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Abstract

The catenary degree is an invariant that measures the distance between factorisations of elements within
an atomic monoid. In this paper, we classify which finite subsets of Z≥0 occur as the set of catenary
degrees of a numerical monoid (that is, a co-finite, additive submonoid of Z≥0). In particular, we show
that, with one exception, every finite subset of Z≥0 that can possibly occur as the set of catenary degrees
of some atomic monoid is actually achieved by a numerical monoid.
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1. Introduction

Nonunique factorisation theory aims to classify and quantify the failure of elements of
a cancellative commutative monoid M to factor uniquely into irreducibles [9]. This is
often achieved using arithmetic quantities called factorisation invariants. We consider
here the catenary degree invariant (Definition 2.3), which is a nonnegative integer c(m)
measuring the distance between the irreducible factorisations of an element m ∈ M.

Many problems in factorisation theory involve characterising which possible values
an invariant can take, given some minimal assumptions on the underlying monoid M.
Solutions to such problems often take the form of a ‘realisation’ result in which a
family of monoids achieving all possible values is identified. One such problem
of recent interest concerns the possible values of the delta set invariant ∆(M),
comprised of successive differences in lengths of factorisations of elements. It can
be shown easily that min ∆(M) = gcd ∆(M) under minimal assumptions [9], but no
further restrictions were known. The so-called ‘delta set realisation problem’ [3, 6, 7]
was recently solved by Geroldinger and Schmid [10] by identifying a family of finitely
generated Krull monoids whose delta sets achieve every finite set D ⊂ Z≥1 satisfying
min(D) = gcd(D).

In a similar vein, the catenary degree realisation problem [11, Problem 4.1] asks
which finite sets can occur as the set C(M) of catenary degrees achieved by elements
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of some atomic monoid M. A recent paper by Fan and Geroldinger [5] proves that,
with minimal assumptions, the product M = M1 × M2 of two monoids M1 and M2 has
set of catenary degrees C(M) = C(M1) ∪ C(M2). While this does provide a complete
solution to the catenary degree realisation problem, the brevity of the proof raises the
question ‘is such a result possible without appealing to Cartesian products?’.

In this paper, we prove that with only a single exception, any finite set that can
occur as the set of catenary degrees of some atomic monoid occurs as the set of
catenary degrees of a numerical monoid (Theorem 4.2). Since numerical monoids
are submonoids of a reduced rank-one free monoid (namely, Z≥0), they never contain
a Cartesian product of two nontrivial monoids.

Our method of constructing numerical monoids with prescribed sets of catenary
degrees involves carefully gluing smaller numerical monoids (Definition 2.6) in
such a way as to retain complete control of the catenary degree of every element
(Theorem 3.3). The relationship between the catenary degree and gluings has
been studied before [1], though notable subtleties arise. Remark 3.2 clarifies some
ambiguity in [1], and is another primary contribution of this manuscript.

2. Background

In what follows, N = Z≥0 denotes the set of nonnegative integers.

Definition 2.1. A numerical monoid S is an additive submonoid of N with a finite
complement. When we write S = 〈n1, . . . , nk〉, we assume n1 < · · · < nk, and the
chosen generators n1, . . . , nk are minimal with respect to set-theoretic inclusion. These
minimal generators are called irreducible elements or atoms.

Definition 2.2. Fix n ∈ S = 〈n1, . . . , nk〉 as above. A factorisation of n is an expression
n = u1 + · · · + ur of n as a sum of atoms u1, . . . , ur of S. Write

ZS (n) = {(a1, . . . , ak) : n = a1n1 + · · · + aknk} ⊂ Z
k
≥0

for the set of factorisations of n ∈ S. Given a ∈ ZS (n), we denote by |a| the number of
irreducibles in the factorisation a, that is, |a| = a1 + · · · + ak.

We are now ready to define the catenary degree.

Definition 2.3. Fix an element n ∈ S = 〈n1, . . . , nk〉 and factorisations a, a′ ∈ ZS (n).
The greatest common divisor of a and a′ is given by

gcd(a, a′) = (min(a1, b1), . . . ,min(ak, bk)) ∈ Zk
≥0,

and the distance between a and a′ (or the weight of (a, a′)) is given by

d(a, a′) = max(|a − gcd(a, a′)|, |a′ − gcd(a, a′)|).

Given N ≥ 0, an N-chain from a to a′ is a sequence a = a1, a2, . . . , ak = a′ ∈ ZS (n) of
factorisations such that d(ai−1, ai) ≤ N for all i ≤ k. The catenary degree of n, denoted
cS (n), is the smallest N ≥ 0 such that an N-chain exists between any two factorisations
of n. The set of catenary degrees of S is the set C(S) = {c(m) : m ∈ S}, and the catenary
degree of S is the supremum c(S) = sup C(S).
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We conclude this section by defining Betti elements, which are crucial in
computing the catenary degree of numerical monoids (Theorem 2.5), and the gluing
operation on numerical monoids, under which Betti elements can be easily described
(Theorem 2.7). For a more thorough introduction to gluing, see [12, Ch. 8].

Definition 2.4. Fix a numerical monoid S. For each nonzero n ∈ S, consider the graph
∇n with vertex set Z(n) in which two vertices a,a′ ∈ Z(n) share an edge if gcd(a,a′) , 0.
If ∇n is not connected, then n is called a Betti element of S. We write

Betti(S) = {b ∈ S : ∇b is disconnected}

for the set of Betti elements of S.

Theorem 2.5 [2, Theorem 3.1]. For any numerical monoid S,

c(S) = max{c(b) : b ∈ Betti(S)}.

Definition 2.6. Fix numerical monoids S1 and S2, and positive integers d1 and d2. The
monoid S = d1S1 + d2S2 is a gluing of S1 and S2 by d if d = lcm(d1, d2) ∈ S1 ∩ S2.

Theorem 2.7 [1, Corollary 2]. With the notation from Definition 2.6,

Betti(S) = d2 Betti(S1) ∪ d1 Betti(S2) ∪ {d}.

3. Catenary degree of numerical monoid gluings

Theorem 3.3 provides the primary technical result used in Theorem 4.2 to construct
a numerical monoid with a prescribed set of catenary degrees, and is closely related to
Theorem 3.1, an ambiguously worded result (see Remark 3.2) appearing in [1].

Theorem 3.1 [1, Corollary 4]. If S is a gluing of S1 and S2 by d, then

c(S) ≤ max{c(S1), c(S2), cS (d)}.

Moreover,

c(S) = max{max{cS (n) : n ∈ S1},max{cS (n) : n ∈ S2}, cS (d)}.

Remark 3.2. The original statement of Theorem 3.1 as [1, Corollary 4] contained only
the second claim above (starting ‘Moreover, . . . ’), although it was stated as

c(S) = max{c(S1), c(S2), cS (d)},

with the assumption that ‘c(S1)’ and ‘c(S2)’ are computed (in a nonstandard way) by
taking the maximum of cS (n) over elements of S1 and S2, respectively. If these values
are computed in the usual way, then the inequality in Theorem 3.1 can indeed be
strict (see, for instance, Examples 3.4 and 3.5); the unambiguous statement given in
Theorem 3.1 is the result of discussions with the second author of [1] that took place
after such a monoid S was found.
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Remark 3.2 is an example of one of the many subtleties one encounters when
working with the catenary degree. It remains an interesting question to determine
for which S equality is achieved in Theorem 3.1; Theorem 3.3 gives one such setting.

Theorem 3.3. Suppose S = 〈n1, . . . , nk〉 is a numerical monoid. Fix c > c(S) and b ∈ S
nonzero with gcd(b, c) = 1, and let T = 〈cn1, . . . , cnk, b〉. Then

cT (n) =

{
cS (n/c) if n − cb < T,
c if n − cb ∈ T,

for any n ∈ T. In particular, if C(S) = {cS (n) : n < b}, then C(T ) = C(S) ∪ {c}.

Proof. Since b ∈ S and gcd(b, c) = 1, it follows from [12, Theorem 8.2] that T is a
gluing of S and N by cb, meaning that Betti(T ) = c Betti(S) ∪ {cb} by Theorem 2.7.
As such, if n − cb < T , then ak+1 is constant among all factorisations a ∈ ZT (n), and
thus cT (n) = cS ((n − ak+1b)/c).

Now, suppose n − cb ∈ T . By Theorem 2.5,

c(T ) = max{cT (m) : m ∈ Betti(T )} = cT (cb) = c,

so it suffices to prove that cT (n) ≥ c. To this end, we will show that if a, a′ ∈ ZT (n)
with ak+1 , a′k+1, then d(a, a′) ≥ c. Without loss of generality, it suffices to assume
gcd(a, a′) = 0 and ak+1 > 0. Since

ak+1b + c(a1n1 + · · · + aknk) = c(a′1n1 + · · · + a′knk)

and gcd(b, c) = 1, we must have c | ak+1. This implies

d(a, a′) ≥ ak+1 ≥ c,

which completes the proof. �

We conclude with examples demonstrating that no hypotheses in Theorem 3.3 can
be omitted. Both examples can be verified using the GAP package numericalsgps [4].

Example 3.4. The numerical monoid T = 〈6, 9, 10, 14〉 = 2S + 9N is a gluing, where
S = 〈3, 5, 7〉. In this case, c(T ) = 3, even though c(S) = 4.

Example 3.5. The numerical monoid T = 〈15, 25, 35, 18, 27〉 = 5S1 + 9S2 is a gluing,
where S1 = 〈3, 5, 7〉 and S2 = 〈2, 3〉. In this case, c(T ) = 3, even though c(S1) = 4,
c(S2) = 3, and both scaling factors 5 and 9 are strictly larger than c(S1) and c(S2).

4. Realisable sets of catenary degrees

In this section, we apply Theorem 3.3 to characterise the finite subsets of Z≥0 which
are realised as the set of catenary degrees of a numerical monoid, thus providing an
alternative answer to [11, Problem 4.1] from that appearing in [5].
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Figure 1. Catenary degrees of elements in S1 = 〈90, 91, 96, 120, 150〉 (a) and S2 = 〈11, 25, 29〉 (b) from
Example 4.1.

Example 4.1. Theorem 4.2 implies S1 = 〈90, 91, 96, 120, 150〉 has the set of catenary
degrees {0, 2, 3, 5, 6}. The plot in Figure 1(a) depicts the catenary degrees of the
elements of S1. The Betti element 480 ∈ Betti(S1) has catenary degree c(480) = 5,
and the elements n ∈ S1 with catenary degree c(n) ≥ 5 are precisely those divisible
by 480 (in the monoid-theoretic sense, that is, n − 480 ∈ S1).

Not all numerical monoids have catenary degrees so closely tied to their Betti
elements. For instance, S2 = 〈11, 25, 29〉, whose catenary degree plot is shown
alongside S1 in Figure 1, has Betti elements β1, β2 and β3, with catenary degrees 4,
12 and 14, respectively. The remaining catenary degrees first occur at elements of the
form β2 + 25k for k = 1, 2, 3; it is this phenomenon which the monoids constructed in
Theorem 4.2 avoid.

Theorem 4.2. Fix a finite set C ⊂ Z≥0. Then there exists a numerical monoid with the
set of catenary degrees C if and only if (i) 0 ∈ C, (ii) 1 < C and (iii) c = max C ≥ 3.

Proof. For the backward direction, (i) and (ii) both clearly follow from Definition 2.3,
and (iii) follows from the fact that no numerical monoid is half-factorial [8].

For the converse direction, fix a finite set C satisfying conditions (i), (ii) and (iii).
We will inductively build a monoid with set of catenary degrees C. If C = {0, c},
then C is the set of catenary degrees of 〈c + 1, 2c + 1〉 by [11, Remark 4.2], and if
C = {0, 2, c}, then C is the set of catenary degrees of 〈3, 3 + (c − 2), 3 + 2(c − 2)〉 by
[11, Theorem 4.3]. In all other cases, C′ = C ∩ [0, c) satisfies (i), (ii) and (iii) above,
so we can inductively assume that C′ is the set of catenary degrees of some numerical
monoid S = 〈n1, . . . , nk〉. Choosing b ∈ S sufficiently large with gcd(b, c) = 1 and
applying Theorem 3.3 yields a monoid T with set of catenary degrees C, as desired. �

Example 4.3. Let C = {0, 2, 7, 20, 26, 57}. Following the proof of Theorem 4.2, we
begin with the monoid S = 〈3, 8, 13〉, which has the set of catenary degrees {0, 2, 7}.
Subsequent choices of b outlined in Table 1 yield a numerical monoid with set of
catenary degrees C. Note that each choice of b lies in the monoid S from the previous
row, as required by Theorem 4.2 (for instance, 1301 = 11 · 51 + 7 · 60 + 2 · 160). This
can be readily checked with the GAP package numericalsgps [4].
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Table 1. Computation of catenary degrees for Example 4.3.

c b S Catenary degrees
7 〈3, 8, 13〉 {0, 2, 7}

20 51 〈51, 60, 160, 260〉 {0, 2, 7, 20}
26 1301 〈1301, 1326, 1560, 4160, 6760〉 {0, 2, 7, 20, 26}
57 57001 〈57001, 74157, 75582, 88920, 237120, 385320〉 {0, 2, 7, 20, 26, 57}
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