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After decades of research efforts, wind–wave interaction mechanisms have been
recognized as extremely elusive. The reason is the complex nature of the problem, which
combines complex coupling mechanisms between turbulent wind and water waves with
the presence of multiple governing parameters, such as the friction Reynolds number of
the wind, the water depth and the wind fetch. As shown unequivocally here, the use of
suitable flow settings allows us to reduce the complex problem of wind–wave interaction
to its essential features, mainly as a function of the sole friction Reynolds number of the
wind. The resulting numerical solution allows us to study the interactions between water
and air layers with their own fluid properties, and to unveil very interesting features, such as
an oblique wave pattern travelling upstream and a wave-induced Stokes sublayer. The latter
is responsible for a drag reduction mechanism in the turbulent wind. Despite the simulated
flow conditions being far from the intense events occurring at the ocean–atmosphere
interface, the basic flow phenomena unveiled here may explain some experimental
evidence in wind–wave problems. Among other things, the wave-induced Stokes sublayer
may shed light on the large scatter of the drag coefficient data in field measurements
where swell waves of arbitrary directions are often present. Hence the present results
and the developed approach pave the way for the understanding and modelling of the
surface fluxes at the ocean–atmosphere interface, which are of overwhelming importance
for climate science.

Key words: air/sea interactions, turbulent boundary layers, wave-turbulence interactions

1. Introduction

Surface fluxes of momentum and energy through the ocean–atmosphere interface
are of primary importance for the characterization of geophysical flows and climate
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formation mechanisms. Contrary to the case of turbulent wind over land, the presence of a
somewhat compliant water surface gives rise to complex nonlinear interaction mechanisms
between the atmospheric boundary layer and the wave field developed in response to the
turbulent wind forcing itself (Sullivan & McWilliams 2010). These interactions determine
the flux of momentum and energy through the air–sea interface, thus representing a
fundamental process for climate behaviour. Despite the relevance of the subject, the
physical mechanisms behind wind–wave interactions still lack a sufficiently general and
complete theory (Ayet & Chapron 2021). The reason is the multiplicity of governing
parameters and the lack of suitable experimental and numerical data. As far as it concerns
the former, the mechanisms at the basis of wind–wave interactions are influenced by
many flow properties, such as the wind intensity, the wind fetch length, the water depth,
the water current and the presence of long-wavelength swell waves, to mention a few.
The multiplicity of these factors makes the study of the wind–wave problem difficult to
rationalize. This aspect is also one of the reasons why we are missing suitable experimental
data for the development of sufficiently general and complete theories. Indeed, many
field measurements have been performed over ocean and lake surfaces; see e.g. Hristov,
Miller & Friehe (2003), Donelan et al. (2006) and Laxague & Zappa (2020). Despite the
relevance of the information provided, the lack of control on the boundary conditions and
in the above-mentioned governing parameters makes the understanding of the observed
behaviours rather difficult to rationalize. On the contrary, laboratory experiments provide
more detailed information in controlled flow conditions – see e.g. Donelan et al. (2004),
Veron, Saxena & Misra (2007), Buckley & Veron (2016, 2019) – but with obvious
limitations in the range of governing parameters covered, especially as far as it concerns
the wind fetch length, thus limiting the study to the early-stage development of wind–wave
interactions far from equilibrium.

Numerical simulations can avoid some of these issues in principle, but face strong
difficulties in solving the two-phase interaction mechanisms at the air–water interface.
The issue is essentially given by the numerical treatment of the high jump of the fluid
properties occurring at the interface. For this reason, many numerical works avoided this
problem by adopting three main strategies. A first category of works elude the numerical
solution of the interface by solving problems where the turbulent wind interacts with
prescribed and idealized wave patterns. Relevant information has been provided, such as
the dependency of the momentum transfer, form drag and scalar transport on the wave
properties, including the wave steepness, wave speed and wave age; see e.g. Sullivan,
McWilliams & Moeng (2000), Kihara et al. (2007), Yang & Shen (2009, 2010), Druzhinin,
Troitskaya & Zilitinkevich (2012), Yang, Meneveau & Shen (2013), Sullivan, McWilliams
& Patton (2014) and Cao & Shen (2021). However, the wind–wave interaction problem is
simplified extremely by considering monochromatic or broadband travelling waves whose
evolution is decoupled from the wind forcing. A second category of works still avoids
the solution of the interface by prescribing a wave pattern, but in this case, a wind–wave
coupling is considered by solving the wave surface elevation and potential by means of
high-order spectral methods. In these cases, the coupling with the wind is taken into
account by considering the air pressure distribution over the wave surface, thus allowing
for the study of the wave growth and evolution under the action of wind; see e.g. Liu
et al. (2010), Hao & Shen (2019) and Wang et al. (2020). The limit of high-order spectral
methods is given by the assumption of the water motion as a potential flow where the
effects of viscosity, turbulence, surface tension and wave breaking are negligibly small.
The third category of works overcomes several of these limits but still eludes the direct
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solution of the air–water interface. In these works, the problem is split by solving the
incompressible Navier–Stokes equations separately in the air and water domains. The
coupling between the two solutions is obtained by imposing continuity of velocity and
stresses at the deformable interface between the two fluids, and the kinematics of the
interface is evaluated using an advection equation for its elevation, thus obtaining the
physical deformation of the air and water domains; see e.g. Lin et al. (2008), Zonta, Soldati
& Onorato (2015) and Li & Shen (2022). In these works, the temporal growth of waves
from the initial wind–wave generation processes, and the role played by surface tension
and wind strength on the formation of the wave energy spectrum, can be addressed. It is
found that the initial linear growth of waves is driven by the convection of the turbulent
pressure and by stress fluctuations in accordance with theoretical studies (Phillips 1957).
On the other hand, at the later stages, the wave grows exponentially due to the shear
flow instability mechanism, again in accordance with theory (Miles 1957), and remarkable
modifications on the average wind and water profiles are observed.

In accordance with the above arguments, almost the entirety of the numerical works
avoided the direct solution of the air–water interface. To our knowledge, the only numerical
works where both the wind and water waves are directly resolved are in the context of
breaking waves (Yang, Deng & Shen 2018) and of early-stage transient growth of water
waves (Wu, Popinet & Deike 2022). The aim of this work is to address the wind–wave
interaction problem at equilibrium by solving dynamically the two phases using first
principles and a volume of fluid method to reconstruct the interface. What distinguishes
the present work is then the fully coupled numerical framework and the reduction of
the multiplicity of governing parameters to essentially the sole Reynolds number of the
wind. The latter is achieved by considering the statistical symmetries of the flow in an
open channel, where the adoption of periodic boundary conditions in the streamwise and
spanwise directions allows us to address the wind–wave problem at equilibrium with no
effects from the wind fetch that indeed is virtually infinite.

The paper is organized as follows. In § 2, the numerical method and the flow settings are
described. In § 3, the water-wave pattern is characterized, while in §§ 4 and 5, the turbulent
wind boundary layer is analysed. The influence of the wind–wave mechanisms on the field
of stresses in the wind boundary layer is addressed in § 6. Finally, the paper is closed by
final remarks in § 7.

2. Direct numerical simulation

2.1. Equations and numerical methods
The evolution of the flow is governed by the continuity and momentum equations. This
set of equations is solved here in a one-fluid formulation where the same set of equations
is applied for two immiscible fluids with different density ρ and kinematic viscosity ν =
μ/ρ: ⎧⎪⎪⎨⎪⎪⎩

∂ui

∂xi
= 0,

∂ρui

∂t
+ ∂ρuiuj

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
+ fσi + ρgi,

(2.1)

where ui is the velocity field, p is the pressure field, τij = 2μSij is the viscous stress
tensor with Sij the strain rate tensor, fσi the surface tension and gi the acceleration of
gravity. In the following, the index i = 1, 2, 3 corresponds to the streamwise, vertical
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and spanwise directions. The OpenFOAM finite volume open source code (Weller et al.
1998) has been used to solve numerically the evolution equations. The problem has been
discretized numerically by means of a structured Cartesian grid of hexahedral cells. The
convective and diffusive fluxes at the numerical volume faces are evaluated through a
second-order central difference scheme, whereas time integration is performed with a
first-order implicit Euler scheme.

In order to identify the interface between the two fluids, a transport equation for the
volume fraction α (where α = 1 in the water phase and α = 0 in the air phase) is coupled
with the momentum equation (Hirt & Nichols 1981)

∂α

∂t
+ ∂ujα

∂xj
+ ∂

∂xj

[
α(1 − α)urj

] = 0. (2.2)

The numerical challenge of keeping the interface sharp is addressed by limiting the phase
fluxes based on the MULES limiter and by using a numerical interface compression
method (Deshpande, Anumolu & Trujillo 2012). The latter is expressed by the last term
of (2.2), from which it is easy to recognize that it is active only in the interface region due
to the term α(1 − α). In the volume fraction equation (2.2), ur is a compression velocity
evaluated as

ur = cα |u| n̂, (2.3)

where

n̂ = ∇α

|∇α| (2.4)

is the unit vector normal to the interface, and cα is a compression coefficient that
determines the strength of the compression, e.g. cα = 0 for no compression, cα = 1 for
conservative compression and cα > 1 for high compression (Larsen, Fuhrman & Roenby
2019; Okagaki et al. 2021).

The volume fraction α from (2.2) is then used to compute the physical properties of the
two fluids:

ρ = ρwα + (1 − α)ρa, (2.5)

μ = μwα + (1 − α)μa, (2.6)

where the subscripts w and a are used to denote quantities computed for water and
air, respectively. The volume fraction α is also used to compute the local curvature of
the interface, κ = −∂ni/∂xi. This observable is then used to model the surface tension
(Brackbill, Kothe & Zemach 1992) as

fσi = σκ n̂i, (2.7)

where σ is the surface tension coefficient.

2.2. Fluid properties and compression coefficient
Air and water in standard conditions are considered as working fluids. The corresponding
viscosity and density values are νa = 1.48 × 10−5, νw = 1 × 10−6, ρa = 1, ρw = 1 × 103,
and the surface tension coefficient is σ = 0.07 N m−1. It is important to highlight that
the solution of the wind–wave problem based on first-principles equations with the actual
properties of air and water represents a challenging task for numerical simulations. Indeed,
air and water introduce a high jump of the fluid properties at the interface (ρw/ρa = 1000
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and μw/μa = 67.5), thus representing an issue for numerical techniques as demonstrated
by a series of works where the jump between the two fluid properties has been reduced
to obtain numerical stability – see e.g. Liu et al. (2022) and Scapin, Demou & Brandt
(2022) – or where the evolution of the two fluids is integrated separately in time and
their interaction is taken into account with suitable boundary conditions – see e.g. Yang
& Shen (2010, 2011). Here, we succeeded in obtaining a stable solution of the wind–wave
problem based on first-principles equations and using the actual properties of air and water.
To achieve this result, a relevant role has been played by the value of the compression
factor cα in the volume fraction equation (2.2). Indeed, the value of the compression term
is given by the need to obtain a diffusive balance between the artificial diffusion of the
numerical method and the negative diffusion of the compression term itself (Larsen et al.
2019; Okagaki et al. 2021). In the present case, we found that the intermediate numerical
diffusion associated with the use of relatively fine spatial and temporal resolution levels,
together with the adoption of mixed first- and second-order-accurate schemes in time and
space, can be balanced reasonably by using an intermediate value of the compression
coefficient cα = 0.5.

2.3. Flow and simulation settings
The flow case considered is an open channel composed of a water layer on the bottom of
an air layer. The origin of the reference frame system is located on top of the water layer,
with (x, y, z) and (u, v, w) denoting the streamwise, vertical and spanwise coordinates
and velocity components, respectively. Periodic boundary conditions are applied in
the streamwise and spanwise directions. No-slip and free-slip boundary conditions are
imposed at the water bed and top boundary, respectively. Finally, a zero gradient condition
is imposed in the vertical direction for the volume fraction.

The extent of the numerical domain is (Lx, Ly = ha + hw, Lz) = (25.6ha, 1.6ha,
25.6ha), where ha and hw are the heights of the air and water portions of the
domain. Notice the relatively large domain size adopted with respect to other similar
numerical attempts. The reason is given by the need to avoid as much as possible
the effects of the finite domain size on the turbulent wind and water-wave statistics,
and to improve the statistical convergence of the data with the spatial average. The
domain is discretized using a number of volumes (Nx, Ny, Nz) = (820, 277, 1232) that
are distributed homogeneously in the horizontal directions, while stretching laws have
been applied in the vertical direction in order to obtain a better resolution in the highly
inhomogeneous region around the wind–wave interface. The resulting grid spacing in
friction units is (	x+, 	y+

min, 	z+) = (9.9, 0.1, 6.6), where 	y+
min is achieved at the

wind–wave interface. Throughout the paper, variables in friction units will be denoted
by the superscript +, implying normalization of lengths with the wind friction length
νa/uτa , and velocities with the wind friction velocity uτa . The wind friction velocity uτa
is evaluated on top of the interface region between the two fluids as shown in § 5.1 and in
Appendix A. On the other hand, when not specifically stated, variables will be reported
non-dimensional by using ha for lengths and Ue for velocities, where Ue is the average
velocity at the top boundary. Finally, the time step is variable throughout the simulation
to obtain a condition CFL < 1 in each point of the domain. The resulting time step is on
average 	t+ = 1.1 × 10−4.

The evolution of the flow is studied starting from an initial condition where the water
column is at rest, the air–water interface is flat and the wind boundary layer is already
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turbulent. This initial configuration allows us to study the self-development of the water
waves under the action of a turbulent wind that in turn adjusts itself to the developing
water-wave interface in a fully coupled first-principles framework up to reach statistical
equilibrium. The initial condition for the turbulent wind has been taken from a precursory
simulation of a single-phase turbulent open channel.

The flow is driven by imposing a constant pressure gradient in the streamwise direction,
dPb/dx. As shown in Appendix A, this pressure gradient determines the friction velocities
of both the wind and water boundary layers:

uτa ≈
√

−ha

ρa

dPb

dx
, uτw =

√
−hw + ha

ρw

dPb

dx
, (2.8a,b)

where uτa and uτw are the wind and water friction velocities. From the above relations, we
have

uτa

uτw

≈ 1√
1 + hw/ha

√
ρw

ρa
. (2.9)

Hence, for wind and water boundary-layer heights of the same order, ha ∼ O(hw), the
friction velocity of the wind boundary layer is significantly larger than that attained in
the water boundary layer, thus highlighting the tendency of the developed flow set-up in
promoting a turbulent wind over an almost quiescent laminar water layer. Accordingly,
the ratio of the friction Reynolds numbers in the wind and water boundary layers is fully
determined by the heights of the air and water layers:

Reτa

Reτw

= μw

μa

√
ρa

ρw

√
h3

a

(ha + hw) h2
w

; (2.10)

again, see Appendix A. Here, Reτa = uτaha/νa and Reτw = uτwhw/νw are the friction
Reynolds numbers of the air and water boundary layers. In the present flow settings, we
have Reτa = 317 and a ratio Reτa/Reτw ≈ 3. In conclusion, the choice of forcing together
with the use of periodic boundary conditions allows us to obtain, in a very simple and
computationally efficient way, a fully developed turbulent wind boundary layer over an
almost quiescent and laminar water layer.

In the present flow settings, the computational demand for well-converged statistics is
mitigated by the statistical stationarity of the flow field and by the statistical homogeneity
in the streamwise and spanwise directions. Hence the average operator, hereafter denoted
as 〈·〉, combines a spatial average in the horizontal directions and a temporal average over
34 samples collected every 	T+ = 95 after reaching a statistically steady state. In what
follows, the customary Reynolds decomposition of the flow in a mean and fluctuating field
will be adopted, i.e. ui = Ui + u′

i, where capital letters and the prime will denote average
and fluctuating quantities, respectively.

2.4. Governing parameters
It is well-known that the wind–wave problem is controlled by several parameters: among
many others, we have the intensity of the wind, the wind fetch and the water depth. The
combination of these parameters determines the water-wave state and the momentum
and heat surface fluxes, e.g. the friction velocity and the heat transfer coefficient of the
wind. In the present flow configuration, the wind–wave problem is simplified by the
adoption of periodic boundary conditions that remove the dependence of the wind–wave
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dynamics on the wind fetch being formally infinite. In this idealized framework, the
evolution of the flow towards equilibrium is governed by the sole values of the imposed
pressure gradient dPb/dx, of the air boundary-layer thickness ha and of the water depth
hw being the thermodynamic properties of the fluids prescribed by the selection of air
and water as working fluids. From a non-dimensional point of view, by considering the
wind friction velocity uτa and the total height of the domain H = ha + hw as reference
scales, together with the algebraic mean of the two fluid properties ρref = (ρa + ρw)/2
and μref = (μa + μw)/2 as reference thermodynamic quantities, the system of equations
becomes ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u

i

∂x

i

= 0,

∂ρ
u

i

∂t

+

∂ρ
u

i u


j

∂x

j

= −∂p


∂x

i

+ 1
Re

∂τ

ij

∂x

j

+ 1
We

f 

σi

+ 1
Fr2 ρ
g


i ,

(2.11)

where the governing dimensionless groups are the Reynolds, Weber and Froude numbers
defined as

Re = uτaH
νref

, We = ρref u2
τa

H

σ
, Fr = uτa√

gH
, (2.12a–c)

with νref = (μa + μw)/(ρa + ρw). It is then evident that in the present flow settings, the
dynamical evolution of the problem from the initial flat water surface to the fully developed
turbulent wind over water-wave condition is determined completely by the values of uτa

and H that are imposed through the pressure gradient dPb/dx and the wind- and water-layer
heights ha and hw. The simplicity of these flow settings allows for the development of a
theoretical framework (see Appendix A) that allows us to characterize the flow rigorously
and to have a full control of the wind and water layers. In particular, the friction Reynolds
numbers of the two layers can be varied independently of each other by changes in the
pressure gradient dPb/dx and in the wind- and water-layer heights ha and hw:

Reτa = ha

νa

√
−ha

ρa

dPb

dx
, Reτw = hw

νw

√
−hw + ha

ρw

dPb

dx
. (2.13a,b)

As already stated, the water waves are not prescribed directly here, being the result of
the dynamical evolution of the water phase under the action of the turbulent wind in
accordance with (2.11) under a certain value of the triad Re, We and Fr. This triad is
controlled directly by the wind friction Reynolds number and by the water/air heights:

Re = ξRe Reτa

(
1 + hw

ha

)
, with ξRe = (1 + ρw/ρa)

(1 + μw/μa)
,

We = ξWe Re2
τa

1
ha

(
1 + hw

ha

)
, with ξWe = ρaν

2
a

2σ

(
1 + ρw

ρa

)
,

Fr = ξFr Reτa

1√
h3

a

(
1 + hw

ha

) , with ξFr = νa√
g
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.14)

where ξRe, ξWe and ξFr are values fixed by the selection of air and water as working fluids.
Hence, through the values of dPb/dx, ha and hw, we can have a direct control on these
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relevant parameters for the water waves but not directly on their form. In the present flow
settings, we have imposed Reτa = 317 and hw/ha = 0.6, thus leading to

Re = 7404, We = 1.007, Fr = 0.00947, (2.15a–c)

which from a dimensional point of view corresponds to a flow case consisting of a
water layer whose depth is 0.15 m on the bottom of a turbulent wind boundary layer
with friction velocity 0.0187 m s−1 and thickness 0.25 m. The low friction Reynolds
number considered, Reτa = 317, is given by the computational resources available and
obviously limits the results of the present work to the wind–wave phenomena typical
of low Reynolds numbers. Indeed, by increasing the Reynolds number, we might expect
higher water waves as demonstrated by the direct relation (2.14) between Reτa and the
Weber number We, which measures how easily the liquid interface can be deformed by
the gas phase. Accordingly, the phenomena associated with higher water waves, e.g. the
sheltering mechanisms among many others, require higher Reynolds numbers and are left
to future investigations.

3. The structure of water waves

We start the analysis of the direct numerical simulation data by addressing the structure of
the water waves. The instantaneous pattern taken by the water waves is shown in figure 1 by
means of an iso-surface of the phase fraction α = 0.5. Notice that, for readability reasons,
the vertical size of waves has been expanded by a factor of 80. Indeed, the wave height δw
is found to be very small compared with both the water depth and the friction length scale
of the turbulent wind boundary layer,

δw = 9.2 × 10−4,

δ+
w = 0.3,

}
(3.1)

where
δw = ηmax − ηmin, (3.2)

with the surface elevation defined as

η(x, z) = yα − 〈yα〉, (3.3)

and α(x, yα, z) = 0.5. Accordingly, the wave steepness is also very small, S = 7.3 × 10−4.
A consequence of the measured very small value of the wave height is that we can drop
the dependence of the wave state on the water depth hw. In conclusion, the water-wave
evolution here analysed depends uniquely on the selected values of the streamwise pressure
gradient dPb/dx and the wind boundary layer thickness ha, i.e. on the friction Reynolds
number of the wind Reτa . It is important to anticipate here that despite the small height
of the water waves, their dynamical effects on the statistical features of the turbulent wind
boundary layer are far from being negligible, as will be shown in §§ 4, 5 and 6.

Interestingly, figure 1 shows that the water surface develops an oblique water-wave
pattern whose inclination with respect to the streamwise wind direction is γ =
38.6◦. It is recognized that due to resonance mechanisms of wind–wave generation
(Phillips 1957), two dominant wave systems propagate at oblique angles symmetric
to the wind direction (Morland 1996). This symmetry is, however, often broken
for moderate winds, as demonstrated by the present data and by several laboratory
and field experiments, e.g. Walsh et al. (1985, 1989), Caulliez & Collard (1999),
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Figure 1. Instantaneous water-wave pattern. The vertical wavelength has been expanded by a factor of 80 for
readability reasons. The black arrow denotes the wind direction, the blue line indicates the dominant wave
alignment, with γ the angle with respect to the wind direction, and the red arrow indicates the phase speed c.

Hwang & Wang (2001), Hwang et al. (2019) and Shemer (2019), reporting asymmetry
in the directional spectra at early stages of wind–waves evolution.

We also observe that the generated oblique wave pattern propagates at an angle in the
upstream direction, i.e. the phase speed vector is aligned with the dominant wavenumber of
the water waves with a negative streamwise component. In particular, we measure a phase
speed c+ ≈ (−10, −8). Upwind travelling waves have been observed already in the past;
see e.g. Plant & Wright (1980), Hara & Karachintsev (2003) and Wang & Hwang (2004).
In accordance with the linear perturbation theory (Plant & Wright 1980), the dependence
of the wave propagation direction on the wind shear is odd, while on the wind pressure it
is even. Hence wind shear can be thought of as responsible for a downwind propagation
of waves together with a water surface drift, while the pressure field can give rise to both
upwind and downwind travelling waves. This even effect of pressure is usually broken by
the so-called sheltering mechanism of wind separation over the water surface. In fact, field
experiments show that upwind travelling waves occur more often in open oceans than in
sheltered bays as reported by Wang & Hwang (2004). Here, due to the very low steepness
of the developed water waves, the wind is able to follow the deformed water surface thus
not giving rise to asymmetric pressure distributions in the windward and leeward sides
of waves. Hence we argue that the oblique upwind propagation of waves is essentially
induced by the pressure field.

From a statistical point of view, this oblique water-wave pattern can be characterized
quantitatively by addressing the two-point correlation function of the wave elevation:

Rηη(rx, rz) = 〈η(x + rx/2, z + rz/2, t) η(x − rx/2, z − rz/2, t)〉
〈η2〉 . (3.4)

As shown in figure 2, the two-point correlation function exhibits an inclined (γ ≈ 38◦)
oscillatory behaviour typical of quasi-periodic phenomena. The distance from the origin of
the first positive peak in the correlation along the direction normal to the wave pattern can
be used to measure the characteristic wavelength. We measure λ+ = 296. The streamwise
and spanwise lengths of this wave pattern are useful for the forthcoming analysis and are
measured to be (λ+x , λ+z ) = (475, 380). On the other hand, by rescaling the wavelength
with the water depth, we measure λ/hw = 1.55. This intermediate value suggests that the
developed water waves are mildly influenced by the no-slip condition at the water bed,
thus giving further support to the previous assumption that in the present flow settings, the
flow state is governed primarily by the friction Reynolds number of the wind Reτa imposed
through the pressure gradient dPb/dx and wind boundary layer thickness ha, with a weak
dependence on the water depth hw.
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Figure 2. Two-point spatial correlation function of the wave elevation Rηη(rx, rz).

The two-point spatial correlation function (3.4) can now be used to compute the
one-dimensional spectrum of the wave elevation:

Êx
ηη(kx) = F {

Rηη(rx, 0)
}
,

Êz
ηη(kz) = F {

Rηη(0, rz)
}
,

}
(3.5)

where the operator F denotes the Fourier transform. The one-dimensional spectrum allows
us to identify the length scales of the most intense waves. As shown in figure 3, both the
streamwise and spanwise wave elevation spectra highlight a peak of intensity that is located
at streamwise and spanwise wavenumbers that correspond to the wavelengths measured
previously with the two-point correlation, i.e. 2π/k+

x,peak = 450 (k+
x,peak = 1.39 × 10−2)

and 2π/k+
z,peak = 386 (k+

z,peak = 1.63 × 10−2). Two relevant additional statistical features
are, however, evident. The first is given by the presence of a broad range of wavenumbers
where the intensity of the wave elevation is not negligible, thus highlighting the occurrence
of a multi-scale interface typical of realistic water surfaces. The second is given by the
appearance of a secondary peak in the streamwise spectrum at small wavenumbers, k+

x =
3.1 × 10−3, corresponding to wavelength 2π/k+

x,peak = 2026. This secondary peak is a
statistical footprint of the presence of group waves (Janssen 2004). Hence the oblique
water-wave pattern analysed so far turns out to be superimposed to a longer wave envelope
developing in the streamwise direction.

Let us now address some parameters used classically to characterize the state of water
waves. Of particular interest is the so-called Bond number,

Bo = σ(2π/λ)2

ρwg
, (3.6)

which is a measure of the major restoring force between gravity and surface tension. This
observable is of particular interest for the present work because the water-wave pattern
studied here is not prescribed as in many previous numerical attempts but, rather, is the
result of a dynamical evolution from the initial flat surface condition to the equilibrium
state with the turbulent wind. Hence, in the present numerical approach, the Bond number
turns out to be a result of the flow evolution through the value of the dynamically obtained
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Figure 3. (a) Streamwise and (b) spanwise one-dimensional spectra of the wave elevations Êx
ηη and Êz

ηη,
respectively.

water-wave length λ. With the present flow settings, we measure Bo ≈ 5.1 × 10−3, thus
suggesting a prominent role of gravity as restoring force.

In closing this section, we recall that the described water-wave field is the result of a
fully coupled, first-principles evolution of a turbulent wind over a water surface where
the unique control parameter is found to be essentially the friction Reynolds number of the
wind, Reτa . Accordingly, we may conclude that for a friction Reynolds number Reτa = 317,
the wind–wave interaction problem develops a wave pattern propagating at an angle in the
upwind direction of waves at very low wave steepness and elevation.

4. The structure of the turbulent wind

We consider now the behaviour of the wind boundary layer. Let us recall that the stresses
at the water surface created by the wind are responsible for the formation of the previously
analysed water-wave pattern that in turn influences the wind boundary layer, thus forming
a complex fully coupled mechanism. Hence it is relevant now to address how the physical
properties of the turbulent wind are different with respect to classical features observed in
wall-bounded turbulence.

4.1. Turbulent coherent motions
In this subsection, we start the study of the turbulent wind by addressing the topology
of the turbulent structures populating it. From an instantaneous point of view, coherent
vortical structures can be identified by using the so-called λ2 criterion (Jeong et al. 1997),
where λ2 is the second largest eigenvalue of the tensor

SikSkj + ΩikΩkj, (4.1)

where Sij = (∂ui/∂xj + ∂uj/∂xi)/2 and Ωij = (∂ui/∂xj − ∂uj/∂xi)/2 are the symmetric
and antisymmetric parts of the velocity gradient tensor. Figure 4 illustrates the iso-surface
of λ2 = −3 coloured with the streamwise velocity, showing that quasi-streamwise vortices
are the dominant vortical structures above the wave surface. Consistently with the low
elevation and steepness of the water-wave pattern described in § 3, the evolution of
the observed quasi-streamwise vortices is essentially not constrained by the water-wave
pattern, thus leading to a vortex dynamic that resembles the one observed commonly in
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Figure 4. Instantaneous vortex pattern in the turbulent wind boundary layer shown by means of an
iso-surface of λ2 = −3 coloured with the streamwise velocity.

wall-bounded turbulence. Such turbulent structures, by interacting with the mean velocity
gradient, are known to give rise to streamwise velocity streaks as a result of ejection and
sweeping of fluid from/to the near-interface region.

In order to give a quantitative description of these wind boundary-layer structures and
to highlight their statistical relevance, we consider the two-point spatial autocorrelation
function of the velocity field,

Ruiui(x, r) = 〈 u′
i(x + r, t)u′

i(x, t)〉
〈u′

iu
′
i〉(x)

, (4.2)

where no summation is here implied for index i. As seen in figure 5(a), the streamwise
correlation function evaluated at y+ = 30 shows that all the three velocity components
are correlated over relatively long distances. In particular, we measure correlation lengths
�+

x ≈ 2800, 1250 and 700 for the streamwise, vertical and spanwise velocity components,
respectively. Here, the correlation length is measured as the streamwise spatial increment
where Ruiui = 0.05. These values significantly exceed those reported commonly for
wall-bounded turbulence. As an example, by using the turbulent channel database at Reτ =
395 available online at https://turbulence.oden.utexas.edu, we have that �+

x ≈ 1100, 300
and 150 for the streamwise, vertical and spanwise turbulent fluctuations over flat walls at
the same wall distance. Hence a significant elongation of the turbulent structures is found
to be related to the presence of the water-wave surface. The correlation function in the
spanwise direction is shown in figure 5(b). In this case, negative peaks of correlation are
observed for the streamwise and vertical velocity components, which can be interpreted as
clear statistical evidence of the presence of high and low streamwise velocity streaks and of
quasi-streamwise vortices, respectively. In particular, the value of the spanwise scale where
these negative peaks occur can be used as a measure of their spanwise size. Accordingly,
we measure spanwise spacing between streamwise velocity streaks as �+

z ≈ 100 (location
of the negative peak of Ruu), and spanwise size of quasi-streamwise vortices as �+

z ≈ 53
(location of the negative peak of Rvv). These values are again larger than those observed
commonly in wall turbulence, where �+

z ≈ 70 and 40 for the streamwise and vertical
turbulent fluctuations at the same wall distance; see again the database available at https://
turbulence.oden.utexas.edu.

In conclusion, the topology of turbulent structures responsible for the self-sustaining
mechanisms of turbulence in the wind boundary layer essentially resembles that observed
in classical wall turbulence. The main difference is indeed only of a quantitative nature,
as the sizes of the turbulent structures resulting from wind–wave interactions are much
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Figure 5. Two-point spatial autocorrelation function of the velocity field Ruiui computed in the buffer layer
region at y+ = 30. (a) Streamwise correlation for ry = rz = 0. (b) Spanwise correlation for rx = ry = 0. The
solid line shows Ruu, the dashed line shows Rvv and the dash-dotted line shows Rww.

larger than those observed in wall-bounded flows. This similarity with wall turbulence
is not maintained in the very-near-interface region. There, the effect of the presence of
a wind-induced water-wave pattern becomes significant, giving rise to peculiar ordered
motions related to the presence of wind–wave interaction phenomena, as will be shown in
§ 4.2.

4.2. Wave-induced Stokes sublayer and interface stresses
The oblique wave pattern analysed in § 3 is responsible for the appearance of a very
interesting phenomenon in the very-near-interface region (say y+ � 2). Indeed, it is
possible to assume that the air flow, when interacting with the water-wave field, accelerates
on the windward side and decelerates on the leeward side. This behaviour can be
associated with a pattern for the pressure field that is minimum above the wave crests
and maximum within the trough region. As shown in figure 6(a), the instantaneous
pressure field actually confirms this scenario by reproducing a pattern that resembles the
wave elevation pattern reported for comparison in figure 6(b). Because the water-wave
pattern is skewed with respect to the mean wind direction, these pressure variations give
rise to periodically distributed pressure gradients in both the streamwise and spanwise
directions. Of particular interest is the effect of the latter gradient that is responsible for
the generation of an oscillating spanwise forcing, thus inducing an alternating spanwise
motion, as shown in figure 7(a). The relevance of this observation is given by the
fact that this very-near-interface velocity pattern emulates the flow behaviour of the
so-called generalized Stokes layer that is widely recognized to reduce the levels of drag in
wall-bounded turbulence (Quadrio, Ricco & Viotti 2009; Quadrio & Ricco 2011). As will
be shown in § 5, also the present turbulent wind, by interacting with the water-wave field, is
characterized by a significant reduction of drag with respect to wall-bounded turbulence.
It is then possible to conjecture that this drag reduction is related to the presence of a
spanwise oscillating motion induced by the presence of a skewed wave pattern, in analogy
with the results obtained in Ghebali, Chernyshenko & Leschziner (2017) using skewed
wavy walls. For this reason, a deeper analysis of the very-near-interface region and the
wave-induced Stokes sublayer is reported in the following.

In contrast with the generalized Stokes layer produced by the spanwise wall motion
in active control techniques, the velocity field in the wind–wave case periodically
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Figure 6. Iso-contours of the instantaneous pressure field p+(x, z) evaluated at (a) the water interface
α = 0.5 and (b) the wave elevation η+(x, z).
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Figure 7. (a) Iso-contours of the instantaneous wave elevation η+(x, z) and velocity field streamlines.
(b) Iso-contours of the instantaneous spanwise shear ∂w+/∂y+(x, z) superimposed onto the iso-levels of
the wave elevation η+(x, z), where positive and negative values are reported with solid and dashed lines,
respectively. Both plots show a portion of the entire domain in order to improve the readability of the behaviour.

accelerates/decelerates also in the streamwise and vertical direction as a result of the
pressure field pattern shown in figure 6(a) and of the wave vertical elevation. However,
it is not the velocity field but the associated shear stresses at a given location within
the boundary layer that are known to be responsible for the weakening of turbulence,
and hence for the consequent drag reduction (Touber & Leschziner 2012). As shown
in figure 7(b), the instantaneous spanwise shear ∂w/∂y at the water surface exhibits an
alternating positive and negative behaviour respectively at the wave crest and trough
regions. The apparent irregularity of this behaviour is a clear near-interface footprint of the
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Figure 8. Very-near-interface behaviour of the crest and trough conditional averages of (a) streamwise shear,
〈∂u/∂y〉+∩ (solid line) and 〈∂u/∂y〉+∪ (dashed line), respectively, and (b) spanwise shear, 〈∂w/∂y〉+∩ (solid line)
and 〈∂w/∂y〉+∪ (dashed line), respectively. The vertical solid lines denote the average position of the wave crests
and troughs.

stresses induced by streamwise-aligned turbulent structures populating the wind boundary
layer further away from the water surface, as shown in § 4.1.

To clear the analysis of the wave-induced Stokes sublayer from the effects of
turbulence structures above it, we introduce a conditional average procedure to address
the very-near-interface behaviour separately on the crest and trough wave regions. For the
generic quantity β, two conditional averages, denoted as 〈β〉∩ and 〈β〉∪, are computed
as the averages over (x, z) points that satisfy the conditions η(x, z, t) > 0.7 δw/2 (crests)
and η(x, z, t) < −0.7 δw/2 (troughs), respectively. As shown in figure 8(a), the flow in the
very-near-interface region is characterized by higher streamwise velocity gradients on the
crest rather than trough regions, in accordance with the pressure field pattern induced by
the water waves. In accordance with this wave-induced pressure field, and as shown in
figure 8(b), the mean spanwise velocity gradient exhibits a change of sign moving from
the crest to the trough regions. Interestingly, the peaks of streamwise and spanwise shear
are located not at the water surface but slightly away from it. This behaviour is related to
the interaction of the water surface that, contrary to the generalized Stokes layer induced
by moving walls, forms an accelerating/decelerating wave pattern based on first principles.
We measure that for the wave-induced Stokes sublayer, the peak of spanwise shear stresses
is reached at y+ ≈ 0.4 on the wave crests, and at y+ ≈ 0.25 on the trough regions. By
recalling that the maximum and minimum average values of the wave elevations are
η+

max ≈ 0.15 and η+
min ≈ −0.15, we can conclude that these peak values are further away

from the water surface in the trough regions than in the wave crests; see the vertical lines
in figure 8(b).

In closing this section, let us point out that in drag-reducing techniques based on
oscillating walls, the thickness of the Stokes layer has been recognized as an important
quantity for the effectiveness of the viscous shearing action of the moving wall in
weakening the near-wall turbulence interactions (Quadrio & Ricco 2011). For the present
wave-induced Stokes sublayer, we measure a penetration length �+

s ≈ 2, computed as the
distance from the interface where the conditionally averaged spanwise shear reaches 10 %
of its maximum. This value is compatible with a drag-reduction state of the wind boundary
layer in accordance with Quadrio & Ricco (2011), where the minimal condition for drag
reduction has been found to be �+

s ≈ 1.
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To summarize, the very-near-interface field highlights the presence of a wave-induced
Stokes sublayer similar to that observed in Ghebali et al. (2017) for solid skewed
wavy walls. The relevance of this layer for the turbulent wind flowing above it is recognized
to be in the associated oscillating spanwise motion. The resulting field of spanwise shear
takes the form of a streamwise travelling wave whose wavelength and phase speed are as
for the water waves, i.e. λ+x ≈ 475 and c+

x ≈ −10. The intensity of the associated motion
and its region of influence are small, |w|+max ≈ 10−3 and �+

s ≈ 2, but their effects on
the wind boundary layer are not as demonstrated by the level of induced drag reduction
reported in § 5.

5. Turbulent wind profiles

The present simulation highlights that the mutual interaction between a water surface and
a turbulent wind at a friction Reynolds number Reτa = 317 leads to an inclined pattern
of low-steepness waves as shown in § 3. This field of water waves modifies the structure
of the turbulent wind as shown in § 4, that in turn created them, thus forming a complex
self-sustaining mechanism. Accordingly, it is now relevant to study how and to what degree
the statistical features of the turbulent wind are affected by these modified structures with
respect to classical behaviours of wall turbulence.

5.1. Mean flow
The effect of moving water waves on the mean wind profile is of overwhelming interest
for wind–wave problems in general. In the present flow settings, the interaction of wind
with moving waves creates a wave-induced Stokes sublayer that modulates the near-surface
flow. It is then important to address if this near-surface modulation affects also the wind
flow further away from the water surface, thus leading to a departure from the mean
velocity logarithmic law observed classically in wall turbulence. To this aim, we compare
the mean velocity profiles from our simulation with those from the simulation of an open
channel at Reτ = 300 performed by Nagaosa & Handler (2003).

Before that, let us point out that the wave elevation pattern makes it essential to define
a method to capture the origin of the wind turbulent boundary layer. In analogy with
wall turbulence, we define the virtual origin as the location of the maximum of the mean
velocity gradient. The resulting location is y+

0 = 0.37, i.e. slightly above the water-wave
pattern, and the corresponding mean velocity is U+

0 = 0.75. Following this criterion, the
mean velocity profile will be shown by shifting the velocity and the vertical coordinate
by U0 and y0, respectively. In the context of the theoretical framework developed in
Appendix A, the location y0 corresponds to the upper edge of the interface region (ŷ = h>

int
in the reference frame adopted in the appendix). Hence it is the location where the friction
velocity of the wind, uτa , is computed.

As shown in figure 9, the mean velocity profile is found to follow the classical scalings
of the viscous sublayer for ( y − y0)

+ < 5, and of the buffer layer for ( y − y0)
+ < 20.

However, for ( y − y0)
+ > 20, the mean velocity profile is found to deviate from the

classical scalings of wall turbulence, especially in the overlap and outer layers. It consists
of an upward shift of the mean velocity field with respect to that obtained from wall
turbulence in an open channel. This behaviour is consistent with a drag reduction regime
of the wind–wave boundary layer with respect to turbulence over smooth walls. This
phenomenon of drag reduction can be associated with the presence of the wave-induced
Stokes sublayer that in turbulence control techniques is widely recognized to induce
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Figure 9. Mean wind velocity profile (U − U0)
+ (solid line) compared with the mean velocity profile of wall

turbulence in an open channel (Nagaosa & Handler 2003) (filled circles). The linear law and interpolating
logarithmic laws are shown with dashed lines.

a significant drag reduction. From a more quantitative point of view, by assuming a
logarithmic behaviour in the putative overlap layer for 30 < ( y − y0)

+ < 0.3Reτ , i.e.

U+ − U+
0 = 1

κ
log

(
y+ − y+

0
)+ B, (5.1)

we measure a small variation of the von Kármán constant κ = 0.38 for the wind–wave
problem with respect to κoc = 0.39 for wall turbulence in an open channel. On the
other hand, the additive constant is found to increase substantially, B = 7.3, for the
wind–wave problem with respect to Boc = 5.7 for wall turbulence. Hence the increment
	B = B − Boc = 1.6 can be interpreted as a measure of the drag reduction experienced
by the wind–wave problem with respect to wall turbulence.

By considering the water-wave pattern as a rough surface for the wind boundary layer,
we can rewrite the logarithmic law for the mean velocity profile as

U+ − U+
0 = 1

κ
log

(
y+ − y+

0

k+
s

)
+ Boc, (5.2)

where k+
s is an estimate of the surface roughness length, by assuming that the upward shift

of the mean velocity profile 	B can be modelled as (Pope 2000)

	B = − 1
κ

log
(
k+

s
)
. (5.3)

Accordingly, the effective roughness length of the water surface that is felt by the mean
wind boundary layer can be measured as

k+
s = e−κ 	B = 0.54, (5.4)

which is of the same order as the mean wave height δ+
w = 0.3.
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Figure 10. (a) Profiles of wind turbulence intensities (lines) compared with those of wall turbulence in an open
channel (circles) (Nagaosa & Handler 2003): streamwise turbulent fluctuations

√〈u′u′〉 (solid line), spanwise
turbulent fluctuations

√〈w′w′〉 (dash-dotted line) and vertical turbulent fluctuations
√〈v′v′〉 (dashed line).

(b) Reynolds shear stress −〈u′v′〉 profiles in the wind–wave problem (solid line) compared with those of wall
turbulence in an open channel (circles) (Nagaosa & Handler 2003). The inset focuses on the behaviour in the
near-interface region.

5.2. Turbulence intensity profiles
The influence of moving surface waves is also visible in the turbulence intensity profiles as
shown in figure 10(a). Compared to wall turbulence, the peak intensity of the streamwise
velocity fluctuations is significantly higher and shifted towards the wind boundary-layer
core. Also, the peak intensity of the spanwise and vertical velocity fluctuations is moved
outwards, but in this case, its magnitude is decreased with respect to wall turbulence.
The outward shift of the peaks of turbulent activities is in line with many observations in
drag-reducing flows. The modulation of turbulence given by the wave-induced Stokes layer
is such that turbulence is weakened in the very-near-interface region. As a consequence,
the turbulence self-sustaining mechanisms through which quasi-streamwise vortices and
streaks are generated are moved outwards. Indeed, such processes are known to form an
autonomous regeneration cycle (Jimenez & Pinelli 1999) where the presence of the water
interface appears to be necessary only to sustain the mean shear. This outward shift allows
for the generation of wider and longer velocity streaks, as demonstrated by the two-point
correlation function reported in § 4.1. This scenario is consistent with the increase of the
intensity of the streamwise velocity fluctuations and with the weakening of the spanwise
and vertical velocity fluctuations in the very-near-interface region shown in figure 10(a).

Analogous considerations can be made for the Reynolds shear stresses shown in
figure 10(b). The magnitude of −〈u′v′〉 is reduced, and its maximum value is reached for
a larger value of y+ with respect to wall turbulence. Interestingly, a change of sign of the
Reynolds shear stresses is observed for y+ < 1, as shown in the inset of figure 10(b). This
region of the flow represents the wind layer affected directly by the water surface pattern
being the wave elevation of the order of δ+

w = 0.3, as shown in § 3. Indeed, this change
of sign is a clear wave-induced effect. Due to the very low steepness of the water waves
(S = 7.3 × 10−4), the wind is able to remain attached to the water surface, i.e. wind–wave
sheltering mechanisms are absent (Jeffreys 1925). Accordingly, in the windward side,
the flow while raising (v′ > 0) accelerates in the streamwise direction (u′ > 0). On the
contrary, in the leeward side, the flow while descending (v′ < 0) decelerates in the
streamwise direction (u′ < 0). Hence both the windward and leeward sides contribute to
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Figure 11. Two-point spatial autocorrelation function of the pressure field Rpp computed at increasing
vertical positions y+ = 15 (solid line), y+ = 30 (dashed line) and y+ = 45 (dash-dotted line). (a) Streamwise
correlation for ry = rz = 0. (b) Spanwise correlation for rx = ry = 0.

the production of negative Reynolds shear stresses, −〈u′v′〉 < 0. The present data show
that this effect is felt by the wind up to y+ = 1, thus suggesting a penetration length of the
wave-induced motions significantly higher than the wave height δw itself. This penetration
length is of the same order as that of the wave-induced Stokes sublayer, �+

s ≈ 2, thus
suggesting the effectiveness of the resulting spanwise oscillating motion in altering the
turbulent dynamics of the wind boundary layer.

6. Wind–wave induced fields of stress

Until now, we have addressed the effect of wind–wave interactions on the turbulent wind
motions. It is, however, important also to address the fields of stress induced by wind–wave
mechanisms. In particular, it is relevant to establish how and to what extent the related
fields of stress penetrate into the wind boundary layer. To this aim, we consider the
two-point spatial correlation function of pressure and Reynolds shear stresses,

Rpp(x, r) = 〈p′(x + r, t) p′(x, t)〉
〈p′p′〉(x)

(6.1)

and

Ruv(x, r) = 〈u′(x + r, t) v′(x, t)〉√〈u′u′〉(x)
√〈v′v′〉(x)

, (6.2)

respectively.
As shown in figure 11, the pressure footprint of the wind–wave interaction mechanisms

is felt by the wind boundary layer up to y+ ≈ 60 (not shown in figure 11 for readability
reasons). It consists of an oscillating behaviour of the two-point pressure correlation. The
matching of scales between the water-wave lengths (λ+x , λ+z ) = (475, 380) measured in § 3
and the second peak of pressure correlation suggests clearly that the high- and low-pressure
field pattern induced by water waves at their trough and crest (see figure 6) significantly
penetrates the wind boundary layer, thus affecting its evolution. It is worth remarking
the strongly non-local feature of the pressure field that enables long-distance interactions
between a very thin layer of water waves, thickness δ+

w = 0.3, with the flow structures
populating the wind boundary-layer core.

Contrary to pressure, the turbulent shear stress footprint of the wind–wave interactions
does not significantly penetrate into the wind boundary layer and remains more confined
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Figure 12. Two-point spatial correlation function of the Reynolds shear stresses Ruv computed at increasing
vertical positions y+ = 0.6 (solid line), y+ = 1.37 (dashed line) and y+ = 5.37 (dash-dotted line).
(a) Streamwise correlation for ry = rz = 0. (b) Spanwise correlation for rx = ry = 0.

in the near-interface region. Indeed, as shown in figure 12, the two-point correlation of
Reynolds shear stresses is clearly affected by wind–wave interactions up to y+ ≈ 3, while
for y+ > 3, the classical behaviour induced by the structures composing the self-sustaining
mechanisms of turbulence is observed, i.e. a negative peak in the spanwise correlation
function induced by quasi-streamwise vortices, and streaks at increasingly larger scales by
augmenting the distance from the interface.

Due to the very low steepness of water waves, the wind boundary layer remains attached
to the water surface, hence in the windward side the flow accelerates (u′ > 0 and v′ > 0),
while in the leeward side the flow decelerates (u′ < 0 and v′ < 0), in accordance with the
near-interface change of sign of the Reynolds shear stresses shown in § 5.2. Accordingly,
we may expect a wind–wave footprint in the two-point correlation in the form of a
peak of anticorrelation at half water-wave length and a second peak of correlation at the
water-wave length itself. Figure 12 actually confirms this scenario up to y+ ≈ 3. The clear
matching of scales suggests that this region of influence is governed by the wave-induced
Stokes sublayer that has been found to have a penetration length of the same order, �+

s ≈ 2.
The two-point correlation function of Reynolds shear stresses highlights another

remarkable wind–wave feature. Indeed, the peak of correlation for y+ < 3 occurs for
non-zero displacements (rx, rz) = (47, 40). This is a clear measure of the phase shift
between the streamwise acceleretion/deceleration of the flow (u′ > 0 and u′ < 0) with
respect to the windward raising and leeward descending (v′ > 0 and v′ < 0) wave-induced
motions. These measured values of shift are of the order of 1/10 of the water-wave lengths,
in accordance with measurements performed by Ghebali et al. (2017) for solid skewed
wavy walls.

7. Conclusions

A direct numerical simulation of the wind–wave interaction problem has been performed.
To the authors’ knowledge, the simulation represents one of the very first attempts to obtain
the fully coupled solution of the wind–wave problem based on first principles and on
realistic values of the fluid properties of air and water. The considered flow settings consist
of a two-phase open channel flow driven by a constant pressure gradient where the wind
is turbulent and the water is almost quiescent. The simplicity of the flow settings is such
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that the complex problem of wind turbulence over water waves essentially reduces to be
governed by a single parameter, the wind friction Reynolds number Reτa = 317.

The simulation reveals an interesting water-wave pattern. It consists of waves at very low
steepness and elevation (S = 7.3 × 10−4 and δ+

w = 0.3) propagating at angle γ = 38.6◦
in the upwind direction with phase speed c+ ≈ (−10, −8). Despite the small size of
the water-wave pattern, its effect on the turbulent wind is far from being negligible.
A significant reduction of drag is indeed observed, 	B = 1.6. The origin of drag reduction
is associated with the presence of a wave-induced Stokes sublayer. The oblique wave
pattern is found to induce periodically distributed pressure gradients also in the spanwise
direction, thus leading to an oscillating spanwise forcing. Such a type of modulation gives
rise to a weakening of the self-sustaining processes of turbulence in the very-near-interface
region, and hence to drag reduction. The significant effect on the turbulent wind is
remarkable, despite the very small thickness of the Stokes layer, �+

s ≈ 2, and the very
weak intensity of the associated motion, |w|+max ≈ 10−3.

Both the mean velocity and turbulent profiles agree with the presence of a near-interface
weakening of turbulence due to the wave-induced Stokes sublayer. An upward shift of the
self-sustaining processes is indeed observed. A consequence of this shift is the observed
increase in size of the main turbulent structures composing the autonomous cycle of
turbulence, i.e. quasi-streamwise vortices that are 53 viscous units wide, and streamwise
velocity streaks that are 2800 viscous units long. The study of the fields of stress reveals
that despite the very small thickness of the Stokes sublayer, its effect on the pressure field
is felt in the wind boundary layer also at very large distances from the interface. Indeed,
the two-point correlation function clearly highlights the non-local nature of wind–wave
induced pressure fluctuations that are shown to penetrate the wind boundary layer up to
y+ ≈ 60. On the contrary, the field of shear stresses induced by wind–wave interactions
phenomena remains more confined to the water-surface region. These effects emerge in
a change of sign of the Reynolds shear stresses −〈u′v′〉 < 0 for y+ < 1 that is clearly
induced by the non-sheltering behaviour of the wind over the very low steepness and
elevation of the developed water waves. Also, the two-point correlation function confirms
this scenario, highlighting that the wind–wave interaction effect on the shear stresses
remains confined to the very-near-interface region for y+ < 3.

To close this work, it is important to note that the simulated flow conditions are
far from the intense events occurring at the ocean–atmosphere interface. However, the
simplicity of the flow settings allows us to reduce the complex problem of wind–wave
interactions to its essential features, thus unveiling very basic flow phenomena that may
explain some experimental evidence also in real wind–wave problems. An example is the
finding of the wave-induced Stokes layer. Such a phenomenon is here unveiled to be at
the basis of a change of the momentum flux at the air–water interface. It is then possible
to argue that a similar phenomenon can be responsible also for the large scatter of the
drag coefficient data in field measurements. Indeed, the condition for the development of
the Stokes sublayer is a misalignment of the wind with respect to water waves. In this
context, it is well known that field realizations are characterized by the presence of swell
waves from remote wind-generation events. Swell waves move in arbitrary directions with
respect to the local wind, and their interaction with local wind waves often leads to a
water surface pattern that is misaligned with the wind direction. Hence it is reasonable
to assume that a Stokes sublayer often develops in field realizations, thus modifying the
air–sea momentum flux with respect to that of water waves aligned with the wind that is
known to be generally increased with respect to flat surfaces. These arguments suggest
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analysing field measurements of the drag coefficient as a function of the angle between
wind and waves.
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Appendix A. Flow symmetries and mean equations

The configuration of the two-phase open channel considered in the present work exhibits
certain statistical symmetries that can be exploited to specialize the mean flow equations.
Indeed, by considering fully developed conditions, we have that the average flow solution
is invariant under translations in time and in the streamwise and spanwise spatial
directions. Furthermore, we have that the average surface tension and also the gravity
term have non-zero contributions only in the vertical direction, i.e. 〈 fσ1〉 = 〈 fσ3〉 = 0
and ρg1 = ρg3 = 0. All these symmetries allow us to reduce the problem of wind–wave
interactions to its essential features. The mean flow equations read⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂〈ui〉
∂xi

= 0,

∂〈ρ〉ũi

∂t
+ ∂〈ρ〉ũi ũj

∂xj
= −∂〈p〉

∂xi
+ ∂〈τij〉

∂xj
−

∂〈ρu′′
i u′′

j 〉
∂xj

+ 〈 fσi〉 + 〈ρgi〉,
(A1)

where the Favre average ũ = 〈ρu〉/〈ρ〉 and the Favre fluctuation u′′ = u − ũ have been
introduced to take into account the density variations at the air–water interface region. By
taking into account the above-mentioned statistical symmetries of the flow, the mean flow
equations become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV
dy

= 0,

d〈ρ〉ũ ṽ

dy
= −∂P

∂x
+ d〈τ12〉

dy
− d〈ρu′′v′′〉

dy
,

d〈ρ〉ṽ ṽ

dy
= −∂P

∂y
+ d〈τ22〉

dy
− d〈ρv′′v′′〉

dy
+ 〈 fσ2〉 + 〈ρg2〉,

d〈ρ〉w̃ ṽ

dy
= d〈τ32〉

dy
− d〈ρw′′v′′〉

dy
,

(A2)

where capital letters are introduced to denote average quantities. From the continuity
equation, we have the trivial result V = 0. The above equations (A2) allow us to define the
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behaviour of the average normal and shear stresses. In the following, to better express the
corresponding equations, we consider a shift of the origin of the wall-normal coordinate
to the water bed, ŷ = y + hw.

By considering the integral of the momentum equation in the vertical direction, we can
write an equation for the average pressure field:

P = Pb − 〈ρ〉ṽ ṽ + 〈τ22〉 − 〈ρv′′ v′′〉 +
∫ ŷ

0
〈 fσ2〉 dy + g2

∫ ŷ

0
〈ρ〉 dy, (A3)

where Pb is the average pressure field at the water bed ŷ = 0. An important consequence
of this equation is that the mean streamwise pressure gradient is uniform across the two
fluids:

∂P
∂x

= dPb

dx
. (A4)

In the vertical stress balance (A3), it is important to highlight that some terms have a
non-null contribution only at the interface region between the two fluids. These terms
are 〈ρ〉ṽ ṽ, 〈τ22〉 and 〈 fσ2〉. Furthermore, outside the interface region, we also have that
〈ρ v′′v′′〉 reduces to the classical Reynolds stress, i.e. 〈ρ v′′v′′〉 = 〈ρ v′v′〉. By taking into
account these considerations, we can write

P = Pb − ρw〈v′v′〉 + ρwg2 ŷ for ŷ < h<
int, (A5)

and

P = Pb − ρa〈v′v′〉 +
∫ h>

int

h<
int

〈 fσ2〉 dy + ρwg2h<
int

+ ρag2
(
ŷ − h>

int
)+ g2

∫ h>
int

h<
int

〈ρ〉 dy for ŷ > h>
int, (A6)

where h<
int < ŷ < h>

int is the region of the flow where the fluid properties change. The
thickness of this layer, δint = h>

int − h<
int, depends on the height of the wave motion δw and

on the thickness of the interface between the two fluids. As the latter is generally small,
a good approximation is δint ≈ δw. When the wave elevation is small compared with the
height of the air boundary layer ha and the water depth hw, the thickness of this region
is small, δint/ha � 1 and δint/hw � 1, thus making the contribution of the two integrals
in (A6) generally negligible. Furthermore, the assumptions δint/ha � 1 and δint/hw � 1
allow us also to introduce a single interface position, hint ≈ h<

int ≈ h>
int. Hence the vertical

stress balances for small water-wave elevations can be finally simplified as

P = Pb − ρw〈v′v′〉 + ρwg2 ŷ for ŷ < hint,

P = Pb − ρa〈v′v′〉 + g2hint

[
ρw + ρa

(
ŷ

hint
− 1

)]
for ŷ > hint.

⎫⎪⎬⎪⎭ (A7)

We address now the behaviour of the total shear stresses that for the present flow
symmetries read

T12 = 〈τ12〉 − 〈ρ u′′v′′〉, (A8)

and the streamwise momentum equation (A2) can be recast as

dT12

dy
− d〈ρ〉ũ ṽ

dy
= dPb

dx
, (A9)
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which integrates to

T12 − Tb
12 − 〈ρ〉ũ ṽ = dPb

dx
ŷ, (A10)

where

Tb
12 = μw

dU
dy

≡ ρwu2
τw

(A11)

is the total shear stress at the water bed ŷ = 0 that can be used to define the friction velocity
at the water bed, u2

τw
. For ŷ = hw + ha, we have T12 = 0 and 〈ρ〉ũ ṽ = 0, and (A10) allows

us to link the imposed streamwise pressure gradient with the friction velocity at the water
bed:

Tb
12 = −H

dPb

dx
≡ ρwu2

τw
, (A12)

where H = (hw + ha). Hence the friction velocity at the water bed reads

uτw =
√

− H
ρw

dPb

dx
. (A13)

By considering now ŷ = h>
int, we have again that 〈ρ〉ũ ṽ = 0 and the streamwise stress

balance (A10) reduces to

T12 = −ha
dPb

dx
for ŷ = h>

int, (A14)

where (A11) has been used and we have again assumed that δint/ha � 1 and δint/hw � 1,
thus allowing us to write the approximation h>

int − H ≈ −ha. From (A14), it is possible
to derive an equation for the friction velocity at the top edge of the interface region for
ŷ = h>

int. Indeed, at this location, the total shear stress can be recast as

T12 = μa
dU
dy

− ρa〈u′v′〉 for ŷ = h>
int, (A15)

which using (A14), allows us to write

μa
dU
dy

= −ha
dPb

dx
+ ρa〈u′v′〉 for ŷ = h>

int, (A16)

where the viscous term can be used to define the friction velocity for the air boundary
layer, i.e.

ρau2
τa

≡ μa
dU
dy

∣∣∣∣
ŷ=h>

int

. (A17)

Hence the friction velocity for the air boundary layer can be computed as

uτa =
√

−ha

ρa

dPb

dx
+ 〈u′v′〉. (A18)

In this region of the flow, 〈u′v′〉 is essentially due to the wave motion, and by assuming
again a small wave elevation, it has a negligible contribution. Hence the friction velocity
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of the air boundary layer for small water waves can be estimated finally as

uτa =
√

−ha

ρa

dPb

dx
, (A19)

thus showing the significantly large value attained by the friction velocity for the air flow
(indeed turbulent in the present simulation) with respect to that of the water flow (indeed
laminar in the present simulation).

It is important now to recall that 〈ρ〉ũ ṽ = 0 in the entire flow, except for the thin region
h<

int < ŷ < h>
int where the fluid properties change. By assuming that

|〈ρ〉ũ ṽ| � dPb

dx
ŷ (A20)

also for h<
int < ŷ < h>

int, the contribution to the streamwise stress balance (A10) of 〈ρ〉ũ ṽ

can always be neglected. The inspection of the data from the present simulation supports
this assumption. Hence from (A10), we can finally write the behaviour of the total shear
stresses as

T12 = −H
dPb

dx

(
1 − ŷ

H

)
, (A21)

where again (A11) has been used.
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