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Introduction. A free product sixth-group (FPS-group) is, roughly speaking, a free product
of groups with a number of additional defining relators, where, if two of these relators have a
subword in common, then the length of this subword is less than one sixth of the lengths of
either of the two relators.

Britton [1,2] has proved a general algebraic result for FPS-groups and has used this
result in a discussion of the word problem for such groups.

In this paper we use the results of [2] to obtain a characterization of the elements of finite
order in any FPS-group, and also necessary and sufficient conditions for such a group to be
torsion-free. Similar results have been obtained by Greendlinger [3, Theorem VIII] for free
sixth-groups, and by Karass, Magnus and Solitar [4] for groups with one defining relation.

The main technical result of this paper (Lemma 5) was suggested by a corresponding result
for free sixth-groups proved by Lipschutz [5, Lemma 4].

1. Notation. Statement of the main results.
1.1 Let II be the free product of the set of groups {Gy: yeF}. No restriction is placed

on the constituent groups Gy of IT and the index set T may be infinite. The non-identity ele-
ments of the groups Gy are called components of II and are denoted by small letters. We write
x ~ y or x ~ 'y according to whether x and y belong to the same constituent group or not. The
identity element of IT is denoted by /and general elements of II are denoted by capital letters.
We write X. Y for the product of the elements X and Y of II. Every element X of II except /
has a unique normal form expression

X = x1.x2 x,, (1.11)

where w^ 1,1 ? xteGyO)(i= l ,2 , . . . ,«)and y(i) # y(i+l)Q= 1, 2, . . . , « - l ) . The elements
xux2,...,xn are called the components of X. We write 1{X) = n, In (X) = xt and Fin (X) = xn.
We call l(X) the length of A'and define the length /(/) of/to be zero.

IfX=X1.X2 Xrandl(X)=Y l(X,), wewriteX= Xt X2... Xr; thuswewrite(l.ll)
i = i

as
X = Xlx2...xn. (1.12)

Let X have form (1.12). A double segment of X is defined to be any element with form

x'jXJ+1...xs.lx's, (1.13)

where 1 ̂  j ^ s ^ «, x'j ~ Xj and x's ~ xs.

t The contents of this paper formed part of a Ph.D. thesis presented to Glasgow University (1966). I should
like to thank my supervisor Dr. J. L. Britton for his advice and encouragement, and the Science Research Council
for financial support.
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A subword of X is any element with form (1.13), where x'j = Xj and x's = xs. The subword
XjXJ+l...xs_i xs of X is said to cover the double segment x'j xJ+l...xs_lx's of X. We note
that, if Y is a double segment of X, then Y # /. If /(JT) i> 2 and In (AO ~ ' Fin (X), we define a
cyc//c arrangement of A'to be any element with form xr xr+1... xn x, x2... xr_ t (1 ^ r ^ n).

We define the number fi(X, Y) of cancellations and the number e(X, Y) of amalgamations
in the product X. Fas follows:

Suppose first that X =£ I and Y # / and let X = xt x2 ... xm, 7 = j j _y2... yn. Then

° i f X » - J ' i ' t / '
^ if x..*-/,

where /? is the largest integer for which x m _^ + 1 ...xm.yl...yf = I, and

, v v . _ f l if 0 < M i n ( m , n ) and xm-p~yp+l,
£( A , X ) — <

[0 otherwise.

If either X = / or Y = /, we define 0(X, Y) and e(X, Y) to be zero. Note that
l(X. Y) = l(X) + l(Y)-2p(X, Y)-e(X, Y).

We put
a(A-, Y) = p(X, Y) + e(X, Y).

If X= A.B.C and <x{(A.B),C} = 0 we write X = A.BC; similarly if <x{A, (B. C)} = 0 we
write X= AB.C.

1.2. Let Q be a subset of II such that, for all elements R, R' of Q, the following conditions
are satisfied:

1) /(*) ^ 7.

(2) In ( /?)- ' Fin (/?).

(3) Every cyclic arrangement of R and R~l belongs to £1.

(4) Either R' = R~l or

(5) Max (*(/?!, K) ^ 0, where R^ is a cyclic arrangement of R or R~* and Kis an element
of n such that/? , .K ^ / .

It is easy to show that, if fi satisfies conditions (2) to (5), then condition (1) is also satisfied.
[Let ReQ. By (5) there exist Ri (a cyclic arrangement of R or R~l) and VeQ such that
R{. V * I and <x{Ru V) # 0. By (4) we have 6 ̂  6a(/?,, K) < /(/?t) = /(/?).] Thus the condi-
tions we have imposed on the set Q are the same as those of [2].

Let [Q] be the normal subgroup of IT generated by the set Q and let 4> be the natural
homomorphism of IT onto IT/[Q]. We denote by | X | the image under </> of the element X of
IT. If X and Y are elements of II such that | A11 = | y |, then we write X x, Y; it is clear that
as is a congruence relation on IT. We note that, if W is an element of IT such that We [Q],
then | W\ = \l\ and so fVxI.
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130 JAMES McCOOL

DEFINITION. An FPS-group is defined to be any group isomorphic to a quotient group
IT/[Q] of a free product II of groups, where Q is a subset of II such that the five conditions
stated above are satisfied.

We now state the main theorem of [2].

THEOREM 1. Let 11/[Q] be an FPS-group. If W is an element ofU such that W x I but
I, then

(i) there exist elements X, Y,Z,TofTL such that W= XYZ, YT~1BQ. and

(ii) 1{W) ^ l0 = Min{/(J?): Rety, andl(W) = /0 implies Wed.

From (ii) it follows that the intersection of [£2] with any constituent group consists only
of the identity element. Thus, if U is an element of IT of length one, we have U x I, and if
£/•*«/ for any integer A, then [/A = /.

DEFINITION. An element V of a group G is said to be a proper power if V is not the identity
and there exist an element J of G and an integer A greater than one such that V = Jx.

We shall prove the following theorems.

THEOREM 2. Let II/[fi] be an FPS-group. JfO. contains a proper power R, R = J* (X > 1),
then \j\has order k in 11/[fi].

THEOREM 3. Let n/[J2] be an FPS-group. Then n/[Q] is torsion-free if and only if

(i) each constituent group of H is torsion-free, and

(ii) no element ofQ is a proper power.

Arising from these results we have the following characterization of the elements of finite
order in any FPS-group.

COROLLARY 1. Let n/[£2] be an FPS-group. If A is an element ofU such that A X I and
| A | has finite order in n/[O], then either

(i) | A | is the image under <f>ofa conjugate of an element of finite order in a constituent
group ofYl, and has the same order as this element, or

(ii) there exist Jell, ReQ and positive integers m, n such that R = J", | A | is conjugate to
\Jm\, and | A | has order njt, where t is the highest common factor ofm and n.

These results may be summarised as stating that the only elements of finite order in an
FPS-group are the obvious ones.

2. Preliminary definitions and results.
2.1. Let Xx, X2,..., Xr be a sequence of elements of IT. The sequence of components of

FT obtained by writing down successively the components of the Xt is called the component
sequence of Xlt X2, •.., Xr. Thus, if Xl = abc and X2 = c~ lb, the component sequence of
Xit X2 is a,b,c,c~l,b.
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DEFINITION.! A partition is a sequence Xx, X2, • • •, Xr (r ̂  1) of elements of n such that
the following two conditions are satisfied.

(a) At least one Xt is different from / .

(b) If the component sequence of Xx, X2,.. •, Xr is bracketed so that the terms inside a
bracket belong to the same constituent group and terms in adjacent brackets belong to dif-
ferent constituent groups, then the product of the terms in each bracket is not the identity.

For example, if Xx = abc, X2 = c~i, X3 = cd, X4 = I, then the bracketing of the com-
ponent sequence of Xx, X2, X3, X4 is {a}, {b}, {c,c~x,c}, {d} and so Xx, X2, X3, X4 is a
partition. Here Xx, X2 is not a partition, since the bracketing is {a}, {b}, {c, c" 1 } .

If Xx, X2,..., Xr is a partition and Xx. X2 Xr = X, we say that Xx, X2,..., Xr is a
partition of X, or just that Xx. X2 Xr is a partition of X. We note that in this case X i= I,
for the length of X is clearly the number of brackets occurring in the bracketing described in
(b) above, and this is non-zero since at least one of the X{ has non-zero length.

Remark. In Lemma 1 we give two general ways in which we can alter a partition of
obtain a different partition of X. These arise from the following ways in which we can alter
the component sequence dx, d2,...,dn of a partition of X so that the component sequence
obtained still satisfies condition (b) above. Thus we can

(i) replace two adjacent terms dp, dp+x in the same bracket by their product, provided
it is not the identity,

(ii) delete the pair dp, dp+x if their product is the identity,

(iii) replace the term c by the pair of terms cx, c2 if c = cx .c2 (Note that the notation
implies that cx and c2 are non-identity elements of the same constituent group as c ) ,

(iv) insert a pair a, a~x before or after the term d, provided that a ~ d.

We note that, if X ̂  I, X = axa2.. .an, say, then the sequence consisting of A'alone is a
partition of X with component sequence ax, a2,..., an. It is clear that the component sequence
of any partition of X can be reduced to that of X by a finite number of changes of types (i)
and (ii) in the remark above. Conversely, the component sequence of any partition of X can
be obtained from that of A" by a finite number of changes of types (iii) and (iv) above.

LEMMA 1. Let Xx, X2,..., Xr be a partition of X. We have the following results.

(i) IfXl.Xi+1 = Y, then Xx,...,Xt.x, Y, Xi+2,..., Xr is a partition of X.

(ii) IfYx, Y2,..., Yn is a partition of X,, then Xlt...,X,.u Yu..., Yn, X,+ u..., Xr is a
partition of X.

(iii) If X # /, then Xf is a double segment of X.

t This definition is based on a similar one used by J. L. Britton in some unpublished work.
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Proof. We prove the results under the assumption that none of the Xt is the identity. It
is easy to see that the results continue to hold when this restriction is removed.

1°. To prove (i), we let X, = ax.. .am, Xi+X = 6 , . . . bn. We consider separately the cases
am~'bl; am~bl but am.bx^ I; am.bl = I.

If am~' bx then the component sequence of Xx,...,Xi^1, Y, Xi+2,...,Xr is just the
component sequence of Xu ...,Xr, so that (i) holds in this case.

If am ~ bx but am.bx^ I, then the component sequence of Xu..., AV u Y, Xi+2, ...,Xr

is obtained from that of Xx,..., Xr by replacing the pair of terms am, bx by their product.
Hence (i) holds in this case.

Finally, if am.bl = /, then at least one of Xt, Xi+X has length one (for if they both had
length greater than one the bracket {am, bx) would occur in the bracketing of the component
sequence of Xt,..., Xr and so we could not have am.bl= I). We suppose firstly that not both
I(Xi) = 1 and l(Xi+x) = 1 hold. We take /(*,) = 1, l(Xi+ 0 > 1; the case l(X,) > 1, l(Xi+x) = 1
is similar. Thus Xi = al, Xi+X = ax

lb2...bn and so Y=b2...bn. Hence the component
sequence of Xu ..., Xt-X, Y, Xi+2,..., Xr is obtained from that of Xx,..., Xr by deleting the
pair of terms au aj"1, so that (i) holds in this case. Now suppose that l(X^) = l(Xi+1) = 1, so
that Xj = alt Xi+l = a\~l. Then by a similar argument we see that (i) also holds in this case.
This completes the proof of (i).

2°. For (ii) we note that, if the terms due to Xt in the component sequence of Xu..., Xr

are replaced by the terms due to Yu...,Yn, then the component sequence obtained satisfies
condition (b) in the definition of a partition, since the new sequence can be obtained from the
original one by a finite number of changes of types (iii) and (iv) in the remark above. This
proves (ii).

3°. We shall indicate the proof of (iii) for the case when r ̂  3 and / # 1, r. The proofs
of the other cases are similar.

From (i) of the lemma it follows that, if Y — Xx Xt_x and Z = Xi+l Xr, then
Y. X;.Z is a partition of X. Let Y, Xh Z have normal forms

Y=al...al, Xi = b1...bm, Z = c 1 . . . c n .

If a, ~ ' bx and bm ~ ' c 1 ; then X{ is a subword of X, so that (iii) holds in this case. If a, ~ bx

and bm ~'cu then the normal form of X is

ai...a,-1(al.bi)b2...bmc1...cn,

for a,.bx^ I since Y, Xh Z is a partition. Clearly X{ is a double segment of X in this case. A
similar argument shows that (iii) holds if at ~' bx andfcm ~ cx. Thus to prove (iii) we need only
consider the case when a, ~ bx and bm ~ cx. Then, if m # 1, the normal form of X is

al-a,-.l(a,.bl)b2...bm-l(bm.cl)c2...cl,,

where al.bx^ /and bm.cx # /, since Y, Xh Z is a partition, while, if m = 1, then Zhas normal

form

and a,. bx. cx + I, since Y, Xiy Z is a partition. In both these cases it is easily seen that X, is a
double segment of X. This completes the proof of (iii).
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DEFINITION. Let Y1,...,Yi-uY,,Yl+l,..., Yn be a partition of ReQ. The element
(Yi Yi-iy^Yj+i 7 J " 1 of II is called the complement of Y{ with respect to the
partition Yu...,YnofR. We write

(Fi Y^y'iY^ YJ-1=V(Yl;Yu...,YJ.

Note that a{( Yx y,._ ty \ (y i + j Yn)~
1} = 0, since In (R) ~' Fin (R) and

is a partition of R. If no ambiguity arises concerning the partition being referred to, we may
speak of (yx F1_1)~1(yi+1 Yn)~* as the complement of Yt with respect to R
and denote it by "^(y,-; R). We note that ^(y,-;./?) » Yh since 7? a /.

LEMMA 2. Let A, Y, B be a partition of ReQ and C, Y, D a partition ofR'eQ. Suppose
that one of the following three conditions is satisfied.

(i) R = A.YB,R' = C. YD and 1{Y)^\Min(l(R), l(R')).

(ii) R = A Y.B, R' = CY. D and l(Y)^%Min (l(R), l(R')).

(iii)/(y)£*Min(/(*),/(*'))+1-

r/je/j #(y; A y, 5) = #(y; c, y, £).

Proo/. 1°. Suppose that (i) holds. Then fi{A, Y) = 0, since A, Y, B is a partition and
a{04. y), B) = 0. Similarly )S(C, Y) = 0. Let Rt=BA. Y, R\ = DC.Y. Then i?± and R\
belong to il and

Hence R\ = Rt and so BA = DC, which proves the lemma in this case. A similar argument
proves the lemma if condition (ii) holds.

2°. Suppose that condition (iii) holds. Then Y ̂  I and Y is a double segment of R and
R', since A, Y,B and C, Y, D are partitions. Let Y= Yr Y2, where Y2 = Fin(y). Then
# = A. Yt(Y2 .B), R' = C. Yl(Y2 . D), / ( y j ̂  £ Min (/(if), / « ) ) and so (i) of the lemma is
satisfied with Yt in place of Y and Y2.B, Y2.D in place of B and Z) respectively. Hence
Y2 -BA = Y2 . DC and so BA = DC. This completes the proof of the lemma.

2.2. Let S be a subword of ReQ. such that /(S) ̂  [il(R)] (where the square brackets
denote " the integral part of "). We define the subset fit of II to be the set of all such S, where
R ranges over all the elements of Q.

We note that, if Se(lu where S is a subword of ReQ say, then

KS)^il(R) (2.21)
and

(2.22)
For we can write l(R) = 6/i+A, where /* ;> 1 and 0 ̂  X ̂  5. Then, since l(S) ̂  [£/(/?)], we
have

so that (2.21) holds. Now (2.22) follows from (2.21) since l(R) ̂  7.
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From property (3) of Q it follows that, if 5efi , , we can find ReCl, Te l l such that R = ST;
moreover R and T are unique. For if SeClu there is an element R of Q such that R = ASB
for some A and B, and l(S) ^ [£/(/?)]. Thus 7?, = &B,4eQ, and, if ^ 2 = STeQ, then

«(/?:', R2) ^ /(S) £

by (2.21), and it follows that i?x = i?2. We note also that, if Se£lu then we can speak of the
complement of S, for by (2.21) and Lemma 2 any two complements of S are equal.

Let X, Y, Z be a partition of ffe l l and A, Y, B a. partition of jReQ, where y ^ /. Put
W = Ar.C4~1.B~1).Z. We say that Y is ^.-replaceable in JF and that JF is the result of
replacing Yby%!{Y;A, Y, B) in the partition X. Y.ZofW. If no ambiguity arises concerning
the partitions being referred to, we abbreviate this by saying that W is the result of replacing
y in W by <<?( Y; R). We note that, if W is the result of replacing Y in W by #( y; /}), then
JF '« PF, since y«<i?(y;i?).

Two replacements in W are said to be equivalent if they yield the same result. Thus if
L.M.N is a partition of Y above, so that X.L. M.N.Z is a partition of Wand A.L.M.N.B
is a partition of R, then replacing Y in X. y . Z by A~1B~i is equivalent to replacing M in
X.L.M.N.Zhy (A .L)-\N .By1.

Let y be Q-replaceable in FFwith result W. If y is a subword of W, YeQx and

then we say that W is Cl-reducible by Y. If W ^ I and W contains no subword Y by which it is
Q-reducible, then we say that W is £l-reduced. We note that, if W is fi-reduced, then so are
W~l and any subword ofWorW'1; for if W= X. Y.Z and Yis Q-replaceable in W with
result H^.then W~l =Z~l .Y-1 .X'lanA Y~l is fi-replaceable in H^ 1 with result H ^ s o
that, if fFis O-reducible by Y, then W "̂1 is Q-reducible by Y'1, which proves the first part of
the statement. If W = ABC and 5 is Q-reducible by some subword Y, B = XYZ say, then
W = AXYZC and clearly Wis Q-reducible by Y, which proves the second part of the state-
ment.

The following lemma is a restatement of (i) of Theorem 1 together with some consequences
of it.

LEMMA 3. Let W be any non-identity element o/IT. We have the following results:

(i) If W x I, then W contains a subword Y by which it is ^.-reducible.

(ii) If W is il-reduced, then W # I.

(iii) IfW&I, then there exists an element W' of II such that W is Q-reduced, W' x Wand

Proof, (i) is a restatement of (i) of Theorem 1, and (ii) follows immediately from (i) and
the definition of an Q-reduced element.

To prove (iii) we note that W' -W will do if W is Q-reduced. If W is not Q-reduced,
then W contains a subword Y by which it is Q-reducible. Let Wt be the result of replacing Y
in W. Then WlxW and l(Wt) < l(W). If Wv is Q-reduced, then we can take W' = Wt;
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if not, then we carry out the above process with Wt in place of W to obtain an element W2

such that W2 » Wy and l(W2) < l{Wy). Repeating the process if necessary, we must even-
tually obtain an element W satisfying (iii) of the lemma, since / * W » Wt ass W2 « . . . and

Let W be O-reducible by Y, where W = XYZ, YT'1 = Red say. Let W be the result
of replacing Y in W, so that W = X. T.Z. Then, if 0(X, T) = P(T, Z) = 0, we say that Y is
maximal in W. We note that, if W is fi-reducible by Y, then we can find a subword S of W
such that W is fi-reducible by S, Y is a subword 5, 5 is maximal in W and replacing S1 in W
is equivalent to replacing Y in W. {One way of choosing such an S is as follows. We have

W=XYZ, YeQy, YT'^Q., W' = X.T.Z.

We can find elements Xu X2 of II such that

W = Xx X2 YZ and P(X, T) = l(X2).

Then T=X2
1T1 for some r , e n , X2YTl1eQ, since y r ^ ^ e f i , Z2 refij , Ĥ  is Q-

reducible by ^ 2 Y and 0(^1, TJ = 0. The result of replacing X2Y'mW is Xx .TX.Z. We
can find Zu Z2 such that

W=X1X2 YZi Z2 and 0(TU Z) = /(Zj).

Then Tx = ^ Z f 1 for some r 2 e l l , X2 YZt T^eQ, X2 YZX eQu Wis fi-reducibleby X2 YZt

and P(X1,T2) = P(T2,Z2) = 0 (P(XuT2) = 0 since P(XuT1) = 0 and either T2 = I or
I n ^ ) = In(r2)). Clearly X2 YZX has the properties required of S.}

In view of this, if W is Q-reducible by Y, we shall usually choose the fi-replaceable sub-
word Ymaximally. We note further that, if Yis maximal in W, then, with the above notation,
X. T.Z will be a partition unless either

T=I and p(X,Z)>0 (2.23)
or

l(T) = 1, e(X, T) = e(T,Z) = 1 and Fin{X).T.In(Z) = /. (2.24)

We now introduce the concepts of cyclic length and cyclic £l-reduction. Let W be any
element of II. We define the cyclic length of W, written l°(W), by

l°(W) = Min {/(*): X is a conjugate of W in II}.

It follows easily that any two conjugate elements of II have the same cyclic length and that, if
l(W) ^ 2 and In(W) - ' F i n ( ^ ) , then l\W) = l(W).

DEFINITION. An element W of II is said to be cyclically Q-reduced if either 1{W) = 1, or
l(W) > 1 and W satisfies the following conditions:

(i) ln{W)~'Ym(W).

(ii) If ye ill is a subword of If and W is the result of replacing Y in W, then

l\W) ^ 1{W).

(iii) Every cyclic arrangement of W satisfies (ii).
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We note that if W is cyclically fi-reduced, then W is fi-reduced and every cyclic arrange-
ment of JFand W~x is cyclically fi-reduced.

3. The main result.
3.1. Before proving the main technical result of this paper we need a lemma concerning

commuting elements of II.

LEMMA 4. Let A, B be elements ofTI such that a.(A,E) = a.(B, A) = 0. JfAB = BA,then
there exist Je U and integers X, n such that A = Jx, B = J* and tx(J, J) = 0.

Proof. Put m = l(AB). We prove the lemma by induction on m. The result holds for
m = 0, since then A = B = / and we can take J = I, X = \i = 1. Assume that m > 0 and that
the result holds for all pairs Au Bi satisfying the requirements of the lemma and for which
/(^ijBj) < m. We suppose also, without loss of generality, that l(A) ^ l(B). Then, since
AB = BA, we have, from the uniqueness of the normal form of the elements of a free product,
that there exists an element C of II such that B = AC. Hence AAC = AC A and so AC = CA.
If A ^ /, then 1{AC) < m and so by the induction hypothesis there exist Jell and integers
X, n such that A = Jx, C = J" and <x(J, J) = 0. Thus B = JX+" and the result holds for the pair
A, B in this case. If A = /, then we can take J = B, X = 0 and n = 1. Hence the result holds
for the pair A, B. This proves the lemma.

Now we come to the main result.

LEMMA 5. Let W be cyclically Q-reduced and 1{W)> 1.

(A). If W2 is cyclically Q-reduced, then either

(i) W is Q-reduced for all integers n, or

(ii) there exist J e l l , ReQ and non-zero integers a, T such that W = J",R= J\

(B). If W2 is not cyclically Q-reduced, then either

(iii) there exist ReQ, Tell and a cyclic arrangement Wx W2 of Wsuch that

R= W1W2W1T~1,

(T. W2)
n is Q-reduced for all integers n and (T. W2\ (T. W2)

2,... are increasing in
length, or

(iv) part (ii) of (A) above holds.

Note. We note that, if (iii) holds, then T. W2 is the result of replacing W^ W2 Wt by T
in (fF, W2 W^W2, so that T. W2« (W1 W2)

2. Now ( ^ W2f is conjugate to W2, since
W± W2 is a cyclic arrangement of W, and so | T. W21 is conjugate to | W\2 in IT/[Q].

It follows that, if either (i) or (iii) holds, then | W| has infinite order in II/[Q], while, if (ii)
holds, then | W\ has finite order.

Proof of {A). 1°. We have W2 cyclically fi-reduced. If W is fi-reduced for all positive
integers «, then the result follows; so we assume that Wm is not fi-reduced for some positive
integer m.
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Thus we have Wm = XSYsay, where 5efix and is chosen to be maximal, ST~l = Reil,
XSYxX.T. Y,

0(X,T) = ftT,Y) = O (3.11)
and

l(XSY)>I(X.T. Y). (3.12)

2°. We show l(S) ^ 1{W2).
For suppose that this is not the case. Then there exists a cyclic arrangement W of W

such that W'2 = SP for some P # /. We note that neither X = I nor 7 = / can hold, since
otherwise, as l(S) < l(W2), we could take m = 2 and then (3.11) and (3.12) would contradict
the fact that W2 is cyclically Q-reduced. Thus Fin (X) = Fin (P) = a, In (Y) = In (P) = A, say.
From (3.11) and (3.12) we have either

(i) /(S) > l(T), or

(ii) /(S) = l(T) and one of e(a, 7'), e(T, b) is non-zero, or

(iii) l(S) = l(T)-l and e(o, 7/) = £(r, 6) = 1.

But each of (i), (ii) and (iii) above contradicts the fact that W2 is cyclically fi-reduced, as is
easily seen by replacing S by T in W'2 = SP. Hence l(S) ^ 1(W2).

3°. It follows that there exist a cyclic arrangement AB of W and an integer r ^ 2 such
that

where without loss of generality we may take Bj= I. Thus /? = (ABJAT'1, and since
we have

1{(ABJA} £ [*/(*)]. (3-13)
We show that

(3.14)

Suppose that l^ABy1} < it(R). Then l^ABJ'1} g [^/(i?)]. From (3.13) we have

MR)] ^ 1{(ABYA} = l{(ABy-l} + l(AB) + l(A) < 3[*/(lQ]

(the last inequality on the right hand side is strict, since l(A) < 1(AB) as B J= I). This is a con-
tradiction, hence (3.14) must hold.

Now (ABY~xAT~lAB and (ABy^BAT'1 are elements of H, and from (3.14) and
property (4) of Q it follows that

(AB)r- XAT~ XAB = {ABJ- lABAT~1

and so

It now follows from Lemma 4 that there exist J e l l and integers X, \i such that

a(/, J) = 0, AB = /A, AT' = / "

and so
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Since AB # / and R # /, it is clear that J =£ I and that the integers X and rl + n are non-zero.
Now W is a cyclic arrangement of AB and it is easy to see that there exist elements Ju J2 of II
such that J = JlJ2 and W = (J2J i)

x. Now 7?t = (J2J1Y*+" i s a n element of £2, and so we see
that (ii) of the lemma holds. This concludes the proof of (A).

Proof of (B). 1°. We have l(W) > 1, W cyclically Q-reduced and W2 not cyclically
£2-reduced. It follows that there exist a cyclic arrangement U of W, an element V of II and an
element S of fit such that

U2 = SV, R = ST~1eCl
and

l°(T.V)<l(U2). (3.15)

It is clear that by choosing U and S suitably we can ensure in addition that

P(T,V) = P(V,T) = 0. (3.16)

(Suppose, for example, that P(V, T) = r, so that V = K, V2, T= V^T^, where /(K2) = r and
0(Fi» r i ) = 0- Then U2 = SVl V2 and 7? = ST;1V2. It is easy to see that we can find a cyclic
arrangement Ux of Wsuch that U\ = F2 5 F t . Now Rt = K2 S7T1 efi, F2 SeQ, ,

/0(7\ . Fx) = l°(T. V) < l(U2) = 1(V]) and p(Vlt TJ = 0.)

2°. We now show that

if V = /, then (ii) of the lemma holds, (3.17)
and

if i(y) = 1, then e(r, K) = 0. (3.18)

We suppose that either V = I or 1{V) = 1 and e(T, V) = l. Then we can write

R = U2.Tfl, (3.19)
where )?(*/, r f 1 ^ 0 and

l0^) < l(U2). (3.20)

{For, if V = /, then we can take T1 = T, while, if l(V) = 1 and e(r, V) = 1, then

where J , = T. V, F in( t / ) . In(7r 1 ) = V. V~l . I n ^ " 1 ) , so that P(U, Tf 1 ) = 0, and

/°(7\) = l°(T. V) < l(U2).}

Now, if 7\ = /, then R = U2 by (3.19), and, since C/is a cyclic arrangement of W, this is clearly
equivalent to (ii) of the lemma. (Note also that, if J , = /, then e(T, V) = 0.) Hence we can
assume that 7\ # /. Then we can write J f 1 = T2

1AT2 say, where either 1(A) = 1 or l(A) > 1
and P(A, A) = 0. We show that

l(T2) < #(*)• (3.21)

For suppose that l(T2)^y(R). Now R = (U2.T^)AT2 and so both AT2(U
2.T2

l) and
y4-1(r2 • U~2)T2

l are elements of Q. Hence, by property (4) of fi, we have

AT2{U2. 77 x ) = A - ^ T j . U~2)T2-\
so that

/ lT2 t / 2 = / l - 1 r 2 . U - 2
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and in particular Fin(i/) = Fin(C/~1) = {In (£/)}"1. This is a contradiction, since /(£/) > 1
and U is cyclically 12-reduced. Hence (3.21) must hold.

Now from (3.19) we have

so that

and, by (3.21),

2l(U)+l(A)>$l(R). (3.22)

Also, from (3.20), we have

2/(1/) > /°(T,) = l\T2~
lAT2) = l\A) ^ l(A)-l;

hence
2/(1/) ^

and from (3.22) it follows that
/(£/) >

Now UU.Ti1 and t / . r f ' t / a r e elements of ft of length /(/?); hence

and so
U.Til = T^U. (3.23)

In particular /(f/. J f 1 ) = l(T^lU), so that e(f/, Tf1) = 0 and therefore

R = U2Tr1. (3.24)

Now, if l(V) = 1 and e(T, V) = 1, then R = C/2.771 and 8(t/, Jj"1) = 1, which contradicts
(3.24). Hence Tl = Tand we have proved (3.18). Also, from (3.23) we have UT~X =T~1ll,
and by Lemma 4 there exist J e l l and integers X, n such that

U = J", T'1 = JA and so R = J2»+\

Clearly fi and 2n + X are non-zero. Since U is a cyclic arrangement of W the above result is
equivalent to (ii) of the lemma, so that we have proved (3.17).

3°. In view of (3.17) we can assume for the remainder of the proof that V ¥= I- Under
this assumption we shall show that (iii) of the lemma holds. We note firstly that

T # /. (3.25)
For, if T = I, then U2 = RV, so that

It follows that we can write U= SlPi, where 5 t is a subword of J? such that /(£,) >
Now replacing St in U by <6{Sl; R) yields an element whose length is less than /([/), con-
tradicting the fact that U is cyclically fi-reduced. Hence (3.25) must hold.

We now show that

if l(T) = 1, then e(T, V) = 0. (3.26)
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Suppose that l(T) = 1 and E(T, V) = 1. Then l(V) ^ 2, by (3.18), and

2l(U) = l(U2) = l(S) + l(V) = l(R)-1 +'(V)

Now /(S) > £/(/?), since 1{T) = 1, and, since U2 = SVand 1{U) > \1{R), it follows that we can
write U = SiPi, where SY is a subword of R and /(S^) > ^/(/?). This yields a contradiction as
in the proof of (3.25). Hence (3.26) must hold.

Now F # /and 7 V /and in view of (3.16), (3.18) and (3.26) it follows that

l°(T.V) = l(T.V)-e(V,T);

for, if l(V) ^ 2 and l(T) ^ 2, then this is so by (3.16), while, if 1{V) = 1, then it issoby(3.16)
and (3.18), and \il{T) = 1, then it is so by (3.16) and (3.26). Hence instead of (3.15) we can
write either

l(T. V) < l(U2) (3.27)
or

l(T. V) = l(U2) and In (7. V) ~ Fin (7. V). (3.28)

4°. We show that l(S) ^ l(U).
Suppose that l(S) </(£/). Then U = SP for some P # /. Hence V = PSP and so

In(P) = In(F), Fin(P) = Fin(K). From (3.16), (3.27) and (3.28) it follows that either

or
l(T.P) = l(U) and In(J.P) ~ Fin(T.P).

Each of these contradicts the fact that U is cyclically Q-reduced. Hence we must have
l(S) £ /(£/).

Thus S has form Wx W2 Wu say, where U = Wt W2, so that V = W2 * 1 and

R= WlW1WlT~l.
Put 1{R) = X. Then

KW, W2 W,) ^ [|;.], (3.29)
since SBO.U and

W2) ^ iA (3.30)

since /(Wj Pf2) > i^ would imply that U was not cyclically Q-reduced.
Rewriting (3.16), (3.27) and (3.28), we have

T) = 0 (3.31)
and either

l(T. W2) < l(U2) (3.32)
or

l(T. W2) = l(U2) and In(7\ W2) ~ Vm(T. W2). (3.33)

5°. We now obtain upper bounds for 1{WX) and lower bounds for 1{W2) and l(T).
Suppose that l(Wx) ^ %l. Then, using property (4) of Q, we have

W{ W2 \YiT~1 = W, J " 1 Wx W2
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and so ln(W2) = InCT"1) = {Fin(r)}~\ which contradicts (3.31). Hence

U- (3-34)

Moreover, if either In (W2) ~ In ( r - 1 ) or Fin(W2) ~ Fin (J"1), a similar argument shows that
in these cases we must have

KW,)<\k-\. (3.35)
We now prove that

KW2) > U- (3-36)

Suppose firstly that e(W2, T) = e(T, W2) = 0. Then (3.32) must hold, that is,

l{T)+l(W2) <l(WlW2WyW2),

and so / ( ^ , W2 Wt) > \X. From (3.34) it follows that in this case

l(W2) > U (3.37)

Suppose now that at least one of &{W2, T), e(T, W2) is non-zero. Let X = 6a + T, where a ^ 1
and 0 <; T g 5. From (3.29) we have l(Wx W2 Wx) ^ 3<T+[it] and from (3.35) we have

-\. Hence

l(W2) = 1(W1 W2 W^-

= a+ l+ iT+( l + [iT]-|T)

l f f + l + i T = ^ + l . (3.38)

Combining (3.37) and (3.38) we see that (3.36) holds.
Now we look at l(T). We have

and since X ^ 7 we have
/(r)>£A+l. (3.39)

We note that from (3.36) and (3.39) we have 1{W2) ^ 2 and 1{T) ^ 2. From (3.31) it follows
that (T. W2), (T. W2)

2,... are increasing in length, and that, for any positive integer n,
(T. W2)

n is a partition.
6°. We complete the proof by showing that (T. W2)

n is fi-reduced for all positive integers
n. We suppose that, for some positive integer n, (T. W2)" contains a subword Q by which it is
Q-reducible, QY'1 =R1eQ. say. We show that either

replacing Q in (T. W2)
n is equivalent to replacing some Jin (T. W2)" by <#(T; R'1) (3.40)

or

replacing Q in (T. W2)
n is equivalent to replacing some W2 in (T. W2)" by <jf( W2; R). (3.41)

We consider the various forms Q can take.
(a) Q "contains" T, that is there is a partition K.L.T.M.N of (T. W2)

n such that
Q = L.T.M, (T. W2)

n = KQNand, for some y ^ 1, K.L = {T. W2)"-y and
M.N= W2.{T.W2)

y-1.
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Then we have R1 =L.T.MY~i and R'1 = T(Wt W2 Wx)~
l. Now clearly replacing Q in

KQN by <$(Q; RJ is equivalent to replacing Tin K.L.T.M.N by ^(T; RJ; this in turn is
equivalent to replacing Tin K.L.T.M.Nby ^{T; R~l), for by (3.39) and Lemma 2 we have
<g{T; Ry) = <tf{T; R'1). Hence in this case replacing Q in KQN is equivalent to replacing Tin
K.L.T.M.Nby <<?(T; R'1), that is, (3.40) holds.

Since the proofs of the following cases are similar to that ot case (a) we shall only give out-
lines of them.

(b) Q " contains " W2, that is, there is a partition K.L. W2. M.N of (T. W2)
n such that

Q = L. W2 . M, (T. W2)
n = KQN and, for some y ^ 1, K.L = (T. W2)

n~y. T and

Then (3.41) follows from (3.36), (3.39) and Lemma 2.

(c) T " contains " Q. Then (3.40) holds.

(d) W2 " contains " Q. Then (3.41) holds.

(e) Q = T2 . W2l, where T= 7\ T2, W2 = W21 W22 and none of Tlt T2, W21, W22 is
the identity. Then, since l(Q) ^ [i/(/?i)], it follows easily that either l(T2) ^ ^(R^ or

i)> so that either (3.40) or (3.41) must hold.

(f) Q = W22.TU where ^ 2 = W2i W12, T=T^T2 and none of W2U W22, Tu T2 is
the identity. Then, as in (e) above, either (3.40) or (3.41) must hold.

Now Q must take one of the forms considered in (a) to (f) above; hence we have shown
that either (3.40) or (3.41) must hold.

7°. We now suppose that (3.40) holds and obtain a contradiction. We have

<8(T;R-1)= WlW1Wu

and replacing the (n-y + l)th T in (T. Wf we obtain

i{(T. w2f} > i{(T. wtf-i.iw^ w2 wj.W2.yr. w2y~1}. (3.42)

Now <x(W2, WJ = a(Wu W2) = 0, and, if Wx = I, then a(W2, W2) = 0. Hence (3.42) can be
written

1{(T. W2)
n) > !{(T. W2)"-\Wi W2 Wl W2). (T. W2)

y~l}. (3.43)

Ifn = 1,(3.43) reduces to
l(T. W2) > 1{{W, W2f) = l(U2), (3.44)

while if n > 1 we have

I{(T. w2y} = I{(T. w2y-y.(j. W2).(T. w2y~1} ̂  I{(T. w2y-y}+i(T. w2)

+ l{(T.W2y-l}-e(W2,T)
and

Wtf-'iW^ W2 Wt W2).(T. W2y~1} ^ 1{(T. W^-^ + l^W^ W2)
2}

+ l{(T.W2y-1}-e(W2,T),
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so that (3.44) remains true. Now (3.44) contradicts (3.32) and (3.33) and so we conclude that
(3.40) cannot hold.

8°. We now suppose that (3.41) holds. We have <#(W2; R) = J f f ' r ^ f r , and replacing
the (n- y + l)th W2 in (T. W2)

n, we obtain

. W2)
n} > /{(T. W2y-y .T.(WtlTWil).(T. W2)

y~1}. (3.45)

We consider separately the cases Wy # /; Wt= I.
Suppose firstly that Wx # /. Then, since a(T, H71) = a(f*7\ J) = 0, we can write

(3.45) as

)(T. W2)
y-X}. (3.46)

If n = 1, (3.46) reduces to
l(T. W2) > l(TWCl TWC1), (3.47)

while if n > 1 we have

/{(T. W2)"} <> /{(T. W2y~y} + 1{T. W2) + l{(T. ^ 2 ) y - 1 }-6(^ 2 , T)
and

/{(T. W2y-*.{TW;lTW^)(T. W2y~1} ^ 1{(T.

so that (3.47) remains true. From (3.47) we have

l{T)+l(W2)
that is,

l(fV2)>l(T)+2l(tVl).

Since k = l(T)+2l(Wi) + l(W2), it follows that I(W2) > \k, which contradicts (3.30). Hence
(3.41) cannot hold if W, # / .

Now suppose that Wy = I. Then U=W2,R=W2T~l and so

«(W2, W2) = «(W2,T'l) = <t(T-\ W2) = 0. (3.48)

Rewriting (3.32) and (3.33), we have either

1{T. W2) < (Wi) (3.49)
or .

l(T. W2)= (Wi) and In(T) ~ Fin(W2). (3.50)

Suppose firstly that (3.49) holds. Now l(W2) ^ l(T) since W2 is cyclically fi-reduced; hence
we must have e(T, W2)=\. It follows that tx(T, T) = 0, for, if a(7", T) were non-zero, then,
since e(T, W2) = 1, we would have a.(T~l, W2) > 0, which contradicts (3.48). Hence we can
write (3.45) as

i{(T.w2y}>i{(T.w2y-y.T\T.w2y-i},

from which it follows that
l(T. W2) > l(T2) = 2/(7).
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Hence l(W2) > l(T), which contradicts the fact that W2 is cyclically fi-reduced. Thus (3.41)
cannot hold if Wx = /and (3.49) holds. Now suppose that (3.50) holds. Then again we must
have <x(T, T) = 0, since otherwise, as e(W2, T) = 1, we would have a(W2, T~l) > 0, contra-
dicting (3.48). Now we obtain a contradiction from (3.45) as in the previous case. Hence
(3.41) cannot hold if Wt = /and (3.50) holds. Since either (3.49) or (3.50) must hold we have
shown that (3.41) cannot hold if Wx = I.

Combining our results we have shown that neither (3.40) nor (3.41) can hold. Hence the
assumption made in 6°, that (T. W2)

n contains a subword by which it is fi-reducible, must be
false, that is, ( J . W2)

n is fi-reduced for all positive integers n. This completes the proof of the
lemma.

The following corollary will be used in a later paper.

COROLLARY 2. Let W be cyclically Si-reduced and l(W)> 1. Suppose that W1 is not
cyclically Q-reduced, so that there exist a cyclic arrangement U of W, an element VofU and an
element S o/f i j such that U2 = SV, R = ST'1 efi and l°(T. V) < I(U2). Suppose moreover
that U and V are chosen so that f}(T, V) = f}(V,T) = 0. Then, if\W\ has infinite order in
n/[£l], (iii) of the lemma holds with U=WiW2andV= W2.

Proof. It is clear that W satisfies (iii) of the lemma, and an examination of the proof of
(B), with particular reference to 4°, shows that we must have U = Wx W2 and V = W2.

We now come to the proof of the main theorems.

Proof of Theorem 2. Let n/[fi] be an FPS-group such that fi contains a proper power
R, R = J\A > 1). We note that l(J) ^ 2 and a(J,J) = 0, since'1(R) ^ 7 and a(R, R) = 0.

We have Jx x 1, so that the order r of \J | is less than or equal to X. Suppose that r < k.
Then

Jk~' =j\jryl ~1 and X-r>0, so that r^X-r.

Since J'« /, it must contain a subword Q by which it is fi-reducible, J' — XQ Y say,
where QT'1 = / ? , e f l and l(Q) ^ W(Ri)]- Clearly we can find a cyclic arrangement 7, of J
such that J\ - QYX. We note that j \ = QYXJ\~reQ. since 7*efi. Also, since QeQ}, we
have, by (2.21) and property (4) of Q, that

Hence T~1 = YXJ}~r, and replacing Q in XQY we obtain, since XQY = J'is reducible by Q,

KJr) > l{X.(J\-xX-lY-1). Y}^l°{X.(Jr
i-

xX~iY-1). Y} = l{J\~k) = 1{JX~').

This is a contradiction, since r ̂  X—r. Hence we must have r — X, which proves the theorem.

Proof of Theorem 3. Let n/[fi] be an FPS-group and let A be an element of II such that
A # /. Then it is easy to see, by an argument similar to that used in the proof of (iii) of
Lemma 3, that there exists a cyclically fi-reduced element W of n such that | A \ is conjugate
to | W\, so that | A | and | W\ have the same order. Now, if I(W) = 1, then by (ii) of Theorem 1
the order of | W\ is equal to the order of W, while \U(W)>\, then by Lemma 5 either | W\
has infinite order or (ii) of Lemma 5 holds. (See the note following the statement of Lemma 5.)
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It follows that, if each constituent group of II is torsion-free and Q does not contain a proper
power, then n/[fi] is torsion-free, while if either n has a constituent group containing elements
of finite order or Q contains a proper power, then II/[£1] has elements of finite order. This
proves the theorem.

Proof of Corollary 1. We use the notation of the above proof and suppose that | A |
has finite order. It is clear that, if l(W) = 1, then (i) of the corollary holds, since then we have
\A\ = l^ l"1! W\\P\ for some P e l l , so that A is the image under (f> o f P " 1 . W.P. Thus we
can suppose that 1{W) > 1. Since | A | has finite order, it follows that (ii) of Lemma 5 must
hold, so that there exist Jell, Re Cl and integers m, n such that W = Jm,R — Jn. We may assume
that both m and n are positive, since, if m is negative, then W = (J"1)""1 and R = (J"1)"",
while if n is negative, then W = Jm and R~l =J~"eil. Let t be the highest common factor of
m and n. Then
and therefore | A

j \ has order n by Theorem 2, and, since | W\ = | J\m, it follows that | W\
, has order «//. This proves the corollary.
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