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Abstract. We introduce the class of partially invertible modules and show that it
is an inverse category which we call the Picard inverse category. We use this category
to generalize the classical construction of crossed products to, what we call, generalized
epsilon-crossed products and show that these coincide with the class of epsilon-strongly
groupoid-graded rings. We then use generalized epsilon-crossed groupoid products to
obtain a generalization, from the group-graded situation to the groupoid-graded case, of
the bijection from a certain second cohomology group, defined by the grading and the
functor from the groupoid in question to the Picard inverse category, to the collection of
equivalence classes of rings epsilon-strongly graded by the groupoid.
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1. Introduction. Almost 40 years ago, Nǎstǎsescu and Van Oystaeyen [15] proved
an elegant result that relates the collection of group-graded equivalence classes of strongly
graded rings to certain second cohomology groups. Namely, let S be a ring. We always
assume that S is associative and equipped with a multiplicative identity 1S . The ring S is
called graded by a group G (or G-graded) if there is a set {Sg}g∈G of additive subgroups
of S such that S =⊕g∈GSg, and for all g, h ∈G the inclusion SgSh ⊆ Sgh holds. The ring
S is called strongly graded if for all g, h ∈G the equality SgSh = Sgh holds. Given two
G-graded rings S and T , a ring homomorphism f : S→ T is called graded if for all g, h ∈G
the inclusion f (Sg)⊆ Tg holds. Now, by [15, Proposition I.3.13], the collection of strongly
graded rings can be parameterized by the so-called generalized crossed products (A, F, f ),
for rings A and group homomorphisms F from G to the Picard group Pic(A) of A. Indeed,
for each g ∈G, we put F(g)= [Pg] (the A-bimodule isomorphism class of Pg) and we
assume that F(e)= [A], where e denotes the identity element of G. The map f is a factor
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set associated with F. By this we mean a collection of A-bimodule isomorphisms fg,h :
Pg ⊗A Ph→ Pgh chosen so that the following diagram commutes:

Pg ⊗A Ph ⊗A Pp

idPg⊗fh,p−−−−→ Pg ⊗A Php

fg,h⊗idPp

⏐⏐� ⏐⏐�fg,hp

Pgh ⊗A Pp
fgh,p−−−−→ Pghp

for all g, h, p ∈G. The multiplication in (A, F, f )=⊕g∈GPg is defined by the biadditive
extension of the relation x · y= fg,h(x⊗ y) for all x ∈ Pg, all y ∈ Ph, and all g, h ∈G. Let
(A, F) denote the collection of all generalized crossed products of the form (A, F, f ), where
f is a factor set associated with F. Given D and D′ in (A, F) put D≈D′ if there is an iso-
morphism of graded rings D→D′ which is simultaneously an A-bimodule isomorphism.
Then ≈ is an equivalence relation on (A, F) and we can define C(A, F)= (A, F)/≈.
Let U(Z(A)) denote the unit group of the center Z(A)= {a ∈ A | ∀b ∈ A, ab= ba} of A.
The classical cohomology groups Hn(G,U(Z(A))), for n≥ 0, can then be defined, and in
particular the corresponding second cohomology group.

THEOREM 1 (Nǎstǎsescu and Van Oystaeyen [15]). If A is a ring, F :G→ Pic(A)
is a group homomorphism and f is a factor set associated with F, then the map
H2(G,U(Z(A)))→C(A, F), defined by [q] �→ qf , is bijective.

Many natural examples of rings, such as rings of matrices, crossed product algebras
defined by separable extensions, and groupoid rings are not, in a natural way, graded by
groups, but instead by groupoids (see, e.g. [13, 14] or Section 6 of the present article). Let
G be a groupoid, that is, a category where each morphism is an isomorphism. The classes
of objects and morphisms of G are denoted by G0 and G1, respectively. If g ∈G1, then the
domain and codomain of g are denoted by d(g) and c(g), respectively. We let G2 denote the
set of all pairs (g, h) ∈G1 ×G1 that are composable, that is, such that d(g)= c(h). From
now on, assume that G is small, that is, such that G1 is a set, and let S be a ring which is
graded by G. Recall from [13, 14] that this means that there is a set {Sg}g∈G1 of additive
subgroups of S such that S =⊕g∈G1 Sg and, for all g, h ∈G1, SgSh ⊆ Sgh, if (g, h) ∈G2, and
SgSh = {0}, otherwise. In that case, S is called strongly graded if for all (g, h) ∈G2 the
equality SgSh = Sgh holds. By [14, Proposition 4.1], the collection of strongly groupoid-
graded rings can be parameterized by generalized groupoid-crossed products (A, F, f ),
for rings A and groupoid homomorphisms F from G to the Picard groupoid PIC. Here A
denotes the direct product of the rings {F(e)}e∈G0 . Westman [20] (see also [19]) has devel-
oped a cohomology theory for groupoids which extends the classical group cohomology
theory. In particular, the corresponding second cohomology group H2(G, Z(A)) can be
defined. The set C(A, F) is defined analogously to the group-graded case.

THEOREM 2 (Lundström [14]). If G is a groupoid, F :G→ PIC is a functor and f
is a factor set associated with F, then the map H2(G,U(Z(A)))→C(A, F), defined by
[q] �→ qf , is bijective.

In [17], the authors of the present article introduced the class of epsilon-strongly
group-graded rings. This class properly contains both the class of strongly graded rings and
the class of unital partial crossed products. The main goal of the present article is to show
a simultaneous generalization (see Theorem 3) of Theorem 1 and Theorem 2 that holds
for an even wider family of rings, namely the class of epsilon-strongly groupoid-graded
rings. Indeed, let S be a ring which is graded by a small groupoid G. We say that S is
epsilon-strongly graded by G if for each g ∈G1, SgSg−1 is a unital ideal of Sc(g) such that
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for all (g, h) ∈G2 the equalities SgSh = SgSg−1 Sgh = SghSh−1 Sh hold. Let εg denote the
multiplicative identity element of SgSg−1 and put R=⊕e∈G0 Se. In this context, it turns out
that the multiplication map Sg ⊗R Sh→ Sgh, for (g, h) ∈G2, is injective with image equal
to εgSgh. In particular, this implies that the R-isomorphism classes of the modules [Sg]
do not form a groupoid. Instead they form an inverse category PICcat which we call the
Picard inverse category. The collection of epsilon-strongly groupoid-graded rings can
then be parameterized by generalized epsilon-crossed groupoid products (A, F, f ), for
rings A and partial functors of inverse categories F :G→ PICcat. Here A denotes the direct
product of the rings {F(e)}e∈G0 and f is a partial factor set.

On the other hand, in [9], the concept of a partial action was introduced as an efficient
tool to study C∗-algebras, permitting to characterize various important classes of them as
crossed products by partial actions. The study of partial actions and partial representations
of groups on algebras was initiated in [4] and extended to the groupoid situation in [2].
Recently, Dokuchaev and Khrypchenko [5] have developed a cohomology theory for par-
tial actions of groups on monoids which we extend to the groupoid setting. In particular,
we define the corresponding second cohomology group H2(G, Z(A)). The set C(A, F) is
defined analogously to the group-graded case, and we obtain the following theorem, which
is the main result of this article.

THEOREM 3. If G is a groupoid, F :G→ PICcat is a partial functor of inverse cate-
gories and f is a partial factor set associated with F, then the map H2(G,U(Z(A)))→
C(A, F), defined by [q] �→ qf , is bijective.

Here is a detailed outline of this article. In Section 2, we state our conventions on
categories. In particular, we recall the definition of inverse categories. In that section, we
also show that the collection of partial bijections between sets forms an inverse category
which we denote by BIJcat (see Proposition 13). Inside this category sits the well-known
groupoid BIJ of bijections between sets. In Section 3, we show (see Proposition 17) that the
collection of partial (commutative) ring isomorphisms ISOcat (ISOCcat) is an inverse sub-
category of BIJcat. This category contains, in turn, the well-known groupoid ISO (ISOC)
having all (commutative) rings as objects and ring isomorphisms as morphisms. We also
show a result concerning central idempotents in rings that we need in subsequent sections.
In Section 4, we recall the definition of (pre-)equivalence data and some properties of
such systems, and we also introduce the Picard inverse category PICcat (see Definition 27
and Theorem 28). In Section 5, we define epsilon-strongly groupoid-graded rings (see
Definition 34). In Section 6, we provide examples of epsilon-strong groupoid gradings
on partial skew groupoid rings, Leavitt path algebras, and Morita rings. In Section 7, we
define epsilon-strongly groupoid-graded modules (see Definition 46) and we provide a
characterization of them (see Proposition 47) that generalizes a result previously obtained
for strongly group-graded modules. At the end of the section, after putting R=⊕e∈G0 Se, we
show (see Proposition 48) that the multiplication maps mg,h : Sg ⊗R Sh→ εgSgh = Sghεh−1 ,
for (g, h) ∈G2, are R-bimodule isomorphisms. In particular, this implies that for every
g ∈G1, the sextuple (

εgR, εg−1 R, Sg, Sg−1 ,mg,g−1 ,mg−1,g

)
is a set of equivalence data. In Section 8, we introduce generalized epsilon-crossed
groupoid products (see Definition 53), and we show that they parameterize the family
of epsilon-strongly groupoid-graded rings (see Proposition 55 and Proposition 56). In
Section 9, we extend the construction of a partial cohomology theory for partial actions of
groups on commutative monoids, from [5], to partial actions of groupoids. In Section 10,
we use the results in the previous sections to prove Theorem 3.
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2. Preliminaries on categories. In this section, we state our conventions on cate-
gories. In particular, we recall the definition of inverse categories. We introduce the new
notion of a partial functor of inverse categories (see Definition 4) and we show that the com-
position of two partial functors of inverse categories is again a partial functor of inverse
categories (see Proposition 9). In this section, we also show that the collection of par-
tial bijections between sets forms an inverse category which we denote by BIJcat (see
Proposition 13). Suppose that G is a category. The classes of objects and morphisms of
G are denoted by G0 and G1, respectively. Recall that G is called small if G1 is a set. If
g ∈G1, then the domain and codomain of g are denoted by d(g) and c(g), respectively. If
n≥ 2, then we let Gn denote the set of all (g1, . . . , gn) ∈×n

i=1G1 that are composable, that
is, such that for every i ∈ {1, . . . , n− 1} the relation d(gi)= c(gi+1) holds. The category
G is called a groupoid if to each g ∈G1 there is a unique h ∈G1 such that (g, h) ∈G2,
(h, g) ∈G2, gh= c(g), and hg= d(g). In that case, we write h= g−1. A subcategory H
of a groupoid G is called a subgroupoid if the restriction of the map (·)−1 on G1 to H1

coincides with the map (·)−1 on H1.
Let G be an inverse category. Recall that this means that there to each g ∈G1 is a

unique h ∈G1 such that (g, h) ∈G2, (h, g) ∈G2, ghg= g, and hgh= h. In that case, we
write h= g∗. A subcategory H of G is called an inverse subcategory if the restriction of the
map ∗ on G1 to H1 coincides with the map ∗ on H1. Note that if G is a groupoid, then G is an
inverse category if we for each g ∈G1 put g∗ = g−1. It turns out that, for our purposes, the
usual notion of functor is too restrictive when considered for inverse categories. Therefore,
we make the following weakening.

DEFINITION 4. Suppose that G and H are inverse categories. A partial functor of
inverse categories F :G→H is a pair of maps (F0, F1), where F0 :G0→H0 and F1 :
G1→H1, that satisfy the following axioms:

(I1) If g : a→ b in G1, then F1(g) : F0(a)→ F0(b).
(I2) If a ∈G0, then F1(ida)= idF0(a).
(I3) If (g, h) ∈G2, then

F1(g)F1(h)= F1(g)F1(g
∗)F1(gh)= F1(gh)F1(h

∗)F1(h).

By abuse of notation, we will write F for both F0 and F1 in the sequel.

REMARK 5. Note that if we replace axiom (I3) in Definition 4 by

� If (g, h) ∈G2, then F1(g)F1(h)= F1(gh),

then F is an ordinary functor.

PROPOSITION 6. If G and H are inverse categories and F :G→H is an ordinary
functor, then F is a partial functor of inverse categories.

Proof. Take (g, h) ∈G2. Then, since F is an ordinary functor, we get that
F(g)F(h)= F(gh)= F(gg∗gh)= F(g)F(g∗)F(gh) and F(g)F(h)= F(gh)= F(ghh∗h)=
F(gh)F(h∗)F(h).

PROPOSITION 7. If F :G→H is a partial functor of inverse categories, then for every
g ∈G1 the relation F(g∗)= F(g)∗ holds.

Proof. Take a morphism g : a→ b in G1. If we put h= ida in (I3), then we get that
F(g)F(ida)= F(g)F(g∗)F(g). From (I2), it follows that this relation can be written as

F(g)= F(g)F(g∗)F(g). (1)
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By replacing g by g∗ in (1), we get that

F(g∗)= F(g∗)F(g)F(g∗). (2)

Equations (1) and (2) show that F(g∗) satisfies the axioms for F(g)∗. Since F(g)∗ is
uniquely defined, we thus get that F(g∗)= F(g)∗.

LEMMA 8. Suppose that F :G→H is a partial functor of inverse categories. If
(g, h) ∈G2 is chosen so that gh= h (gh= g), then F(g)F(h)= F(h) (F(g)F(h)= F(g)).

Proof. Suppose that (g, h) ∈G2 satisfies gh= h. From (I3) and Proposition 7, we get
that F(g)F(h)= F(gh)F(h∗)F(h)= F(h)F(h)∗F(h)= F(h). Now suppose that (g, h) ∈G2

satisfies gh= g. From (I3) and Proposition 7, we get that F(g)F(h)= F(g)F(g∗)F(gh)=
F(g)F(g)∗F(g)= F(g).

PROPOSITION 9. If F :G→G′ and F′ :G′ →G′′ are partial functors of inverse cate-
gories, then F′ ◦ F :G→G′′ is a partial functor of inverse categories.

Proof. Put F′′ = F′ ◦ F. It is easy to see that (I1) and (I2) hold for F′′. Now we show
(I3). To this end, take (g, h) ∈G2. We wish to show that

F′′(g)F′′(h)= F′′(g)F′′(g∗)F′′(gh) (3)

and

F′′(g)F′′(h)= F′′(gh)F′′(h∗)F′′(h). (4)

First we show (3). Using (I3) for F′ and F, we get that the left side of (3) equals

F′(F(g))F′(F(h))= F′(F(g))F′(F(g)∗)F′(F(g)F(h))
= F′(F(g))F′(F(g)∗)F′(F(g)F(g)∗F(gh)).

Using Lemma 8 for the right side of (3), we get

F′(F(g))F′(F(g)∗)F′(F(gh))= F′(F(g))[F′(F(g)∗)F′(F(g)F(g)∗)]F′(F(gh)).

Using (I3) and Lemma 8, the last expression equals

F′(F(g))F′(F(g)∗)[F′(F(g)F(g)∗)F′(F(g)F(g)∗)F′(F(gh))]
= F′(F(g))F′(F(g)∗)F′(F(g)F(g)∗F(gh)),

which shows (3). Now we show (4).
Using (I3) for F′ and F, we get that the left side of (4) equals

F′(F(g))F′(F(h))= F′(F(g)F(h))F′(F(h)∗)F′(F(h))
= F′(F(gh)F(h∗)F(h))F′(F(h)∗)F′(F(h)).

The right side of (4) equals

F′(F(gh))F′(F(h∗))F′(F(h)). (5)

Using Lemma 8, we get that (5) equals

F′(F(gh))F′(F(h∗)F(h))F′(F(h∗))F′(F(h)).

Using (I3) and Lemma 8, the last expression equals

F′(F(gh)F(h∗)F(h))F′(F(h∗)F(h))F′(F(h∗)F(h))F′(F(h∗))F′(F(h)),

which equals F′(F(gh)F(h∗)F(h))F′(F(h∗))F′(F(h)) showing (4).
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PROPOSITION 10. If F :G→H is a partial functor of inverse categories, where H is a
groupoid, then F is an ordinary functor.

Proof. Take (g, h) ∈G2. From Proposition 7, it follows that F(g)F(h)= F(g)F(g∗)
F(gh)= F(g)F(g)∗F(gh)= F(g)F(g)−1F(gh)= F(gh).

DEFINITION 11. Let BIJ denote the groupoid having the collection of all sets as objects
and bijections between sets as morphisms.

DEFINITION 12. Let A and B be sets. By a partial bijection from B to A, we mean a
choice of subsets Y ⊆ B and X ⊆ A and a bijection f : Y→ X . We will indicate this by
writing X

A f Y
B . We will now define, what we call, the category of partial bijections BIJcat.

The class of objects in BIJcat consists of all sets. The class of morphisms in BIJcat consists
of all partial bijections X

A f Y
B . The domain and codomain of such a morphism are B and

A, respectively. The identity morphism at A is defined to be A
A(idA)

A
A. The empty partial

bijection from B to A is denoted by A0B. Suppose that X
A f Y

B and X ′
C gY ′

D are morphisms in
BIJcat. If B=C, then the composition of these morphisms is defined to be

f (Y∩X ′)
A f |Y∩X ′ ◦ g|g−1(Y∩X ′)

g−1(Y∩X ′)
D .

Otherwise, the composition is defined to be A0D. We also define a map ∗ : (BIJcat

)
1
→

(BIJcat)1 by
(

X
A f Y

B

)∗ = Y
B f −1X

A .

PROPOSITION 13. BIJcat is an inverse category.

Proof. Suppose that α= X
A f Y

B , β = X ′
B gY ′

C , and γ = X ′′
C hY ′′

D are morphisms in BIJcat. First
we check the axioms for identity elements:

A
A(idA)

A
Aα = idA(A∩X )

A

(
idA|A∩X ◦ f |f −1(A∩X )

)f −1(A∩X )

B
= X

A (idX ◦ f )YB = α
and

αB
B(idB)

B
B = f (Y∩B)

A

(
f |Y∩B ◦ idB|id−1

B (Y∩B)

)id−1
B (Y∩B)

B
= X

A ( f ◦ idY )
Y
B = α.

Now we prove associativity. We get that

(αβ)γ = X1
A

(
f |Y∩X ′ ◦ g|g−1(Y∩X ′)

) |g−1(Y∩X ′)∩X ′′ ◦ h|Y1
Y1
C
,

where

X1 =
(

f |Y∩X ′ ◦ g|g−1(Y∩X ′)
) (

g−1(Y ∩ X ′)∩ X ′′
)

and

Y1 = h−1(g−1(Y ∩ X ′)∩ X ′′).

We also get that

α(βγ )= X2
A f |Y∩g(Y ′∩X ′′) ◦ (g|Y ′∩X ′′ ◦ h|h−1(Y ′∩X ′′))|Y2

Y2
D ,

where

X2 = f (Y ∩ g(Y ′ ∩ X ′′))

and

Y2 = (g|Y ′∩X ′′ ◦ h|h−1(Y ′∩X ′′))
−1(Y ∩ g(Y ′ ∩ X ′′)).
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Since composition of functions is associative, we only need to show that X1 = X2 and
Y1 = Y2.

First we show that X1 ⊆ X2. Take a ∈ X1. Then a= f (g(b)) for some b ∈ X ′′ such that
g(b) ∈ Y ∩ X ′. Since g : Y ′ → X ′, we also get that b ∈ Y ′. Thus g(b) ∈ Y ∩ g(Y ′ ∩ X ′′), and
hence a= f (g(b)) ∈ X2. Next we show that X2 ⊆ X1. Take c ∈ X2. Then c= f (g(d)), for
some d ∈ Y ′ ∩ X ′′ such that g(d) ∈ Y . Since g : Y ′ → X ′, we get that g(d) ∈ Y ∩ X ′. Thus
d ∈ g−1(Y ∩ X ′)∩ X ′′, and hence c ∈ X1.

Now we show that Y1 ⊆ Y2. Take a ∈ Y1. Then h(a) ∈ g−1(Y ∩ X ′)∩ X ′′ ⊆ Y ′ ∩ X ′′.
Thus g(h(a)) ∈ g(Y ′ ∩ X ′′). Also g(h(a)) ∈ g(g−1(Y ∩ X ′))⊆ Y . Hence g(h(a)) ∈ Y ∩
g(Y ′ ∩ X ′′). So we get that a ∈ Y2. Next we show that Y2 ⊆ Y1:

Y2 =
(
h−1|h−1(Y ′∩X ′′) ◦ g|−1

Y ′∩X ′′
) (

Y ∩ g(Y ′ ∩ X ′′)
)

= h−1|h−1(Y ′∩X ′′)
(
g−1(Y ∩ g(Y ′ ∩ X ′′))∩ Y ′ ∩ X ′′

)
= h−1

(
g−1(Y ∩ g(Y ′ ∩ X ′′))∩ Y ′ ∩ X ′′

)∩ h−1
(
Y ′ ∩ X ′′

)
.

Since g(Y ′ ∩ X ′′)⊆ X ′ and Y ′ ∩ X ′′ ⊆ X ′′, we thus get that Y2 ⊆ Y1.
Finally, we show that BIJcat is an inverse category. To this end, first note that

αα∗ = X
A f Y

B

(
X
A f Y

B

)∗ = X
A f Y

B
Y
B f −1X

A = X
A idX

X
A (6)

and

α∗α = (X
A f Y

B

)∗ X
A f Y

B = Y
B f −1X

A
X
A f Y

B = Y
B idY

Y
B . (7)

Thus, it follows that

αα∗α = X
A idX

X
A

X
A f Y

B = X
A f Y

B = α
and

α∗αα∗ = Y
B idY

Y
B

Y
B f −1X

A = Y
B f −1X

A = α∗.
Next suppose that

αβα = α (8)

and

βαβ = β, (9)

where β = X ′
B gY ′

A . From (6) and (8), it follows that

Y
Bf −1X

A = α∗ = α∗αα∗ = α∗αβαα∗ = Y
B idY

Y
B

X ′
B gY ′

A
X
A idX

X
A

= g(g−1(Y∩X ′)∩X )
B g|g−1(Y∩X ′)∩X

g−1(Y∩X ′)∩X
A .

Thus, we get that Y = g(g−1(Y ∩ X ′)∩ X )⊆ X ′ and X = g−1(Y ∩ X ′)∩ X ⊆ Y ′.
Analogously, from (9), it follows that X ′ ⊆ Y and Y ′ ⊆ X . Thus X ′ = Y and Y ′ = X , and
hence it follows that β = α∗.

3. Preliminaries on rings. In this section, we introduce the category of partial
(commutative) ring isomorphisms ISOcat (ISOCcat). This category contains the well-known
groupoid ISO (ISOC) having all (commutative) rings as objects and ring isomorphisms as
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morphisms. We also show a result (see Proposition 18), concerning central idempotents in
rings, that we need in subsequent sections. Let A be a ring. We always assume that A is
associative and equipped with a multiplicative identity element 1A.

DEFINITION 14. Let ISO (ISOC) denote the category having all (commutative) rings as
objects and ring isomorphisms as morphisms.

REMARK 15. Recall that an ideal I of a ring A is said to be a unital ideal if I , viewed
as a ring in itself, is unital. In this case, the multiplicative identity element of I is denoted
by 1I and lies in the center of A. Indeed, let a ∈ A be arbitrary. Since I is an ideal of A, it
follows that 1I a, a1I ∈ I . Thus, 1I a= 1I a1I = a1I . Furthermore, if I and J are unital ideals
of a ring A, then I ∩ J = IJ .

Now we will define two ring versions of the inverse category BIJcat that we defined in
the previous section.

DEFINITION 16. Let ISOcat (ISOCcat) denote the subcategory of BIJcat having (com-
mutative) rings as objects and, as morphisms, all I

Af J
B in BIJcat such that I and J are unital

ideals of A and B, respectively and f : J→ I is a ring isomorphism. Note that the composi-

tion of two morphisms, I
Af J

B and I ′
BgJ ′

C , in these categories equals f (JI ′)
A f |JI ′ ◦ g|g−1(JI ′)

g−1(JI ′)
C .

Define a map ∗ : (ISOcat)1→ (ISOcat)1 by restriction of the map ∗ defined on (BIJcat)1.
This restricts, in turn, to a map ∗ : (ISOCcat)1→ (ISOCcat)1.

The following is clear.

PROPOSITION 17. ISOcat and ISOCcat are inverse subcategories of BIJcat.

The center of A, denoted by Z(A), is the subring of A consisting of all elements a ∈ A
with the property that for all b ∈ A the equality ab= ba holds. We let idem(A) denote the
set of all central idempotents of A and we let ideal(A) denote the set of all unital ideals
of A.

PROPOSITION 18. Let A be a ring. The map θ : idem(A)→ ideal(A), defined by θ(x)=
Ax, for x ∈ idem(A), is an isomorphism of multiplicative monoids. For all x ∈ idem(A) the
equality Z(Ax)= Z(A)x holds.

Proof. It is clear that θ is a homomorphism of multiplicative monoids. Take x, y ∈
idem(A) such that θ(x)= θ(y). Then Ax= Ay. Since both x and y are multiplicative identity
elements for the same monoid, it follows that x= y. Thus θ is injective. Now we show that
θ is surjective. Take I ∈ ideal(A). Recall that 1I ∈ Z(A), by Remark 15. By the idempotency
of 1I , we get that θ(1I)= A1I = I . Thus the surjectivity of θ follows. For the last part, take
x ∈ idem(A). The inclusion Z(A)x⊆ Z(Ax) clearly holds. Take y ∈ Z(Ax). Then y= ax for
some a ∈ A. Clearly, yx= ax2 = ax= y, since x is idempotent. Thus, it suffices to show that
y ∈ Z(A). Take b ∈ A. Then, since x ∈ Z(A) and y ∈ Z(Ax), we get that yb= yxb= ybx=
bxy= byx= by.

4. The Picard inverse category. In this section, we recall the definition of (pre-
)equivalence data and some properties of such systems. Then we introduce the Picard
inverse category PICcat (see Definition 27 and Theorem 28). From [3, Definition (3.2)],
we recall the following.

DEFINITION 19. A set of pre-equivalence data (I, J , P,Q, α, β) consists of rings I and
J , an I–J -bimodule P, a J–I-bimodule Q, an I-bimodule homomorphism

α : P⊗J Q→ I, (10)
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and an I-bimodule homomorphism

β :Q⊗I P→ J , (11)

such that the following two diagrams commute:

P⊗J Q⊗I P
α⊗idP−−−−→ I ⊗I P

idP⊗β
⏐⏐� ⏐⏐�

P⊗J J −−−−→ P

Q⊗I P⊗J Q
β⊗idQ−−−−→ J ⊗J Q

idQ⊗α
⏐⏐� ⏐⏐�

Q⊗I I −−−−→ Q,

(12)

where the unlabelled arrows are the multiplication maps. We shall call it a set of
equivalence data if α and β are isomorphisms.

Now we gather some well-known properties concerning pre-equivalence data that we
need in the sequel.

PROPOSITION 20. If (I, J , P,Q, α, β) is a set of pre-equivalence data such that α (or β)
is surjective, then the following assertions hold:

(a) α (or β) is an isomorphism;
(b) P and Q are generators as I-modules (or J-modules); and
(c) P and Q are finitely generated and projective J-modules (I-modules).

Proof. See [3, Theorem (3.4)].

PROPOSITION 21. If (I, J , P,Q, α, β) is a set of equivalence data, then the ring
homomorphisms

EndJ (P)← I→ EndJ (Q)
op

and

EndI(P)
op← J→ EndI(Q),

induced by the bimodule structure on P and Q, are isomorphisms. These isomorphisms
restrict to ring isomorphisms

EndI−J (P)← Z(I)→ EndJ−I(Q)

and

EndI−J (P)← Z(J)→ EndJ−I(Q),

which in turn restrict to group isomorphisms

AutI−J (P)←U(Z(I))→AutJ−I(Q)

and

AutI−J (P)←U(Z(J))→AutJ−I(Q).

Proof. See [3, Theorem (3.5)].

REMARK 22. Let (I, J , P,Q, α, β) be a set of equivalence data. It follows from
Proposition 21 that there is a unique ring isomorphism γP : Z(J)→ Z(I) with the property
that for all p ∈ P and all b ∈ Z(J) the equality γP(b)p= pb holds.
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DEFINITION 23. A set of partial equivalence data

(A, B, I, J , P,Q, α, β)

consists of rings A and B, unital ideals I and J of, respectively, A and B such that (I, J , P,
Q, α, β) is a set of equivalence data, P is an I–J -bimodule, and Q is a J–I-bimodule.

REMARK 24. Note that, with the notation and assumptions of Definition 23, P (resp. Q)
extends uniquely to an A–B-bimodule (resp. B–A-bimodule). Thus, we may interchange-
ably think of P (resp. Q) as an A–B-bimodule or an I–J -bimodule (resp. B–A-bimodule or
J–I-bimodule).

PROPOSITION 25. Suppose that

(A, B, I, J , P,Q, α, β) (13)

and

(B,C, I ′, J ′, P′,Q′, α′, β ′) (14)

are sets of partial equivalence data. Then

(A,C, I ′′, J ′′, P′′,Q′′, α′′, β ′′)

is a set of partial equivalence data, where

I ′′ = γP(1J 1I ′)A, J ′′ = γ−1
P′ (1J 1I ′)C, P′′ = P⊗B P′, Q′′ =Q′ ⊗B Q, (15)

and for p ∈ P, p′ ∈ P′, q ∈Q, q′ ∈Q′, we put

α′′( p⊗ p′ ⊗ q′ ⊗ q)= α(pα′( p′ ⊗ q′)⊗ q)

and

β ′′(q′ ⊗ q⊗ p⊗ p′)= β ′(q′ ⊗ β(q⊗ p)p′).

Proof. We begin by noticing that P′ ⊗C Q′ ∼= P′ ⊗J ′ Q′. Indeed, J ′ is a unital ideal of
C, and hence J ′ = 1J ′C. Moreover, P′ is a right J ′-module and Q′ is a left J ′-module. Thus,
P′ ⊗C Q′ � p′ ⊗C q′ �→ p′ ⊗J ′ q′ ∈ P′ ⊗J ′ Q′ is a well-defined isomorphism of I ′-bimodules
(and B-bimodules).

The map α′′ : P′′ ⊗C Q′′ → I ′′ is an isomorphism of A-bimodules since it is the
composition of the following chain of A-bimodule isomorphisms:

P⊗B P′ ⊗C Q′ ⊗B Q∼= P⊗B P′ ⊗J ′ Q
′ ⊗B Q∼= P⊗B I ′ ⊗B Q

= P⊗B 1I ′B⊗B Q= P1I ′ ⊗B B⊗B Q
∼= P1J 1I ′ ⊗B Q
∼= γP(1J 1I ′)P⊗B Q∼= γP(1J 1I ′)I = γP(1J 1I ′)A.

Analogously, the map β ′′ :Q′′ ⊗A P′′ → J ′′ is an isomorphism of C-bimodules since it is
the composition of the following chain of C-bimodule isomorphisms:

Q′ ⊗B Q⊗A P⊗B P′ ∼=Q′ ⊗B J ⊗B P′ =Q′ ⊗B 1J B⊗B P′

=Q′ ⊗B B⊗B 1J P′ ∼=Q′ ⊗B 1J 1I ′P
′

∼=Q′ ⊗B P′γ−1
P′ (1J 1I ′)∼= J ′γ−1

P′ (1J 1I ′)= γ−1
P′ (1J 1I ′)C.
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From Proposition 18, it follows that I ′′ = γP(1J 1I ′)A and J ′′ = γ−1
P′ (1J 1I ′)C are well

defined. Now we verify the diagrams in (12). By abuse of notation, we let m denote all of
the various multiplication maps. Take p1, p2 ∈ P, p′1, p′2 ∈ P′, q1, q2 ∈Q, and q′1, q′2 ∈Q′.
Put p′′1 = p1 ⊗ p′1, p′′2 = p2 ⊗ p′2, q′′1 = q′1 ⊗ q1, and q′′2 = q′2 ⊗ q2. Then, by making use of
(12) for (13) and (14), we get that

(m ◦ (α′′ ⊗ idP′′))(p
′′
1 ⊗ q′′1 ⊗ p′′2)= (m ◦ (α′′ ⊗ idP′′))(p1 ⊗ p′1 ⊗ q′1 ⊗ q1 ⊗ p2 ⊗ p′2)

= α(p1α
′(p′1 ⊗ q′1)⊗ q1)p2 ⊗ p′2

= (m ◦ (α⊗ idP))(p1α
′( p′1 ⊗ q′1)⊗ q1 ⊗ p2)⊗ p′2

= (m ◦ (idP ⊗ β))(p1α
′( p′1 ⊗ q′1)⊗ q1 ⊗ p2)⊗ p′2

= p1α
′(p′1 ⊗ q′1)β(q1 ⊗ p2)⊗ p′2

= p1 ⊗ α′(p′1 ⊗ q′1)β(q1 ⊗ p2)p
′
2

= p1 ⊗ (m ◦ (α′ ⊗ idP′))( p′1 ⊗ q′1 ⊗ β(q1 ⊗ p2)p
′
2)

= p1 ⊗ (m ◦ (idP′ ⊗ β ′))( p′1 ⊗ q′1 ⊗ β(q1 ⊗ p2)p
′
2)

= p1 ⊗ p′1β
′(q′1 ⊗ β(q1 ⊗ p2)p

′
2)

= (m ◦ (idP′′ ⊗ β ′′))(p′′1 ⊗ q′′1 ⊗ p′′2)

and

(m ◦ (idQ′′ ⊗ α′′))(q′′1 ⊗ p′′1 ⊗ q′′2)= q′1 ⊗ q1α(p1α
′( p′1 ⊗ q′2)⊗ q2)

= q′1 ⊗ (m ◦ (idQ ⊗ α))(q1 ⊗ p1α
′( p′1 ⊗ q′2)⊗ q2)

= q1 ⊗ (m ◦ (β ⊗ idQ))(q1 ⊗ p1α
′( p′1 ⊗ q′2)⊗ q2)

= q′1 ⊗ β(q1 ⊗ p1α
′(p′1 ⊗ q′2))q2

= q′1 ⊗ β(q1 ⊗ p1)α
′( p′1 ⊗ q′2)q2

= q′1β(q1 ⊗ p1)α
′(p′1 ⊗ q′2)⊗ q2

= q′1α
′(β(q1 ⊗ p1)p

′
1 ⊗ q′2)⊗ q2

= (m ◦ (idQ′ ⊗ α′))(q′1 ⊗ β(q1 ⊗ p1)p
′
1 ⊗ q′2)⊗ q2

= (m ◦ (β ′ ⊗ idQ′))(q
′
1 ⊗ β(q1 ⊗ p1)p

′
1 ⊗ q′2)⊗ q2

= β ′(q′1 ⊗ β(q1 ⊗ p1)p
′
1)q
′
2 ⊗ q2

= (m ◦ (β ′′ ⊗ idQ′′))(q
′′
1 ⊗ p′′1 ⊗ q′′2),

which finishes the proof.

To motivate the approach taken later, we now recall the definition of the Picard
groupoid PIC.

DEFINITION 26. Let PIC denote the category having as objects all unital rings. A mor-
phism in PIC from B to A is the collection of all A–B-bimodule isomorphism classes [P],
for invertible A–B-bimodules P. Given two such classes [P] and [Q], where d([P])= B=
c([Q]), we put [P][Q] = [P⊗B Q]. Then PIC is a groupoid. Indeed, if P is an invert-
ible A–B-bimodule, then there is an invertible B–A-bimodule Q such that P⊗B Q∼= A
(as A-bimodules) and Q⊗A P∼= B (as B-bimodules). Thus, if we put [P]−1 = [Q], then,
clearly [P][P]−1 = [A] and [P]−1[P] = [B].

DEFINITION 27. Let P be an A–B-bimodule and suppose that I and J are unital ideals
of, respectively, A and B, making P an I–J -bimodule. We will indicate this by writing
I
AP J

B . We say that I
AP J

B is partially invertible if there is J
BQI

A and maps α and β such that
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(A, B, I, J , P,Q, α, β) is a set of partial equivalence data. Let PART denote the collection
of all partially invertible bimodules I

AP J
B . Define an equivalence relation ∼ on PART by

saying that I
AP J

B ∼ I ′
A′P
′J ′
B′ if

(A, B, I, J)= (A′, B′, I ′J ′) and P∼= P′ as I–J -bimodules.

The equivalence class of I
AP J

B in PART will be denoted by
[

I
AP J

B

]
. The class of objects in

PICcat consists of all rings. The class of morphisms in PICcat consists of all equivalence
classes

[
I
AP J

B

]
of partially invertible modules I

AP J
B . Define the domain and codomain of a

morphism
[

I
AP J

B

]
in PICcat by the relations d

([
I
AP J

B

])= B and c
([

I
AP J

B

])= A, respectively.
Given a ring A, the identity morphism at A is defined to be the morphism

[
A
AAA

A

]
. Given two

morphisms
[

I
AP J

B

]
and

[
I ′
BP′J

′
C

]
in PICcat put

[
I
AP J

B

][
I ′
BP′J

′
C

]= [I ′′
A P′′J

′′
C

]
, where I ′′, P′′, and J ′′

are defined in Proposition 25. It is clear that the morphisms of the form
[

A
AAA

A

]
, for rings A,

satisfy the axioms for identity morphisms of PICcat. If
[

I
AP J

B

] ∈ (PICcat)1, then there is J
BQI

A
and maps α and β such that (A, B, I, J , P,Q, α, β) is a set of partial equivalence data. Put[

I
AP J

B

]∗ = [ J
BQI

A

]
.

THEOREM 28. PICcat is an inverse category.

Proof. First we show that the partial composition in (PICcat)1 is associative. Suppose
that [I1

A P1
J1
B ], [I2

B P2
J2
C ], and [I3

C P3
J3
D ] are morphisms in PICcat. We need to show that([

I1
A P1

J1
B

] [
I2
B P2

J2
C

]) [
I3
C P3

J3
D

]
=
[

I1
A P1

J1
B

] ([
I2
B P2

J2
C

] [
I3
C P3

J3
D

])
. (16)

By repeated application of the composition in PICcat, it follows that (16) is equivalent to
showing the equalities

γP1⊗BP2(γ
−1
P2
(1J1 1I2)1I3)= γP1(1J1γP2(1J2 1I3)) (17)

and

γ−1
P3
(γ−1

P2
(1J1 1I2)1I3)= γ−1

P2⊗CP3
(1J1γP2(1J2 1I3)). (18)

First we show (17). Take p1 ∈ P1 and p2 ∈ P2. Then

p1 ⊗ p2γ
−1
P2
(1J1 1I2)1I3 = p1 ⊗ p2γ

−1
P2
(1J1 1I2)1J2 1I3 = p1 ⊗ 1J1 1I2 p21J2 1I3

= p1 ⊗ 1J1 p21J2 1I3 = p11J1 ⊗ p21J2 1I3

= p11J1 ⊗ γP2(1J2 1I3)p2 = p11J1γP2(1J2 1I3)⊗ p2

= γP1(1J1γP2(1J2 1I3))p1 ⊗ p2.

Now we show (18). Take p2 ∈ P2 and p3 ∈ P3. Then

1J1γP2(1J2 1I3)p2 ⊗ p3 = 1J1 1I2γP2(1J2 1I3)p2 ⊗ p3 = 1J1 1I2 p21J2 1I3 ⊗ p3

= 1J1 1I2 p21I3 ⊗ p3 = p2γ
−1
P2
(1J1 1I2)1I3 ⊗ p3

= p2 ⊗ γ−1
P2
(1J1 1I2)1I3 p3 = p2 ⊗ p3γ

−1
P3
(γ−1

P2
(1J1 1I2)1I3),

as desired. Next we show the axioms for ∗. Take g= [I
AP J

B

] ∈ (PICcat)1. Then there is J
BQI

A
and maps α and β such that (A, B, I, J , P,Q, α, β) is a set of partial equivalence data. Put
g∗ = [J

BQI
A

]
. Then
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gg∗ = [IAP J
B ][JBQI

A] =
[
γP(1J 1J )A
A (P⊗B Q)

γ−1
Q (1J 1J )A

A

]

=
[

1I A
A (P⊗B Q)1I A

A

]
= [I

AII
A

]
.

Using this we get that

gg∗g= [I
AII

A

] [
I
AP J

B

]= [γI (1I 1I )A
A (I ⊗A P)

γ−1
P (1I 1I )B

B

]
=
[

1I A
A P1J B

B

]
= [I

AP J
B

]= g

and

g∗gg∗ = [J
BQI

A

] [
I
AII

A

]= [γQ(1I 1I )B
B (Q⊗A I)

γ−1
I (1I 1I )A

A

]
=
[

1J B
B Q1I A

A

]
= [J

BQI
A

]= g∗.

Now we show uniqueness of g∗. To this end, first note that

g∗g= [J
BQI

A

] [
I
AP J

B

]= [γQ(1I 1I )B
B (Q⊗A P)

γ−1
P (1I 1I )B

B

]
=
[

1J B
B J1J B

B

]
= [J

BJ J
B

]
.

Next, suppose that

ghg= g and hgh= h (19)

for some h= [K
B ML

A

]
with h∗ = [L

ANK
B

]
. From the first equality in (19), it follows that

g∗ghgg∗ = g∗gg∗, and thus that
[

J
BJ J

B

][
K
B ML

A

][
I
AII

A

]= [J
BQI

A

]
. Rewriting the last equality we

get that [
γJ (1JγM (1L1I ))B
B (J ⊗B M ⊗A I)

γ−1
M⊗AI (1JγM (1L1I ))A

A

]
= [JBQI

A] (20)

and thus that

γJ (1JγM (1L1I))B= J (21)

and

γ−1
M⊗AI(1JγM (1L1I))A= I . (22)

Since γJ is the identity map Z(J)→ Z(J), (21) implies that 1JγM (1L1I)B= J , and hence,
in particular, that J ⊆K. Using that γI equals the identity map on Z(I), it follows that
γ−1

M⊗AI : Z(γM (1L1I))→ Z(1L1I). From (22), it therefore, in particular, follows that I ⊆ L.
From the second equality in (19), it follows, by symmetry, that J ⊆K and L⊆ I . Thus
J =K and L= I , and hence from (20), it follows that h= g∗.

EXAMPLE 29 (The Picard semigroup of a commutative ring). Let R be a unital com-
mutative ring and let M be a finitely generated (central) R-bimodule of rank less than or
equal to one, that is, rk(Mp)≤ 1, for all p ∈ Spec(R). Let M∗ =HomR(M, R) be the dual of
M . Then by [8, Proposition 3.8, Lemma 3.9], there exists e ∈ idem(R) and an R-bimodule
isomorphism α : M ⊗R M∗ → Re, given by α(m⊗ f ) := f (m), for all f ∈M∗ and m ∈M .
Moreover, by [8, Lemma 3.10], the isomorphisms classes of M and M∗ are elements of the
Picard group Pic(Re). In particular, both M and M∗ are unital Re-bimodules. From this, we
get that (R, R, Re, Re,M,M∗, α, α) is a set of partial equivalence data. By [8, Proposition
3.8], the inverse subcategory of PICcat, whose only object is R and whose morphisms are of
the form [Re

R MRe
R ], is a commutative inverse semigroup, denoted by PicS(R). It was defined

in [8, Definition 3.1] and is called the Picard semigroup of R.
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DEFINITION 30. Now we will define a partial functor of inverse categories L : PICcat→
ISOCcat. If A is a ring, then put L(A)= Z(A). If

[
I
AP J

B

]
is a morphism in PICcat, then

put L
([

I
AP J

B

])= Z(I)
Z(A)γP

Z(J)
Z(B), where γP : Z(J)→ Z(I) is the ring isomorphism defined in

Remark 22.

PROPOSITION 31. The map L : PICcat→ ISOCcat is a functor and hence, by
Proposition 6, a partial functor of inverse categories.

Proof. Take morphisms g= [I
AP J

B

]
and h= [I ′BPJ ′

C ] in PICcat. Then

L(gh)= γP(1J 1I ′ )Z(A)
Z(A) γ

γ−1
P′ (1J 1I ′ )Z(C)

P⊗BP′Z(C)

and

L(g)L(h)= γP(Z(J)Z(I ′))
Z(A) γP

∣∣
Z(J)Z(I ′) ◦ γP′

∣∣
γ−1

P′ (Z(J)Z(I
′))

γ
−1
P′ (Z(J)Z(I ′))

Z(C)

.

Note that

γP(Z(J)Z(I
′))= γP(1J 1I ′)Z(A)

and

γ−1
P′ (Z(J)Z(I

′))= γ−1
P′ (1J 1I ′)Z(C).

Put γ1 = γP|Z(J)Z(I ′) and γ2 = γP′ |γ−1
P′ (Z(J)Z(I

′)). If a ∈ γ−1
P′ (1J 1I ′)Z(C), p ∈ P and p′ ∈ P′, then

γP⊗BP′(a)p⊗ p′ = p⊗ p′a= p⊗ γ2(a)p
′ = pγ2(a)⊗ p′ = (γ1 ◦ γ2)(a)p⊗ p′.

From Remark 22, it therefore follows that γP⊗BP′ = γ1 ◦ γ2.

5. Epsilon-strongly groupoid-graded rings. In this section, we recall the definition
of groupoid-graded rings and some of their properties. Then we define epsilon-strongly
groupoid-graded rings (see Definition 34) and provide a characterization of them which
generalizes an analogous result for group-graded rings (see Proposition 37). Throughout
this section, S denotes a ring which is graded by a small groupoid G. Recall from [13, 14]
that this means that there is a set of additive subgroups {Sg}g∈G of S such that S =⊕g∈GSg

and, for all g, h ∈G1, SgSh ⊆ Sgh, if (g, h) ∈G2, and SgSh = {0}, if (g, h) /∈G2. In that case,
S is called strongly graded if for all (g, h) ∈G2 the equality SgSh = Sgh holds. Given two
G-graded rings S and T , a ring homomorphism f : S→ T is called graded if for all g ∈G1

the inclusion f (Sg)⊆ Tg holds. We put R=⊕e∈G0 Se. From the next result, it follows that
we may always assume that G0 is finite.

PROPOSITION 32. With the above notation, we get that 1S ∈ R. If we put G′0 = {e ∈G0 |
(1S)e �= 0} and G′1 = {g ∈G1 | (1S)d(g), (1S)c(g) �= 0}, then G′ is a subgroupoid of G such
that G′0 is finite and S =⊕g∈G′1 Sg.

Proof. This follows from [13, Proposition 2.1.1].

PROPOSITION 33. The ring S is strongly graded if and only if for all g ∈G1 the inclusion
1Sc(g) ∈ SgSg−1 holds.

Proof. This follows from [14, Lemma 3.2].
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DEFINITION 34. The ring S is said to be epsilon-strongly graded by G if, for each
g ∈G1, SgSg−1 is a unital ideal of Sc(g) such that for all (g, h) ∈G2 the equalities SgSh =
SgSg−1 Sgh = SghSh−1 Sh hold.

REMARK 35. It follows from Propositions 32 and 33 that if S is strongly graded, then
S is epsilon-strongly graded.

REMARK 36. Suppose that S is epsilon-strongly graded by G and g ∈G1. Then by
the definition of R, the Sc(g)-ideal SgSg−1 is a unital ideal of R. Moreover, if εg is its
multiplicative identity element, then for r ∈ R, we get that εgr, rεg ∈ SgSg−1 . Therefore,
εgr= (εgr)εg = εg(rεg)= rεg, which shows that εg ∈ Z(R), and SgSg−1 = εgSc(g) = εgR.

We now wish to show an epsilon-analogue of Proposition 33.

PROPOSITION 37. The ring S is epsilon-strongly graded by G if and only if for each
g ∈G1 there is εg ∈ SgSg−1 such that for each s ∈ Sg the equalities εgs= s= sεg−1 hold.

Proof. First we show the “only if” statement. Suppose that S is epsilon-strongly
graded. Take g ∈G1. Let εg denote 1SgSg−1 . Take sg ∈ Sg. From Proposition 32, it follows

that SgSg−1 Sg = Sg. Therefore, there is a positive integer n and a(i)g , c(i)g ∈ Sg, and b(i)g−1 ∈ Sg−1 ,

for i ∈ {1, . . . , n}, such that sg =∑n
i=1 a(i)g b(i)g−1 c(i)g . Since εg = 1SgSg−1 and εg−1 = 1Sg−1 Sg , we

get that

εgsg =
n∑

i=1

(εga(i)g b(i)g−1)c
(i)
g =

n∑
i=1

a(i)g b(i)g−1 c(i)g = sg

and

sgεg−1 =
n∑

i=1

a(i)g (b
(i)
g−1 c(i)g εg−1)=

n∑
i=1

a(i)g b(i)g−1 c(i)g = sg.

Now we show the “if” statement. Suppose that to each g ∈G1 there is εg ∈ SgSg−1 such that
for each s ∈ Sg the equalities εgs= s= sεg−1 hold. Take (g, h) ∈G2. Then, it follows that

SgSh = εgSgSh ⊆ SgSg−1 SgSh ⊆ SgSg−1 Sgh ⊆ SgSd(g)h = SgSc(h)h = SgSh

and

SgSh = SgShεh−1 ⊆ SgShSh−1 Sh ⊆ SghSh−1 Sh = Sgc(h)Sh = Sgd(g)Sh = SgSh.

Moreover, it is clear that εg is the multiplicative identity element of SgSg−1 .

6. Examples of epsilon-strongly groupoid-graded rings. In this section, we
present some examples of epsilon-strongly groupoid-graded rings.

6.1. Partial skew groupoid rings. The notion of a partial action of a groupoid on a
ring, as well as the construction of the corresponding partial skew groupoid ring, is due to
Bagio and Paques [2].

Let G be a groupoid and suppose that B is a ring which is the product of a collection
of rings {Be}e∈G0 .
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DEFINITION 38. A partial groupoid action of G on B is a collection of maps {θg}g∈G1 ,
where, for each g ∈G1, Bg is an ideal of Bc(g), Bc(g) is an ideal of B, and θg : Bg−1→ Bg is
a ring isomorphism satisfying the following three axioms:

(G1) if e ∈G0, then θe = idBe ;
(G2) if (g, h) ∈G2, then θ−1

h (Bg−1 ∩ Bh)= B(gh)−1 ;
(G3) if (g, h) ∈G2 and x ∈ θ−1

h (Bg−1 ∩ Bh), then θg(θh(x))= θgh(x).

Note that conditions (G2) and (G3) are equivalent to the fact that θgh is an extension of
θg ◦ θh. We say that θ is global if θgh = θg ◦ θh, for each (g, h) ∈G2.

DEFINITION 39. Let {θg}g∈G1 be a partial groupoid action of G on B. Suppose that for
each g ∈G1, Bg is unital, that is, Bg is generated by an idempotent 1g which is central in
Bc(g), and θg is a monoid isomorphism. In that case, we say that {θg}g∈G1 is a unital partial
groupoid action of G on B.

The partial skew groupoid ring B �θ G, associated with a unital partial groupoid action
{θg}g∈G1 of G on B, is the set of all finite formal sums

∑
g∈G1

bgδg, where bg ∈ Bg, with
addition defined componentwise and multiplication determined by the rule

(bgδg)(b
′
hδh)= bgαg(b

′
h1g−1)δgh (23)

if (g, h) ∈G2, and (bgδg)(b′hδh)= 0, otherwise.
There is a natural G-grading on B �θ G. Indeed, if we put Sg = Bgδg for each g ∈G1,

then B �θ G=⊕g∈G1 Sg is G-graded. For each g ∈G, the idempotent 1gδc(g) satisfies the
conditions of Proposition 37. Thus, B �θ G is an epsilon-strongly G-graded ring. Moreover,
by [1, Proposition 2.5], one has that B �θ G is strongly G-graded if and only if θ is global.

6.2. Leavitt path algebras. Let E= (E0, E1, r, s) be a directed graph, consisting of
two countable sets E0, E1 and maps r, s : E1→ E0. The elements of E0 are called vertices
and the elements of E1 are called edges. If both E0 and E1 are finite sets, then we say that
E is finite. A path μ in E is a sequence of edges μ=μ1 . . . μn such that r(μi)= s(μi+1)

for i ∈ {1, . . . , n− 1}. In such a case, s(μ) := s(μ1) is the source of μ, r(μ) := r(μn) is the
range of μ, and n is the length of μ.

DEFINITION 40 ([11]). Let E be any directed graph and let K be a unital ring. The
Leavitt path algebra of E with coefficients in K, denoted by LK(E), is the algebra generated
by a set {v | v ∈ E0} of pairwise orthogonal idempotents, together with a set of elements
{ f | f ∈ E1} ∪ { f ∗ | f ∈ E1}, which satisfy the following relations:

(1) s( f )f = fr( f )= f , for all f ∈ E1;
(2) r( f )f ∗ = f ∗s( f )= f ∗, for all f ∈ E1;
(3) f ∗f ′ = δf ,f ′r( f ), for all f , f ′ ∈ E1; and
(4) v=∑{f ∈E1|s( f )=v} ff ∗, for every v ∈ E0 for which s−1(v) is non-empty and finite.

Here the ring K commutes with the generators.

REMARK 41. (a) Every path μ=μ1 . . . μn may be viewed as an element of LK(E).
Given such an element μ, we put μ∗ :=μ∗n . . . μ∗1 ∈ LK(E). The element μ∗ may also be
thought of as a ghost path in E, as opposed to μ which is a real path.

(b) Note that every element x ∈ LK(E) may be written on the form x=∑n
i=1 kiαiβ

∗
i ,

for suitable ki ∈K and (real) paths αi and βi satisfying r(αi)= r(βi), for i ∈ {1, . . . , n}.
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6.2.1. The groupoid
Based on E, we define a groupoid G in the following way. The objects of G are the

vertices of E, that is, G0 = E0. An ordered pair of vertices, (u, v), is an arrow in G with
d(u, v)= v and c(u, v)= u if there is a path

μ=μ1μ2 . . . μn,

such that u= s(μ)= s(μ1) and v= r(μ)= r(μn), where μi ∈ E1 ∪ (E1)∗ ∪ E0 for each i ∈
{1, 2, . . . , n} and r(μi)= s(μi+1) for each i ∈ {1, 2, . . . , n− 1}.

Two arrows (u, v) and (v′,w) and composable if only if v′ = v. In that case, their
composition is defined to be equal to

(u, v)(v,w)= (u,w).

6.2.2. The grading
Let W denote the set of finite real paths in E, and consider W as a subset of the ring

LK(E).

LEMMA 42. If we, for each (u, v) ∈G1, put

S(u,v) = spanK{αβ∗ | α, β ∈W , such that s(α)= u, r(α)= r(β), s(β)= v},
then this turns S = LK(E)=⊕(u,v)∈G1 S(u,v) into a G-graded ring.

Proof. Clearly, LK(E)=∑(u,v)∈G1
S(u,v), and this sum is in fact direct. Indeed, take a

non-zero x ∈ S(u,v) ∩ S(a,b). Then x= ux and x= ax, and hence 0 �= x= ux= u(ax)= (ua)x.
In particular, ua �= 0 which means that u= a. Similarly, we may conclude that v= b. That
is, (u, v)= (a, b).

Let (u, v), (v′,w) ∈G1 be arbitrary. If v′ = v, then we get that S(u,v)S(v,w) ⊆ S(u,w). On
the other hand, if v′ �= v, then S(u,v)S(v′,w) = {0}. This shows that LK(E) is G-graded.

THEOREM 43. If E is a finite graph, then the Leavitt path algebra S = LK(E) is epsilon-
strongly G-graded.

Proof. Let (u, v) ∈G1 be arbitrary.
If u /∈ S(u,v)S(v,u), then we shall be interested in the following set:

P(u,v) = {α | αβ∗ ∈ S(u,v)}.
For αi, αj ∈ P(u,v), we write αi ≤ αj if αi is an initial subpath of αj. Clearly, ≤ is a partial
order on P(u,v). Moreover, using that E is finite, it is not difficult to see that there can only
be a finite number of minimal elements of P(u,v) with respect to ≤. We collect all such
minimal elements in the set M(u,v) = {α1, . . . , αk}.

We are now ready to define ε(u,v) in the following way:

ε(u,v) =
⎧⎨
⎩ u if u ∈ S(u,v)S(v,u)∑

αj∈M(u,v)
αjα
∗
j otherwise.

Note that, whenever αβ∗ ∈ S(u,v) is a non-zero monomial, that is, r(α)= r(β), we get
that αα∗ = αr(β)α∗ = αβ∗βα∗ ∈ S(u,v)S(v,u). In particular, αjα

∗
j ∈ S(u,v)S(v,u) for each αj ∈

M(u,v). Hence, by construction, ε(u,v) ∈ S(u,v)S(v,u). Moreover, (ε(u,v))∗ = ε(u,v).
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Take any monomial γ δ∗ ∈ S(u,v). First we show that ε(u,v)γ δ∗ = γ δ∗.
Case 1: (u ∈ S(u,v)S(v,u))

Clearly, ε(u,v)γ δ∗ = uγ δ∗ = γ δ∗.
Case 2: (u /∈ S(u,v)S(v,u))

Note that there is some α′ ∈M(u,v) such that γ = α′γ ′. Thus,

ε(u,v)γ δ
∗ =

⎛
⎝α′α′∗ + ∑

αj∈M(u,v)\{α′}
αjα
∗
j

⎞
⎠ γ δ∗

= α′α′∗α′γ ′δ∗ + 0= α′γ ′δ∗ = γ δ∗.
It remains to show that γ δ∗ε(v,u) = γ δ∗. Note that

γ δ∗ ∈ S(u,v)⇐⇒ δγ ∗ ∈ S(v,u).

It follows, from Case 1 and Case 2, that ε(v,u)δγ ∗ = δγ ∗. Using this we get that

γ δ∗ε(v,u) = γ δ∗(ε(v,u))∗ = (ε(v,u)δγ ∗)∗ = (δγ ∗)∗ = γ δ∗.
This concludes the proof.

In general, LK(E) need not be strongly G-graded, as the following example shows.

EXAMPLE 44. Let K be a unital ring and consider the Leavitt path algebra LK(E)
associated with the following graph E:

•v1 •v2

f1�� f2 �� •v3

A few short calculations reveal that

� S(v2,v1)S(v1,v2) =K f1 f ∗1
� S(v1,v2)S(v2,v1) =Kv1
� S(v3,v2)S(v2,v3) =Kv3
� S(v2,v3)S(v3,v2) =K f2 f ∗2
� S(v3,v1)S(v1,v3) = {0}
� S(v1,v3)S(v3,v1) = {0}
and we may choose

� ε(v2,v1) = f1 f ∗1
� ε(v1,v2) = v1
� ε(v3,v2) = v3
� ε(v2,v3) = f2 f ∗2
� ε(v1,v3) = ε(v3,v1) = 0.

Clearly, (v1, v3) and (v3, v1) are composable, but {0} = S(v1,v3)S(v3,v1) �= S(v1,v1). Thus, LK(E)
is not strongly G-graded.

REMARK 45. Gonçalves and Yoneda [10] have shown that each Leavitt path algebra
may be viewed as a partial skew groupoid ring. Their observation gives rise to another
example of an epsilon-strong groupoid grading on a Leavitt path algebra.

6.3. Morita rings. Let (A, B,A MB,B NA, ϕ, φ) be a strict Morita context. It con-
sists of unital rings A and B, an A–B-bimodule M , a B–A-bimodule N , an A–A-bimodule
epimorphism ϕ :M ⊗B N→ A, and a B–B-bimodule epimorphism φ :N ⊗A M→ B.
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The associated Morita ring is the set

S =
⎛
⎝ A M

N B

⎞
⎠,

with the natural addition and with a multiplication defined by⎛
⎝a1 m1

n1 b1

⎞
⎠ ∗

⎛
⎝a2 m2

n2 b2

⎞
⎠=

⎛
⎝a1a2 + ϕ(m1 ⊗ n2) a1m2 +m1b2

n1a2 + b1n2 φ(n1 ⊗m2)+ b1b2

⎞
⎠,

for a1, a2 ∈ A, b1, b2 ∈ B, m1,m2 ∈M , and n1, n2 ∈N . Let G be a group and I a non-empty
set. Then the set I ×G× I considered as morphisms, where the composition is given by
the rule

(i, g, j)( j, h, k)= (i, gh, k),

for all i, j, k ∈ I and g, h ∈G, is a groupoid. Using this groupoid and taking I = {1, 2} and
G the infinite cyclic group generated by g, we can define a grading on S by putting

S(1,e,1) =
⎛
⎝A 0

0 0

⎞
⎠, S(2,e,2) =

⎛
⎝ 0 0

0 B

⎞
⎠,

S(1,g,2) =
⎛
⎝ 0 M

0 0

⎞
⎠, S(2,g−1,1) =

⎛
⎝ 0 0

N 0

⎞
⎠,

and S(i,h,j) =
{(

0 0
0 0

)}
, in any other case. Then for h ∈G \ {e, g, g−1}, we have that

S(1,h−1,1)S(1,h,1) �= S(1,e,1),

and thus S is not strongly graded. However, S is epsilon-strongly graded. Indeed, it is easy
to see that

S(1,g,2)S(2,g−1,1) =
⎛
⎝ im (ϕ) 0

0 0

⎞
⎠=

⎛
⎝A 0

0 0

⎞
⎠

and

S(2,g−1,1)S(1,g,2) =
⎛
⎝ 0 0

0 im (φ)

⎞
⎠=

⎛
⎝0 0

0 B

⎞
⎠.

If we put

ε(1,e,1) = ε(1,g,2) =
⎛
⎝1A 0

0 0

⎞
⎠ and ε(2,e,2) = ε(2,g−1,1) =

⎛
⎝0 0

0 1B

⎞
⎠,

then, by Proposition 37 this yields an epsilon-strong (I ×G× I)-grading on S.
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7. Epsilon-strongly groupoid-graded modules. In this section, we define epsilon-
strongly groupoid-graded modules (see Definition 46) and we provide a characterization
of them (see Proposition 47) that generalizes a result [15, Theorem I.3.4] previously
obtained for strongly group-graded modules. At the end of this section, we show
(see Proposition 48) that the multiplication maps mg,h : Sg ⊗R Sh→ εgSgh = Sghεh−1 , for
(g, h) ∈G2, are R-bimodule isomorphisms. In particular, this implies that for every g ∈G1,
the sextuple (

εgR, εg−1 R, Sg, Sg−1 ,mg,g−1 ,mg−1,g

)
is a set of equivalence data. Throughout this section, S denotes a ring which is graded
by a small groupoid G, and we put R=⊕e∈G0 Se. For the entirety of this section also let
M be a graded left (right) S-module. Recall that this means that there to each g ∈G1 is
an additive subgroup Mg of M such that M =⊕g∈G1 Mg, as additive groups, and for all
g, h ∈G1, the inclusion SgMh ⊆Mgh (or MgSh ⊆Mgh) holds, if (g, h) ∈G2, and SgMh = {0}
(or MgSh = {0}), otherwise. Recall that M is called strongly graded if for all (g, h) ∈G2 the
equality SgMh =Mgh (or MgSh =Mgh) holds.

DEFINITION 46. We say that M is epsilon-strongly graded if, for each g ∈G1, SgSg−1 is
a unital ideal of Sc(g) such that for all (g, h) ∈G2 the equality SgMh = SgSg−1 Mgh (MgSh =
MghSh−1 Sh) holds.

PROPOSITION 47. The following assertions are equivalent:

(a) The ring S is epsilon-strongly graded;
(b) Every graded left S-module is epsilon-strongly graded; and
(c) Every graded right S-module is epsilon-strongly graded.

Proof. Suppose that (a) holds. First we show that (b) holds. Let M be a G-graded left
S-module and take (g, h) ∈G2. Then

SgSg−1 Mgh ⊆ SgMg−1gh = SgMh = SgSg−1 SgMh ⊆ SgSg−1 Mgh.

Next, we show that (c) holds. Let M be a G-graded right S-module and take (g, h) ∈G2.
Then

MghSh−1 Sh ⊆MgSh =MgShSh−1 Sh ⊆MghSh−1 Sh.

It is clear that (b) (or (c)) implies (a).

PROPOSITION 48. Suppose that S is epsilon-strongly graded, and let {εg}g∈G1 be the
family of central idempotents of R provided by Proposition 37. Then for all (g, h) ∈G2, the
following assertions hold:

(a) For every graded left S-module M, the multiplication map mg,h : Sg ⊗Sd(g) Mh→
εgMgh is an isomorphism of R-bimodules.

(b) For every graded right S-module M, the multiplication map m′g,h :Mg ⊗Sd(g) Sh→
Mghεh−1 is an isomorphism of R-bimodules.

(c) The multiplication map mg,h : Sg ⊗R Sh→ εgSgh = Sghεh−1 is an isomorphism of
R-bimodules.

(d) For every g ∈G1, the sextuple

(εgR, εg−1 R, Sg, Sg−1 ,mg,g−1 ,mg−1,g)

is a set of equivalence data.
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Proof. Take (g, h) ∈G2.
(a) Let M be a G-graded left S-module. From Proposition 47(b), it follows that mg,h

is surjective. Now we show that mg,h is injective. To this end, take a positive integer n and

s(i)g ∈ Sg and l(i)h ∈Mh, for i ∈ {1, . . . , n}, such that mg,h(x)= 0, where x=∑n
i=1 s(i)g ⊗ l(i)h ∈

Sg ⊗Sd(g) Mh. Take a positive integer m and u( j)
g ∈ Sg and v( j)

g−1 ∈ Sg−1 , for j ∈ {1, . . . ,m}, such

that εg =∑m
j=1 u( j)

g v( j)
g−1 . Then

x=
n∑

i=1

s(i)g ⊗ l(i)h =
n∑

i=1

εgs(i)g ⊗ l(i)h =
n∑

i=1

m∑
j=1

u( j)
g v( j)

g−1 s(i)g ⊗ l(i)h

=
n∑

i=1

m∑
j=1

u( j)
g ⊗ v( j)

g−1 s(i)g l(i)h =
m∑

j=1

u( j)
g ⊗ v( j)

g−1 mg,h(x)= 0.

(b) Let M be a G-graded right S-module. From Proposition 47(c), it follows that m′g,h
is surjective. Now we show that m′g,h is injective. To this end, take a positive integer n and

m(i)
g ∈Mg and s(i)h ∈ Sh, for i ∈ {1, . . . , n}, such that m′g,h(x)= 0, where x=∑n

i=1 l(i)g ⊗ s(i)h ∈
Mg ⊗Sd(g) Sh. Take a positive integer m, and u( j)

h−1 ∈ Sh−1 and v( j)
h ∈ Sh, for j ∈ {1, . . . ,m},

such that εh−1 =∑m
j=1 u( j)

h−1 v( j)
h . Then

x=
n∑

i=1

l(i)g ⊗ s(i)h =
n∑

i=1

l(i)g ⊗ s(i)h εh−1 =
n∑

i=1

m∑
j=1

l(i)g ⊗ s(i)h u( j)
h−1 v( j)

h

=
n∑

i=1

m∑
j=1

l(i)g s(i)h u( j)
h−1 ⊗ v( j)

h =
m∑

j=1

m′g,h(x)u
( j)
h−1 ⊗ v( j)

h = 0.

(c) and (d) follow immediately from (a) or (b).

REMARK 49. Take g ∈G1. It is clear from the definition of epsilon-strongly groupoid-
graded rings that the sextuple

(εgR, εg−1 R, Sg, Sg−1 ,mg,g−1 ,mg−1,g)

is a set of pre-equivalence data with mg,g−1 and mg−1,g surjective. Thus, injectivity of the
maps mg,g−1 and mg−1,g also follow from Proposition 20(a).

8. Generalized Epsilon-crossed products. In this section, we introduce gener-
alized epsilon-crossed groupoid products (see Definition 53), and we show that they
parameterize the family of epsilon-strongly groupoid-graded rings (see Propositions 55
and 56). Throughout this section, G denotes a small groupoid with G0 finite.

DEFINITION 50. Suppose that F :G→ PICcat is a partial functor of inverse categories.

For each e ∈G0, define the ring Ae by F(e)= Ae. For each g ∈G1, put F(g)=
[

Ig

Ac(g)
(Pg)

Jg

Ad(g)

]
for some Ac(g)–Ad(g)-bimodule Pg, some unital ideal Ig of Ac(g), and some unital ideal Jg of
Ad(g),making Pg an Ig–Jg-bimodule. For the time being, assume that the bimodules Pg, for
g ∈G1, are fixed. From the equality F(g−1)= F(g)∗, it follows by the proof of Theorem 28

that Jg = Ig−1 , so we may write F(g)=
[

Ig

Ac(g)
(Pg)

Ig−1

Ad(g)

]
. For each g ∈G1, put εg = 1Ig .
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PROPOSITION 51. Suppose that (g, h) ∈G2. Then γPgh(ε(gh)−1εh−1)= εgεgh. In particu-
lar, εgPgh = Pghεh−1 .

Proof. From (15), it follows that

F(g)F(g−1)F(gh)=
[

Ig

Ac(g)
(Pg)

Ig−1

Ad(g)

] [
Ig−1

Ad(g)
(Pg−1)

Ig

Ac(g)

] [
Igh

Ac(g)
(Pgh)

I
(gh)−1

Ad(h)

]
=
[

Ig

Ac(g)
(Ig)

Ig

Ac(g)

] [
Igh

Ac(g)
(Pgh)

I
(gh)−1

Ad(h)

]
=
[
γIg (εgεgh)Ac(g)

Ac(g)
(Ig ⊗Ac(g) Pgh)

γ−1
Pgh
(εgεgh)Ad(h)

Ad(h)

]

=
[
εgεghAc(g)

Ac(g)
(Ig ⊗Ac(g) Pgh)

γ−1
Pgh
(εgεgh)Ad(h)

Ad(h)

]

and

F(gh)F(h−1)F(h)=
[

Igh

Ac(g)
(Pgh)

I
(gh)−1

Ad(h)

] [
Ih−1

Ad(h)
(Ph−1)

Ih
Ac(h)

] [
Ih
Ac(h)
(Ph)

Ih−1

Ad(h)

]
=
[

Igh

Ac(g)
(Pgh)

I
(gh)−1

Ad(h)

] [
Ih−1

Ad(h)
(Ih−1)

Ih−1

Ad(h)

]
=
[
γPgh (ε(gh)−1 εh−1 )Ac(g)

Ac(g)
(Pgh ⊗Ad(h) Ih−1)

ε
(gh)−1 εh−1 Ad(h)

Ad(h)

]
.

Thus, from the equality F(g)F(g−1)F(gh)= F(gh)F(h−1)F(h) and Proposition 18,
we get that γPgh(ε(gh)−1εh−1)= εgεgh. Finally, εgPgh = εgεghPgh = γPgh(ε(gh)−1εh−1)Pgh =
Pghε(gh)−1εh−1 = Pghεh−1 .

REMARK 52. Let F :G→ PICcat be a partial functor of inverse categories. Then for
every (g, h) ∈G2, there are Ac(g)–Ad(h)-bimodule isomorphisms

Pg ⊗Ad(g) Ph
∼= Pg ⊗Ad(g) Pg−1 ⊗Ac(g) Pgh

∼= Ig ⊗Ac(g) Pgh
∼= εgPgh.

DEFINITION 53. Let F :G→ PICcat be a partial functor of inverse categories. A partial
factor set associated with F is a family f = {fg,h | (g, h) ∈G2}, where each fg,h : Pg ⊗Ad(g)

Ph→ εgPgh = Pghεh−1 is an isomorphism of Ac(g)–Ad(h)-bimodules, making the following
diagram commutative:

Pg ⊗Ad(g) Ph ⊗Ad(h) Pr

idPg⊗fh,r−−−−→ Pg ⊗Ad(g) Phrεr−1

fg,h⊗idPr

⏐⏐� ⏐⏐�fg,hr

εgPgh ⊗Ad(h) Pr
fgh,r−−−−→ εgPghrεr−1 ,

(24)

for all (g, h, r) ∈G3. If f is a partial factor set associated with F, then we define the partial
generalized epsilon-crossed product (F, f ) as the additive group ⊕g∈G1 Pg with multipli-
cation defined by the biadditive extension of the relations x · y= fg,h(x⊗ y), if (g, h) ∈G2,
and x · y= 0, otherwise, for all x ∈ Pg and y ∈ Ph and all g, h ∈G1. It is clear that if for each
g ∈G1, we put (F, f )g = Pg, then (F, f ) is a groupoid-graded ring.

REMARK 54. We notice that the notion of partial factor sets already exists in the lit-
erature, in a close but different sense. Indeed, partial projective representations and their
corresponding factor sets were introduced in [6]. Later, in [7], these factor sets were called
partial factor sets. For a detailed account of these notions, we refer the reader to the survey
[18].

https://doi.org/10.1017/S0017089519000065 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089519000065


EPSILON-STRONGLY GROUPOID-GRADED RINGS 255

PROPOSITION 55. If F :G→ PICcat is a partial functor of inverse categories, then the
ring (F, f ) is epsilon-strongly G-graded.

Proof. Put S = (F, f ). By (24), the multiplication is associative. By the definition of
the multiplication, for all (g, h) ∈G2, the equality SgSh = εgSgh = Sghεh−1 holds. All that
is left to show is that S has a multiplicative identity element. Take e ∈G0 and put ce =
fe,e(1Ae ⊗ 1Ae). Take ae ∈ Ae. Then, since fe,e is an Ae-bimodule homomorphism, it follows
that

aece = aefe,e(1Ae ⊗ 1Ae)= fe,e(ae ⊗ 1Ae)= fe,e(1Ae ⊗ ae)

= fe,e(1Ae ⊗ 1Ae)ae = ceae.

Thus, ce ∈ Z(Ae). Since fe,e is surjective, there are a, a′ ∈ Ae such that fe,e(a⊗ a′)= 1Ae . By
Ae-bilinearity, it follows that aa′ce = ceaa′ = 1Ae . Hence ce ∈U(Z(Ae)). Now set ne = c−1

e .
Then fe,e(ne ⊗ ne)= ne. Hence n :=∑e∈G0

ne is a multiplicative identity element of S. In
fact, take g ∈G1 and x ∈ Pg. Then there is y ∈ Pg such that x= fc(g),g(nc(g) ⊗ y). Thus, by
(24), we get that

n · x = nc(g) · x= fc(g),g(nc(g) ⊗ x)= fc(g),g(nc(g) ⊗ fc(g),g(nc(g) ⊗ y))

= fc(g),g( fc(g),c(g)(nc(g) ⊗ nc(g))⊗ y)= fc(g),g(nc(g) ⊗ y)= x.

Analogously, x · n= x.

PROPOSITION 56. If S is an epsilon-strongly graded ring, then there is a partial functor
of inverse categories F :G→ PICcat and a partial factor set f associated with F such that
S = (F, f ).

Proof. Define F :G→ PICcat by F(g)= [εgSc(g)

Sc(g)
Sg
εg−1 Sd(g)

Sd(g)

]
, g ∈G1, and a partial factor

set f associated with F by the multiplication maps fg,h : Sg ⊗Sd(g) Sh→ εgSgh = Sghεh−1 for
(g, h) ∈G2. The claim now follows immediately from Proposition 48(c).

DEFINITION 57. Let F and F′ be partial functors of inverse categories from G to PICcat

that coincide on G0. Take partial factor sets f and f ′ associated with F and F′, respectively

and put F(g)=
[

Ig

Ac(g)
(Pg)

Jg

Ad(g)

]
, F′(g)=

[
I ′g
Ac(g)
(P′g)

J ′g
Ad(g)

]
, g ∈G1. A morphism from f to f ′ is a

family α = (αg)g∈G1 , where each αg : Pg→ P′g is an Ac(g)–Ad(g)-bimodule homomorphism,
such that the diagram

Pg ⊗Ad(g) Ph
fg,h−−−−→ εgPgh

αg⊗αh

⏐⏐� ⏐⏐�αgh

P′g ⊗Ad(g) P′h
f ′g,h−−−−→ εgP′gh

(25)

is commutative for all (g, h) ∈G2.

LEMMA 58. With the above notation, a morphism α from F to F′ induces a homomor-
phism of graded rings α from (F, f ) to (F′, f ′). Moreover, if each αe, e ∈G0, is surjective,
then α(1)= 1. The map α is an isomorphism if and only if each αe, e ∈G0, is bijective.

Proof. Similar to the proof of [13, Lemma 4.2].

PROPOSITION 59. The isomorphism class of (F, f ) does not depend on the choice of the
bimodules Pg.
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Proof. Put F(g)=
[

Ig

Ac(g)
(Pg)

Jg

Ad(g)

]
=
[

Ig

Ac(g)
(P′g)

Jg

Ad(g)

]
, for g ∈G1. Then there exists an

Ac(g)–Ad(g)-bimodule homomorphism αg : Pg→ P′g. If we now put f ′g,h = α−1
gh ◦ fg,h ◦ (αg ⊗

αh), for (g, h) ∈G2, then f ′ is a factor set associated with F and (25) commutes.

9. Partial cohomology of groupoids. In this section, we extend the construction of
a partial cohomology theory for partial actions of groups on commutative monoids, from
[5], to partial actions of groupoids. We follow closely the presentation and the proofs in [5].
Partial actions of groupoids on rings were first studied in [2]. Partial actions of categories
on sets and topological spaces have been introduced in [16]. For the rest of this section,
let G be a groupoid and suppose that B is the product of a collection of commutative
semigroups {Be}e∈G0 .

REMARK 60. Let {θg}g∈G1 be a unital partial groupoid action of G on B1. Note that if
e ∈G0 and C and D are unital ideals of Be, then C ∩D=CD, so it follows from [2, Lemma
1.1] that the properties (G2) and (G3) can be replaced by

(G2′) if (g, h) ∈G2, then θg(Bg−1 Bh)= BgBgh, and
(G3′) if (g, h) ∈G2 and x ∈ Bh−1 Bh−1g−1 , then θg(θh(x))= θgh(x),

respectively.
A unital partial G-module is a pair (B, θ), where B is a commutative monoid and θ is

a unital partial action of G on B.

DEFINITION 61. A morphism ψ : (B, θ)→ (B′, θ ′) of partial G-modules is a set of
monoid homomorphisms ψ = {ψc(g) : Bc(g)→ B′c(g)}g∈G such that

� ψc(g)(Bg)⊆ B′g,
� θ ′g ◦ψc(g) =ψc(g) ◦ θg on Bg−1 ,

for all g ∈G1.

Recall that, if n≥ 2, then we let Gn denote the set of all (g1, . . . , gn) ∈×n
i=1G1 that

are composable, that is, such that for every i ∈ {1, . . . , n− 1} the relation d(gi)= c(gi+1)

holds.
We denote by pMod(G) the category of (unital) partial G-modules. Sometimes, for

convenience, (B, θ) will be replaced by B. Suppose that B ∈ pMod(G). An n-cochain
of G with values in B is a function f :Gn→ B such that for every (g1, . . . , gn) ∈Gn,
f (g1, . . . , gn) is an invertible element of B(g1,...,gn) = Bg1 Bg1g2 · · · Bg1···gn . Denote the set
of n-cochains by Cn(G, B). We let C0(G, B) denote U(B), the group of units in B.

PROPOSITION 62. Let B ∈ pMod(G). Then Cn(G, B) is an abelian group under point-
wise multiplication.

Proof. This is clear if n= 0. Now suppose that n≥ 1. Define en ∈Cn(G, B) in the
following way. Given (g1, . . . , gn) ∈Gn, put en(g1, . . . , gn)= 1g1 1g1g2 · · · 1g1···gn . It is clear
that en is an identity element of Cn(G, B). Given f ∈Cn(G, B) and (g1, . . . , gn) ∈Gn, put
f −1(g1, . . . , gn)= f (g1, . . . , gn)

−1, where the inverse is taken in B(g1,...,gn). It is clear that
ff −1 = f −1f = en.

DEFINITION 63. Let B ∈ pMod(G) and let n be a non-negative integer. Define a map
δn :Cn(G, B)→Cn+1(G, B) in the following way. Take b= (be)e∈ob(G) ∈U(B) and g ∈G1.
Put

1In the sense of Definition 39, but in this case, {θg}g∈G1 is a family of semigroup isomorphisms.
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δ0(b)(g)= θg(1g−1 bd(g))b
−1
c(g).

Now suppose that n is a positive integer. Take f ∈Cn(G, B) and (g1, . . . , gn+1) in Gn+1.
Put

δn( f )(g1, . . . , gn+1)=

θg1(1g−1
1

f (g2, . . . , gn+1))

(
n∏

i=1

f (g1, . . . , gigi+1, . . . gn+1)
(−1)i

)
f (g1, . . . , gn)

(−1)n+1
.

Adapting the proofs of [6, Proposition 1.5] and [6, Proposition 1.7] to our situation,
we get the following.

PROPOSITION 64. Suppose that B ∈ pMod(G), and that n is a non-negative integer.
Then the following assertions hold:

(a) The map δn is a well-defined homomorphism of groups Cn(G, B)→Cn+1(G, B)
satisfying δn+1δn = en+2.

(b) The map sending B to the sequence {δn : Cn(G, B)→Cn+1(G, B)}n∈N is a functor
from pMod(G) to the category of complexes of abelian groups.

DEFINITION 65. Let B ∈ pMod(G) and let n be a positive integer. The map δn is called a
coboundary homomorphism. We define the abelian groups Zn(G, B)= ker(δn), Bn(G, B)=
im(δn−1). The quotient group Hn(G, B)= Zn(G, B)/Bn(G, B) is called the nth cohomology
group of G with values in B. We put H0(G, B)= Z0(G, B)= ker(δ0).

Let G be a groupoid. Denote by I(X )cat the subcategory of BIJcat having as objects the

collection (Xe)e∈G0 of abelian semigroups and morphisms
[

Xg

Xc(g)
fg

Xg−1

Xd(g)

]
, where Xg is a unital

ideal of Xc(g) and fg : Xg−1→ Xg, is a monoid isomorphism for all g ∈G1. The composition
in I(X )cat is defined in the same way as in ISOcat, the map ∗ : (I(X )cat)1→ (I(X )cat)1 is
also defined by restriction of the map ∗ defined in (BIJcat)1. It follows from Proposition 13
that I(X )cat is an inverse category.

PROPOSITION 66. If G is a groupoid and X =∏e∈G0
Xe, then X ∈ pMod(G), if and only

if, there is a partial functor of inverse categories F : G→ I(X )cat.

Proof. First we show the “only if” statement. Let {θg : Xg−1→ Xg}g∈G1 be a partial

action of G on X and define F : G→ I(X )cat, by F(g)= [Xg

Xc(g)
θg

Xg−1

Xd(g)

]
, for g ∈G1, and Fe =

Xe, for any e ∈G0. Then F is a partial functor of inverse categories.
Now we show the “if” statement. Let F : G→ I(X )cat be a partial functor of inverse

categories. Put F(g)=
[

Xg

Xc(g)
θg

Xg−1

Xd(g)

]
, for g ∈G1. We shall show that the family {θg}g∈G1

gives a partial action of G on X =∏e∈G0
Xe. It is clear that for each g ∈G1, Bg is an ideal

of Bc(g), Bc(g) is an ideal of B, and θg : Bg−1→ Bg is a monoid isomorphism. Now we check
(G1), (G2), and (G3) from Definition 38.

(G1): Let e ∈G0. Then F(e)=
[

Xe
Xe
(θe)

Xe
Xe

]
, and θe is the identity map on Xe.

(G2)–(G3): Let (g, h) ∈G2. Then F(g)F(h)= F(gh)F(h)∗F(h), which by the defini-
tion of F implies θg ◦ θh = θgh ◦ θ−1

h ◦ θh = θgh ◦ idXh−1, which in turn implies that θgh is an
extension of θg ◦ θh.

Let F :G→ PICcat be a partial functor of inverse categories. For each e ∈G0, define

the ring Ae by F(e)= Ae. Take g ∈G1. Put F(g)=
[

Ig

Ac(g)
(Pg)

Ig−1

Ad(g)

]
. Define Bg = Z(Ig) and

B=∏e∈ob(G) Z(Ae).
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PROPOSITION 67. With the above notation, we have B ∈ pMod(G).

Proof. By Proposition 31, there is a partial functor of inverse categories L : PICcat→
ISOCcat. From Proposition 25, it follows that l= L ◦ F : G→ ISOCcat is a partial functor

of inverse categories. But l(g)=
[

Bg

Bc(g)
(γPg)

Bg−1

Bd(g)

]
, so l : G→ I(X )cat, and hence we get that

B ∈ pMod(G).

10. Proof of the main result. In this section, we prove Theorem 3 which was stated
in Section 1. For the convenience of the reader, we shall now recall its exact wording.

THEOREM If G is a groupoid, F :G→ PICcat is a partial functor of inverse categories
and f is a partial factor set associated with F, then the map H2(G,U(Z(A)))→C(A, F),
defined by [q] �→ qf , is bijective.

In order to prove the above theorem, we need the following result.

PROPOSITION 68. Let f and f ′ be factor sets associated with F.

(a) If q ∈ Z2(G, B), then fq is a factor set associated with F.
(b) There is q ∈ Z2(G, B) such that f ′ = qf .
(c) A cocycle q ∈ Z2(G, B) belongs to B2(G, B) if and only if there is a graded ring

isomorphism α from (F, f ) to (F, qf ) such that for all g ∈G1, the graded restriction
αg to Pg is an Ac(g)–Ad(g)-bimodule isomorphism.

(d) The map from Z2(G, B) to the collection of factor sets associated with F, defined
by q �→ qf , is bijective.

Proof. (a) Put f ′′ = fq. We need to verify that (24) commutes for f ′′. Take (g, h, p) ∈
G3, x ∈ Pg, y ∈ Ph, and z ∈ Pp. Then

(
f ′′gh,p ◦ ( f ′′g,h ⊗ idPp)

)
(x⊗ y⊗ z) = qgh,pqg,h

(
fgh,p ◦ ( fg,h ⊗ idPp)

)
(x⊗ y⊗ z)

= (qg,hpγPg(qh,p)
)(

fg,hp ◦ (idPg ⊗ fh,p)
)
(x⊗ y⊗ z)

= (qg,hpγPg(qh,p)
)

fg,hp

(
x⊗ fh,p(y⊗ z)

)
= f ′′g,hp

(
γPg(qh,p)x⊗ fh,p( y⊗ z))

)
= f ′′g,hp

(
xqh,p ⊗ fh,p( y⊗ z)

)
= f ′′g,hp

(
x⊗ f ′′h,p( y⊗ z)

)
= ( f ′′g,hp ◦ (idPσ ⊗ f ′′h,p)

)
(x⊗ y⊗ x).

(b) Take (g, h) ∈G2. Then f ′g,h ◦ f −1
g,h is an Ac(σ )–Ad(σ )-bimodule automorphism of Pgh.

Hence, by Proposition 21, there is qg,h ∈U(Z(Ic(g))) such that ( f ′g,h ◦ f −1
g,h )(x)= qσ,τ x, for

x ∈ Pgh. By (24), it follows that q ∈ Z2(G, B).
(c) Suppose now that q ∈ B2(G, A). Then there is c ∈C1(G, A) such that for all

(g, h) ∈G2, it follows that qg,h = γPg(ch)cgc−1
gh . Define a map α from (F, qf ) to (F, f ), by

α(x)= cgx, for x ∈ Pg. If x ∈ Pg, y ∈ Ph, and (g, h) ∈G2, then α(xy)= cghqg,hfg,h(x⊗ y)=
q−1

g,hγPg(ch)cgqg,hfg,h(x⊗ y)= fg,h(γPg x⊗ chy)= α(x)α( y). Clearly, for all g ∈G1, the map
αg is an Ac(g)–Ad(g)-bimodule isomorphism.

On the other hand, suppose that there is an isomorphism of graded rings β from
(F, qf ) to (F, f ) such that for all g ∈G1 the map βg is an Ac(g)–Ad(g)-bimodule isomor-
phism. From Proposition 21, it follows that for each g ∈G1, there is dg ∈U(Z(Ic(g))) such
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that for all x ∈ Pg the equation βg(x)= dgx holds. Therefore, for all x ∈ Pg, y ∈ Ph, and
all (g, h) ∈G2, we get that β(xy)= β(x)β( y)⇔ dghqg,hfg,g(x⊗ y)= fg,h(dgx⊗ dhy)⇔
dghqg,hfg,h(x ⊗ y)= dgγPg(dh)fg,h(x⊗ y). Thus, q ∈ B2(G, A).

(d) This follows from (a), (b), and (c).

DEFINITION 69. If f and f ′ are factor sets associated with F, then we write (F, f )≈
(F, f ′) if there is an isomorphism of graded rings from (F, f ) to (F, f ′) such that each
graded restriction to Pg, g ∈G1, is an Ac(g)–Ad(g)-bimodule isomorphism. Let C(A, F)
denote the collection of equivalence classes of generalized epsilon-crossed groupoid
products (F, f ) modulo ≈, where f runs over all factor sets associated with F.

Proof of Theorem 3. This follows immediately from Proposition 68.
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