact that the
β-expansion arises from the greedy algorithm).

We first infer from the fact that the coefficients bn are non-negative and from (26) that

j∑
n=j−s+1

bn

βn
�

∑
n�j−s+1

bn

βn
<

1
βj−s

and, thus,

bj−s+1β
s−1 + bj−s+2β

s−2 + · · · + bj < βs. (27)

We also recall that by definition of the sequence (an)n�1, we have

an = an+ts, if n > r and t � 0. (28)

We have now to distinguish two cases. We set aj = i and bj = m, and we first assume that
i > m. Then, i is a positive integer and, the coefficients an also being non-negative, we infer from
(28) that

α =
+∞∑
n=1

an

βn
�

j−1∑
n=1

an

βn
+

aj

βj
+

aj+s

βj+s
+

aj+2s

βj+2s

=
j−1∑
n=1

an

βn
+

i

βj
+

i

βj+s
+

i

βj+2s
>

j−1∑
n=1

an

βn
+

i

βj
+

i

βj+s
,

whereas thanks to condition (i) and inequality (26) we have

ξ =
+∞∑
n=1

bn

βn
=

j−1∑
n=1

an

βn
+

m

βj
+

∑
n�j+1

bn

βn
<

j−1∑
n=1

an

βn
+

m + 1
βj

�
j−1∑
n=1

an

βn
+

i

βj
.

This yields

α − ξ >
i

βj+s
� 1

βj+s
.

Now, let us assume that m > i. By condition (i), we have

bj−s+1bj−s+2 . . . bj−1 = aj−s+1aj−s+2 . . . aj−1.

Moreover, since aj = i � m − 1 = bj − 1, we deduce from (27) that

P (β) := aj−s+1β
s−1 + aj−s+2β

s−2 + · · · + aj < βs − 1. (29)
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On the one hand, we infer from (28) that

α =
+∞∑
n=1

an

βn
=

j∑
n=1

an

βn
+

+∞∑
n=1

P (β)
βj+ns

=
j∑

n=1

an

βn
+

P (β)
βj+s

+
+∞∑
n=2

P (β)
βj+ns

=
j∑

n=1

an

βn
+

P (β)
βj+s

+
P (β)

βj+s(βs − 1)
,

and we thus derive from (29) that

α <

j∑
n=1

an

βn
+

P (β) + 1
βj+s

.

On the other hand, we have

ξ =
+∞∑
n=1

bn

βn
�

j∑
n=1

bn

βn
=

j−1∑
n=1

an

βn
+

m

βj
�

j−1∑
n=1

an

βn
+

i + 1
βj

.

This gives

ξ − α >
1
βj

− P (β) + 1
βj+s

=
Q(β)
βj+s

, (30)

where Q(β) := βs−P (β)−1. Moreover, (29) implies that Q(β) > 0. Note that β is a Pisot or a Salem
number of degree l and that Q is an integer polynomial of degree s and of height at most �β�. Let
us denote by β = β1, β2, . . . , βl the algebraic conjugates of β. Then, β being an algebraic integer,
we have that Q(β)

∏l
j=2 |Q(βj)| is an integer. Since Q(β) > 0, also |Q(βj)| > 0 for 2 � j � l,

and we obtain that Q(β)
∏l

j=2 |Q(βj)| > 0. Thus, Q(β)
∏l

j=2 |Q(βj)| � 1. Moreover, for j � 2,
|Q(βj)| � (s + 1)β, since |βj | � 1. This yields

Q(β) � ((s + 1)β)−l+1

and we thus infer from (30) that

ξ − α >
1

(s + 1)l−1βj+s+l−1
.

This ends the proof.

We now consider Theorem 7.2. The number field extension of Baker’s result can be stated as
follows. Let us assume that there exist η > 2 and an infinite sequence (βn)n�0 of distinct algebraic
numbers lying in the same number field and such that: |ξ − βn| � H(βn)−η and

lim sup
n→∞

log(H(βn+1))
log(H(βn))

< +∞.

Then, ξ is not a U -number. We proceed as for the proof of Theorem 3.3 to construct a sequence
(αn)n�0 such that |ξ − αn| � H(αn)−2−ε, for a fixed positive ε. Then, we infer from Lemmas 5.1
and 8.2 that we can extract a suitable subsequence from (αn)n�0 to apply Baker’s result.

We end this paper with some hints for the proof of Theorem 7.3. The basic idea consists of
replacing the sequence of rationals (pn/qn)n�0 of the proof of Theorem 2.2 by a sequence (αn)n�0

of quadratic approximations, and then to use Lemma 8.1 with t = 2.
Let ξ := [0, a1, a2, . . . ] be an automatic continued fraction and let us denote by pn/qn the nth

convergent to ξ. Thanks to Theorem 4.1, there exists a pair of morphisms (ϕ, σ) and a letter a such
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that a := (an)n�1 = ϕ(σ∞(a)). Since, by assumption, the letter a occurs at least twice, there exists
a finite word U such that aUa is a prefix of σ∞(a). This implies that the sequence a begins for every
integer n with the word UnU ′

n, where Un = ϕ(σn(aU)) and U ′
n = ϕ(σn(a)). We set |Un| = sn and

|U ′
n| = tn. Then, our quadratic approximants αn are defined as the real numbers having a periodic

continued fraction expansion with period Un, that is, αn := [0, Un]. We first observe that αn is a
root of the quadratic polynomial

Pn(X) := qsn−1X
2 + (qsn − psn−1)X − psn

and, thus, H(αn) < qsn . On the other hand, we have

|ξ − αn| <
1

q2
sn+tn

since the first sn + tn partial quotients of α and αn are the same (see, for instance, [AB06a, Lemma
2]). Moreover, the partial quotients of ξ are bounded and we thus infer from classical inequalities
for continuants that q2

sn+tn 
 qη
sn for a fixed η > 2 (see, for instance, [AB06a, Lemmas 3 and 4]).

We thus obtain
|ξ − α| � H(αn)−η.

Again, to finish the proof we only have to see that αn is not a very good approximation of ξ (this
corresponds to the left-hand side of Lemma 8.1(ii)) and that there exists a subsequence of (αn)n�0

satisfying assumption (i) of Lemma 8.1. These conditions are ensured thanks to Lemma 5.1 and
Lemma 8.3 below, the latter playing the role of Lemma 5.2 in the proof of Theorem 2.2.

Lemma 8.3. Let M be a positive real number. Let α = [0, a1, a2, . . . ] and ξ = [0, b1, b2, . . . ] be real
numbers whose partial quotients are at most equal to M . Assume that there exists a positive integer
n such that ai = bi for any i = 1, . . . , n and an+1 
= bn+1. Then, we have

|ξ − α| � 1
(M + 2)3q2

n

,

where qn denotes the denominator of the nth convergent to α.

This latter result corresponds to [AB06a, Lemma 5]. We thus refer the reader to that paper for
a complete proof.
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