HAAGERUP PROPERTY FOR C*-CROSSED PRODUCTS

QING MENG

(Received 29 May 2016; accepted 5 June 2016; first published online 19 October 2016)

Abstract

Let Γ be a countable discrete group that acts on a unital C^* -algebra A through an action α . If A has a faithful α -invariant tracial state τ , then $\tau' = \tau \circ \mathcal{E}$ is a faithful tracial state of $A \rtimes_{\alpha,r} \Gamma$ where $\mathcal{E} : A \rtimes_{\alpha,r} \Gamma \to A$ is the canonical faithful conditional expectation. We show that $(A \rtimes_{\alpha,r} \Gamma, \tau')$ has the Haagerup property if and only if both (A, τ) and Γ have the Haagerup property. As a consequence, suppose that $(A \rtimes_{\alpha,r} \Gamma, \tau')$ has the Haagerup property where Γ has property T and A has strong property T. Then Γ is finite and A is residually finite-dimensional.

2010 *Mathematics subject classification*: primary 46L55; secondary 46L05. *Keywords and phrases*: *C**-algebra, Haagerup property, tracial state, crossed product.

1. Introduction

The Haagerup property was first defined for groups by Haagerup [4], as a weakened version of amenability. This concept was generalised to the context of von Neumann algebras by Choda [2] in order to distinguish particular group von Neumann algebras. Recently, Dong [3] introduced a notion of the Haagerup property for a pair consisting of a unital C^* -algebra and a faithful tracial state, by imitating the case of von Neumann algebras.

DEFINITION 1.1 [3, Definition 2.3]. Let *A* be a unital *C**-algebra and τ a faithful tracial state on *A*. The pair (A, τ) is said to have the Haagerup property if there is a sequence $\{\Phi_n\}_{n\geq 1}$ of unital completely positive maps from *A* to itself satisfying the following conditions:

(1) each Φ_n decreases τ , that is, for all $a \in A^+$, $\tau(\Phi_n(a)) \le \tau(a)$;

- (2) for any $a \in A$, $||\Phi_n(a) a||_{2,\tau} \to 0$ as $n \to +\infty$;
- (3) each Φ_n is L_2 -compact, that is, from the first condition, Φ_n extends to a compact bounded operator on its GNS space $L_2(A, \tau)$.

In [3], Dong explored the behaviour of the Haagerup property of a C^* -algebra in a C^* -dynamical system and obtained the following theorem.

The author is supported by the National Natural Science Foundation of China (11371222, 11271224). (© 2016 Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

THEOREM 1.2 [3, Theorem 2.5]. Suppose that A is a unital separable C*-algebra with a faithful tracial state τ and a τ -preserving action α of a countable discrete group Γ . If Γ is amenable and (A, τ) has the Haagerup property, then $(A \rtimes_{\alpha,r} \Gamma, \tau')$ also has the Haagerup property, where τ' is the induced trace of τ on $A \rtimes_{\alpha,r} \Gamma$.

In [7], You defined the Haagerup property for an action α : $\Gamma \curvearrowright A$ with respect to a faithful tracial state τ on A and gave the following theorem.

THEOREM 1.3 [7, Theorem 1.4]. Let Γ be a countable discrete group and α be an action of Γ on a unital C^{*}-algebra A such that α has the Haagerup property with respect to a faithful tracial state τ on A. Then the reduced crossed product $A \rtimes_{\alpha,r} \Gamma$ has the Haagerup property with respect to the induced faithful tracial state τ' if A has the Haagerup property with respect to τ .

Motivated by the above results, we give an equivalent description of the Haagerup property of unital C^* -algebra crossed products.

THEOREM 1.4. Let Γ be a countable discrete group that acts on a unital C^* -algebra A through an action α , τ be a faithful α -invariant tracial state of A, and τ' be the induced faithful tracial state of $A \rtimes_{\alpha,r} \Gamma$. Then $(A \rtimes_{\alpha,r} \Gamma, \tau')$ has the Haagerup property if and only if both (A, τ) and Γ have the Haagerup property.

As a consequence, suppose that $(A \rtimes_{\alpha,r} \Gamma, \tau')$ has the Haagerup property, where Γ has property T and A has strong property T. Then Γ is finite and A is residually finitedimensional.

2. Main results

Throughout this section, let Γ be a countable discrete group that acts on a unital C^* algebra A through an action α . We denote by $A \rtimes_{\alpha,r} \Gamma$ the reduced C^* -crossed product of (A, Γ, α) , and identify $A \subseteq A \rtimes_{\alpha,r} \Gamma$ as well as $\Gamma \subseteq A \rtimes_{\alpha,r} \Gamma$ through their canonical embeddings. We fix a faithful α -invariant tracial state τ of A and write $\tau' = \tau \circ \mathcal{E}$ for the induced faithful tracial state of $A \rtimes_{\alpha,r} \Gamma$ where $\mathcal{E} : A \rtimes_{\alpha,r} \Gamma \to A$ is the canonical faithful conditional expectation. Since τ is a faithful tracial state on A, by the GNS construction, τ defines an A-Hilbert bimodule, denoted by $L_2(A, \tau)$. We also denote by $\|\cdot\|_{2,\tau}$ the associated Hilbert norm. Thus for each $a \in A$, we have

$$||a||_{2,\tau} = (\tau(a^*a))^{1/2} \le ||a||.$$

If $\phi : A \to A$ is a completely positive map such that $\tau \circ \phi \leq \tau$, then ϕ can be extended to a contraction $T_{\phi} : L_2(A, \tau) \to L_2(A, \tau)$. We say ϕ is L_2 -compact if T_{ϕ} is a compact operator on $L_2(A, \tau)$. By considering rank-one operators, we see that ϕ is L_2 -compact if and only if for any $\varepsilon > 0$, there exists a finite-rank map $Q : A \to A$ such that

$$\|\phi(x) - Q(x)\|_{2,\tau} \le \varepsilon \|x\|_{2,\tau}$$

for all $x \in A$.

Q. Meng

THEOREM 2.1. The following statements are equivalent.

- (1) $(A \rtimes_{\alpha,r} \Gamma, \tau')$ has the Haagerup property.
- (2) Both (A, τ) and Γ have the Haagerup property.
- (3) α has the Haagerup property with respect to τ and (A, τ) has the Haagerup property.

PROOF. (1) \Rightarrow (2). Suppose that $(A \rtimes_{\alpha,r} \Gamma, \tau')$ has the Haagerup property. Then there is a sequence $\{\Phi_n\}_{n\geq 1}$ of unital completely positive maps from $A \rtimes_{\alpha,r} \Gamma$ to itself satisfying the conditions of Definition 1.1. For each *n*, let

$$\phi_n(a) = \mathcal{E} \circ \Phi_n(a)$$

for all $a \in A$. Then ϕ_n is a unital completely positive map from A to itself and

$$\tau \circ \phi_n(a) = \tau \circ \mathcal{E} \circ \Phi_n(a) = \tau' \circ \Phi_n(a) \le \tau'(a) = \tau(a)$$

for all $a \in A^+$. As *n* tends to infinity, we have

$$\begin{split} \|\phi_n(a) - a\|_{2,\tau}^2 &= \tau((\phi_n(a) - a)^*(\phi_n(a) - a)) \\ &= \tau((\mathcal{E} \circ \Phi_n(a) - \mathcal{E}(a))^*(\mathcal{E} \circ \Phi_n(a) - \mathcal{E}(a))) \\ &= \tau((\mathcal{E}(\Phi_n(a) - a))^*\mathcal{E}(\Phi_n(a) - a)) \\ &\leq \tau \circ \mathcal{E}((\Phi_n(a) - a)^*(\Phi_n(a) - a)) \\ &= \|\Phi_n(a) - a\|_{2,\tau'}^2 \to 0 \end{split}$$

for any $a \in A$. Since Φ_n is L_2 -compact, for any $\varepsilon > 0$, there exists a finite-rank map $Q: A \rtimes_{\alpha,r} \Gamma \to A \rtimes_{\alpha,r} \Gamma$ such that

$$\|\Phi_n(x) - Q(x)\|_{2,\tau'} \le \varepsilon \|x\|_{2,\tau'}$$

for all $x \in A \rtimes_{\alpha,r} \Gamma$. Hence, we have

$$\begin{aligned} \|\phi_n(a) - \mathcal{E} \circ Q(a)\|_{2,\tau} &= \|\mathcal{E} \circ \Phi_n(a) - \mathcal{E} \circ Q(a)\|_{2,\tau} \\ &\leq \|\Phi_n(a) - Q(a)\|_{2,\tau'} \\ &\leq \varepsilon \|a\|_{2,\tau'} = \varepsilon \|a\|_{2,\tau} \end{aligned}$$

for all $a \in A$. So ϕ_n is L_2 -compact. Hence, (A, τ) has the Haagerup property.

For each *n*, let

$$\varphi_n(g) = \tau'(\Phi_n(g)g^{-1})$$

for all $g \in \Gamma$. Clearly $\varphi_n(e) = 1$ and for all $g_1, \ldots, g_m \in \Gamma$ and all $c_1, \ldots, c_m \in \mathbb{C}$, the positivity of τ' yields

$$\begin{split} \sum_{i,j=1}^{m} c_i \bar{c_j} \varphi_n(g_j^{-1}g_i) &= \sum_{i,j=1}^{m} c_i \bar{c_j} \tau'((\Phi_n(g_j^{-1}g_i))(g_j^{-1}g_i)^{-1}) \\ &= \sum_{i,j=1}^{m} \tau'(\bar{c_j}g_j \Phi_n(g_j^{-1}g_i)c_ig_i^{-1}) \\ &= \tau' \Big(\sum_{i,j=1}^{m} \bar{c_j}g_j \Phi_n(g_j^{-1}g_i)c_ig_i^{-1}\Big) \ge 0. \end{split}$$

146

Hence φ_n is positive definite on Γ . Moreover, as $n \to +\infty$,

$$\begin{aligned} |\varphi_n(g) - 1| &= |\tau'(\Phi_n(g)g^{-1}) - 1| = |\tau'(\Phi_n(g)g^{-1}) - \tau'(gg^{-1})| \\ &= |\tau'((\Phi_n(g) - g)g^{-1})| \le ||\Phi_n(g) - g||_{2,\tau'} \to 0 \end{aligned}$$

for any $g \in \Gamma$. It follows from the compactness of Φ_n that

$$\limsup_{g\to\infty} |\varphi_n(g)| = \limsup_{g\to\infty} |\tau'(\Phi_n(g)g^{-1})| \le \limsup_{g\to\infty} ||\Phi_n(g)||_{2,\tau'} \to 0.$$

This proves the Haagerup property of Γ .

(2) \Rightarrow (3). It follows from [7, Remark 1.5] that if Γ has the Haagerup property, then α has the Haagerup property with respect to any faithful tracial state on A.

 $(3) \Rightarrow (1)$. This follows from Theorem 1.3.

COROLLARY 2.2. Suppose that Γ has property T and A has strong property T (in the sense of [5]). If $(A \rtimes_{\alpha,r} \Gamma, \tau')$ has the Haagerup property, then Γ is finite and A is residually finite-dimensional.

PROOF. Suppose that $(A \rtimes_{\alpha,r} \Gamma, \tau')$ has the Haagerup property. It follows from Theorem 2.1 that both (A, τ) and Γ have the Haagerup property. Hence Γ is finite. It follows from [6, Theorem 4.7] that *A* is residually finite-dimensional.

Let U(A) be the unitary group of a unital C^* -algebra A and $\varphi : \Gamma \to U(A)$ be a group homomorphism. Define an action α^{φ} of Γ on A by

$$\alpha_s^{\varphi}(a) = \varphi(s)a\varphi(s)^*$$

for all $s \in \Gamma$ and $a \in A$. If A has a faithful tracial state τ (for example, $A = M_n(\mathbb{C})$), then τ is α^{φ} -invariant. The next result follows from Theorem 2.1.

COROLLARY 2.3. If (A, τ) has the Haagerup property, then Γ has the Haagerup property if and only if $(A \rtimes_{\alpha^{\varphi}, r} \Gamma, \tau')$ has the Haagerup property.

REMARK 2.4. Suppose that *G* is a discrete group that acts on a unital *C*^{*}-algebra *B* through an action β . Using [1, Theorem 4.2.6, Propositions 6.3.3 and 6.3.4], we can obtain the following result. If $B \rtimes_{\beta,r} G$ has a tracial state, then $B \rtimes_{\beta,r} G$ is nuclear if and only if *B* is nuclear and *G* is amenable.

Suppose that X is a compact space with an action $\hat{\beta}$ of a discrete group G by homeomorphisms. Let β be the induced action of G on C(X), that is, β is defined by $\beta_s(f)(x) = f(\tilde{\beta}_{s^{-1}}(x))$. Using the above remark, we can obtain the following result.

COROLLARY 2.5. If X has a fixed point, then $C(X) \rtimes_{\beta,r} G$ is nuclear if and only if G is amenable.

PROOF. Let x_0 be the fixed point. Define $\tau : C(X) \to \mathbb{C}$ by

$$\tau(f) = f(x_0)$$

for all $f \in C(X)$. Hence

$$\tau(\beta_s(f)) = \beta_s(f)(x_0) = f(\beta_{s^{-1}}(x_0)) = f(x_0) = \tau(f)$$

for all $s \in G$ and $f \in C(X)$. Therefore, $C(X) \rtimes_{\beta,r} G$ has a tracial state.

Q. Meng

Acknowledgements

The author appreciates the valuable comments made by the anonymous referee and thanks his PhD adviser Chi-Keung Ng for some suggestions.

References

- N. P. Brown and N. Ozawa, C*-Algebras and Finite-Dimensional Approximations, Graduate Studies in Mathematics, 88 (American Mathematical Society, Providence, RI, 2008).
- M. Choda, 'Group factors of the Haagerup type', *Proc. Japan Acad. Ser. A Math. Sci.* 59(5) (1983), 174–177.
- [3] Z. Dong, 'Haagerup property for C*-algebras', J. Math. Anal. Appl. 377 (2011), 631-644.
- U. Haagerup, 'An example of a nonnuclear C*-algebra which has the metric approximation property', *Invent. Math.* 50(3) (1979), 279–293.
- [5] C. W. Leung and C. K. Ng, 'Property (T) and strong property (T) for unital C*-algebras', J. Funct. Anal. 256 (2009), 3055–3070.
- [6] Y. Suzuki, 'Haagerup property for C*-algebras and rigidity of C*-algebras with property (T)', J. Funct. Anal. 265 (2013), 1778–1799.
- [7] C. You, 'Group action preserving the Haagerup property of C*-algebras', Bull. Aust. Math. Soc. 93 (2016), 295–300.

QING MENG, Chern Institute of Mathematics, Nankai University, Tianjin 300071, PR China e-mail: mengqing80@163.com