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A FIRST-PASSAGE-PLACE PROBLEM FOR INTEGRATED
DIFFUSION PROCESSES

MARIO LEFEBVRE,∗ Polytechnique Montréal

Abstract

Let dX(t) = −Y(t) dt, where Y(t) is a one-dimensional diffusion process, and let τ (x, y)
be the first time the process (X(t), Y(t)), starting from (x, y), leaves a subset of the first
quadrant. The problem of computing the probability p(x, y) := P[X(τ (x, y)) = 0] is con-
sidered. The Laplace transform of the function p(x, y) is obtained in important particular
cases, and it is shown that the transform can at least be inverted numerically. Explicit
expressions for the Laplace transform of E[τ (x, y)] and of the moment-generating
function of τ (x, y) can also be derived.
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1. Introduction

We consider the two-dimensional degenerate stochastic process (X(t), Y(t)) defined by

dX(t) = −Y(t) dt, dY(t) = f [Y(t)] dt + {v[Y(t)]}1/2 dB(t), (1)

where B(t) is a standard Brownian motion. We assume that the functions f ( · ) and v( · ) > 0 are
such that Y(t) is a diffusion process. Hence, X(t) is an integrated diffusion process.

Let
C := {(x, y) ∈R

2 : x > 0, 0 ≤ a < y < b}. (2)

We define the first-passage time

τ (x, y) = inf{t > 0 : (X(t), Y(t)) /∈ C | (X(0), Y(0)) = (x, y) ∈ C}. (3)

Our aim is to compute explicitly the probability

p(x, y) := P[X(τ (x, y)) = 0] (4)

for important diffusion processes. That is, we want to obtain the probability that the process
(X(t), Y(t)) will exit C through the y-axis. By symmetry, we could assume that X(0) = x < 0
instead and define dX(t) = Y(t) dt. Moreover, we are interested in the expected value of τ (x, y)
and in its moment-generating function.
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First-passage problems for integrated diffusion processes are difficult to solve explicitly. In
the case of integrated Brownian motion, some authors have worked on such problems when
the first-passage time is defined by

τ1(x, y) = inf{t > 0 : X(t) = c | (X(0), Y(0)) = (x, y)}. (5)

In particular, [11] gave, an expression for the probability density function of τ1(x, y) in terms
of integrals that must in practice be evaluated numerically. This result generalised the formula
derived in [15] when x = c, and that computed in [7]. A formula was obtained in [8] for the
density function of |Y(τ1(x, y))|; see also [12]. The joint density function of the time T(x, y) at
which X(t) first returns to its initial value and Y(T(x, y)) was computed in [4]. An asymptotic
expansion for the conditional mean E[τ1(x, y) | τ1(x, y) < ∞] was provided in [9].

More recently, [2] considered the first-passage time to a constant boundary in the general
case of integrated Gauss–Markov processes, reducing the problem to that of a first-passage
time for a time-changed Brownian motion. In [3], the author obtained explicit results for the
mean of the running maximum of an integrated Gauss–Markov process.

In the context of an optimal control problem, [13] computed the mathematical expectation
of a function of τ (x, y) when Y(t) is a Brownian motion with zero drift and (a, b) = (0, ∞).
This mathematical expectation was expressed as an infinite series involving Airy functions and
their zeros.

To model the evolution over time of the wear level of a given device, one-dimensional
diffusion processes, and in particular Wiener processes, have been used by various authors; see,
for instance, [18] and the references therein. Use of a jump-diffusion process was proposed in
[6]. Depending on the choice for the infinitesimal parameters of the diffusion or jump-diffusion
processes, these models can be acceptable and perform well.

However, diffusion and jump-diffusion processes both increase and decrease in any time
interval, whereas wear should be strictly increasing with time. Hence, to obtain a more realistic
model, [17] defined wear processes as follows:

dX(t) = ρ[X(t), Y(t)] dt, dY(t) = f [X(t), Y(t)] dt + {v[X(t), Y(t)]}1/2 dB(t),

where ρ(·, ·) is a deterministic positive function. The variable X(t) denotes the wear of a given
device at time t, and Y(t) is a variable that influences the wear. Actually, in [17], Y(t) was a
random vector (Y1(t), . . . , Yi(t)) of environmental variables. When ρ(·, ·) is always negative,
X(t) represents instead the amount of deterioration that the device can suffer before having to
be repaired or replaced. Notice that X(t) is strictly decreasing with t in the continuation region
C defined in (2). Therefore, X(t) could indeed serve as a model for the amount of deterioration
that remains.

In [14], the author considered a model of this type for the amount of deterioration left in the
case of a marine wind turbine. The function ρ(·, ·) was chosen to be −γ Y(t), where γ > 0, and
the environmental variable Y(t) was the wind speed. Because wind speed cannot be negative,
a geometric Brownian motion was used for Y(t). The aim was to optimally control the wind
turbine in order to maximise its remaining useful lifetime (RUL). The RUL is a particular
random variable τ1(x, y), defined in (5), with c equal to zero (or to a positive constant for
which the device is considered to be worn out).

The random variable τ (x, y) defined in (3) is a generalisation of the RUL. If we choose a = 0
and b = ∞, τ (x, y) can be interpreted as the first time that either the device is worn out or the
variable Y(t) that influences X(t) ceases to do so. The function p(x, y) is then the probability
that the device will be worn out at time τ (x, y).
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Another application of the process (X(t), Y(t)) defined by (1) is the following: let X(t) denote
the height of an aircraft above the ground, and let Y(t) be its vertical speed. When the aircraft is
landing, so that dX(t) = −Y(t) dt, X(t) should decrease with time. The function p(x, y) becomes
the probability that the aircraft will touch the ground at time τ (x, y).

In this paper, explicit formulae are obtained for the Laplace transform of the quantities of
interest. In some cases, it is possible to invert these Laplace transforms. When it is not possible,
numerical methods can be used.

First, in Section 2, we compute the Laplace transform of the function p(x, y) in the most
important particular cases. Then, in Sections 3 and 4, we do the same for the mean of τ (x, y)
and its moment-generating function. Finally, we conclude with a few remarks in Section 5.

2. First-passage places

First, we derive the differential equation satisfied by the Laplace transform of the function
p(x, y) defined in (4).

Proposition 1. The function p(x, y) = P[X(τ (x, y)) = 0] satisfies the partial differential equa-
tion (PDE) 1

2 v(y) pyy(x, y) + f (y) py(x, y) − y px(x, y) = 0. Moreover, the boundary conditions
are

p(x, y) =
{

1 if x = 0 and a < y < b,

0 if y = a or y = b and x > 0.
(6)

Proof. The probability density function fX(t),Y(t)(ξ, η; x, y) of (X(t), Y(t)), starting from
(X(0), Y(0)) = (x, y), satisfies the Kolmogorov backward equation [5, p. 247]

1

2
v(y)

∂2

∂y2
fX(t),Y(t) + f (y)

∂

∂y
fX(t),Y(t) − y

∂

∂x
fX(t),Y(t) = ∂

∂t
fX(t),Y(t).

Furthermore, the density function gτ (x,y)(t) of the random variable τ (x, y) satisfies the same
PDE:

1

2
v(y)

∂2

∂y2
gτ (x,y) + f (y)

∂

∂y
gτ (x,y) − y

∂

∂x
gτ (x,y) = ∂

∂t
gτ (x,y).

It follows that the moment-generating function of τ (x, y), namely M(x, y; α) := E
[
e−ατ (x,y)

]
,

where α > 0, is a solution of the PDE

1

2
v(y)

∂2

∂y2
M(x, y; α) + f (y)

∂

∂y
M(x, y; α) − y

∂

∂x
M(x, y; α) = αM(x, y; α), (7)

subject to the boundary conditions

M(x, y; α) = 1 if x = 0, y = a or y = b. (8)

Finally, the function p(x, y) can be obtained by solving the above PDE with α = 0 [5, p. 231],
subject to the boundary conditions in (6). �

Remark 1. In (6), we assume that the process Y(t) can indeed take on the values a and b. In
particular, if the origin is an unattainable boundary for Y(t) and Y(0) = y > 0, the boundary
condition p(x, a = 0) = 0 cannot be used.

Let

L(y; β) :=
∫ ∞

0
e−βx p(x, y) dx, (9)

where β > 0.
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Proposition 2. The function L(y; β) := ∫ ∞
0 e−βxp(x, y) dx, β > 0, satisfies the ordinary differ-

ential equation (ODE)

1

2
v(y)L′′(y; β) + f (y)L′(y; β) − y[βL(y; β) − 1] = 0, (10)

subject to the boundary conditions

L(a; β) = L(b; β) = 0. (11)

Proof. We have, since β > 0 and p(x, y) ∈ [0, 1],∫ ∞

0
e−βxpx(x, y) dx = e−βxp(x, y)

∣∣∣x=∞
x=0

+ β

∫ ∞

0
e−βxp(x, y) dx = 0 − 1 + βL(y; β),

from which (10) is deduced. Moreover, the boundary conditions follow at once from the fact
that p(x, a) = p(x, b) = 0.

We now try to compute L(y; β) in the most important particular cases.

2.1. Case 1

Assume first that Y(t) is a Wiener process with infinitesimal parameters f (y) ≡ μ and
v(y) ≡ σ 2. The general solution of (10) can then be expressed as follows:

L(y; β) = e−μy/σ 2
[c1Ai(ζ ) + c2Bi(ζ )] + 1

β
, ζ := 2 β σ 2 y + μ2

(2 β σ 4)2/3
, (12)

where Ai( · ) and Bi( · ) are Airy functions, defined in [1, p. 446]. Moreover, the constants c1
and c2 are determined from the boundary conditions in (11).

Remark 2. The solution L(y; β) in (12) was obtained by making use of the software program
MAPLE. We can also find this solution (perhaps in an equivalent form) in a handbook, like
[16]. This remark applies to the solutions of the various ODEs considered in the rest of the
paper.

In the case when Y(t) is a standard Brownian motion, so that μ = 0 and σ = 1, the above
solution reduces to

L(y; β) = c∗
1Ai

(
21/3β1/3y

) + c∗
2Bi

(
21/3β1/3y

) + 1

β
, (13)

where

c∗
1 := 35/6 − 3Bi

(
21/3β1/3b

)
�(2/3)

β
[
35/6Ai

(
21/3β1/3b

) − 31/3Ai
(
21/3β1/3b

)] ,

c∗
2 := 31/3 − 3Ai

(
21/3β1/3b

)
�(2/3)

β
[
35/6Ai

(
21/3β1/3b

) − 31/3Ai
(
21/3β1/3b

)] .

Again making use of MAPLE, we obtain the following proposition.

Proposition 3. Setting a = 0 and taking the limit as b tends to infinity, the function L(y; β)
given in (13) becomes

L(y; β) = −32/3�(2/3)

β
Ai

(
21/3β1/3y

) + 1

β
. (14)
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FIGURE 1. Numerical value of p(x, 1) for x = 0.05, 0.10, . . . , 1.

FIGURE 2. Numerical value of p(1, y) for y = 0.05, 0.10, . . . , 1.

Although the expression for the function L(y; β) in Proposition 3 is quite simple, it does
not seem possible to invert the Laplace transform in order to obtain an analytical formula
for the probability p(x, y). It is, however, possible to numerically compute this inverse Laplace
transform for any pair (x, y). Indeed, with the help of the command NInverseLaplaceTransform
of the software package MATHEMATICA, we obtain the values of p(x, 1) and of p(1, y) shown
respectively in Figures 1 and 2. The function p(x, 1) decreases from p(0.05, 1) ≈ 0.9986 to
p(1, 1) ≈ 0.6429, while p(1, y) increases from p(0.05, 1) ≈ 0.0339 to 0.6429. Furthermore, the
function p(1, y) is practically affine in the interval [0.05, 1]. We find that the linear regression
line is p(1, y) ≈ 0.008641 + 0.6463y for 0.05 ≤ y ≤ 1. The coefficient of determination R2 is
equal to 99.92%.

The function p(x, 1) is also almost affine. We calculate p(x, 1) ≈ 0.9844 − 0.3770x for
0.05 ≤ x ≤ 1 and R2 ≈ 96.15%. However, if we try a polynomial function of order 2 instead,
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FIGURE 3. Function Ai(y) (solid line) and its approximation (dashed line) given in (15) in the
interval [1, 4].

R2 increases to 99.99%. The regression equation is

p(x, 1) ≈ −0.003 985 + 0.7152x − 0.065 59x2 for 0.05 ≤ x ≤ 1.

Next, we deduce from [1, (10.4.59)] that

Ai(z) ≈ e−(2/3)z3/2

2
√

πz1/4

(
1 − �(7/2)

36�(3/2)
z−3/2

)
≈ e−(2/3)z3/2

2
√

πz1/4

(
1 − 0.104 17 z−3/2) (15)

for |z| large. Making use of this approximation, we find that the inverse Laplace transform of
the function L(y; β) given in (14) is

p(x, y) ≈ 1 + e−(1/11)y3/xx1/12

y7/4

{
−0.633 98 CylinderD

(
−7

6
,

2y3/2

3
√

x

)
y3/2

+ 0.066 04
√

x CylinderD

(
−13

6
,

2y3/2

3
√

x

)}
, (16)

where CylinderD(ν, z) (in MAPLE) is the parabolic cylinder function denoted by Dν(z) in
[1, p. 687].

Remark 3. In theory, the approximation given in (15) is valid for |z| large. However, as can be
seen in Figure 3, it is quite accurate even in the interval [1, 4].

To check whether the formula for p(x, y) in (16) is precise, we numerically computed the
inverse Laplace transform of the function L(3; β) and compared it with the corresponding
values obtained from (16) for x = 0.5, 1, . . . , 5. The results are presented in Table 1. We may
conclude that the approximation is excellent (at least) when y = 3.

2.2. Case 2

Suppose now that the process Y(t) has infinitesimal parameters f (y) = μy and v(y) = σ 2y.
If μ < 0, Y(t) is a particular Cox–Ingersoll–Ross model (also called a CIR process). This is
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TABLE 1. Probability p(x, 3) computed by numerically inverting the Laplace transform L(3; β) (I), and
the corresponding values obtained from (16) (II) for x = 0.5, 1, . . . , 5.

x 0.5 1 1.5 2 2.5

I 1 0.99975 0.99762 0.99242 0.98447
II 1 0.99974 0.99762 0.99243 0.98448

x 3 3.5 4 4.5 5

I 0.97457 0.96347 0.95173 0.93973 0.92773
II 0.97459 0.96351 0.95180 0.93984 0.92788

important in financial mathematics, in which it is used as a model for the evolution of interest
rates.

Let � := √
μ2 + 2βσ 2. The general solution of (10) with the above parameters is

L(y; β) = c1 exp

{
( − μ + �)

σ 2
y

}
+ c2 exp

{
( − μ − �)

σ 2
y

}
+ 1

β
.

In the case when μ = 0, σ = 1, and (a, b) = (0, ∞), we find that the solution that satisfies the
boundary conditions L(0; β) = L(b; β) = 0, taking the limit as b tends to infinity, is L(y; β) =
(1 − e−√

2βy)/β. This time, we are able to invert the Laplace transform analytically.

Proposition 4. For the diffusion process Y(t) with infinitesimal parameters f (y) ≡ 0 and v(y) =
y, if (a, b) = (0, ∞), then the probability p(x, y) is given by

p(x, y) = erf

(
y√
2x

)
,

where erf( · ) is the error function defined by erf(z) = (2/
√

π )
∫ z

0 e−t2 dt.

2.3. Case 3

Next, let Y(t) be an Ornstein–Uhlenbeck process, so that f (y) = −μy, where μ > 0, and
v(y) ≡ σ 2. We find that the general solution of (10) is

L(y; β) = eβy/μ
{

c1M

(
−σ 2β2

4μ3
,

1

2
,

(
σ 2β + μ2y

)2

μ3σ 2

)

+ c2U

(
−σ 2β2

4μ3
,

1

2
,

(
σ 2β + μ2y

)2

μ3σ 2

)}
+ 1

β
,

where M(·, ·, ·) and U(·, ·, ·) are Kummer functions defined in [1, p. 504]. We can find the
constants c1 and c2 for which L(a; β) = L(b; β) = 0. However, even in the simplest possible
case, namely when μ = σ = 1 and (a, b) = (0, ∞), it does not seem possible to invert the
Laplace transform to obtain p(x, y). Proceeding as in Case 1, we could try to find approximate
expressions for p(x, y).
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2.4. Case 4

Finally, if Y(t) is a geometric Brownian motion with f (y) = μy and v(y) = σ 2y2, the general
solution of (10) is given by

L(y; β) = y1/2−μ/σ 2
{

c1Iν

(√
8βy

σ

)
+ c2Kν

(√
8βy

σ

)}
+ 1

β
,

where ν = (
2μ/σ 2

) − 1, and Iν( · ) and Kν( · ) are Bessel functions defined as follows
[1, p. 375]):

Iν(z) =
(

z

2

)ν ∞∑
k=0

(
z2/4

)k

k!�(ν + k + 1)
, Kν(z) = π

2

I−ν(z) − Iν(z)

sin (νπ )
. (17)

Because a geometric Brownian motion is always positive, we cannot set a equal to zero.
We can nevertheless determine the constants c1 and c2 for b > a > 0 and then take the limit
as a decreases to zero. We can also choose a = 1, for instance, and take the limit as b tends
to infinity. For some values of the parameters μ and σ , the function L(y; β) can be expressed
in terms of elementary functions. Then, it is easier to evaluate the inverse Laplace transform
numerically.

3. Expected value of τ (x, y)

We now turn to the problem of computing the expected value of the first-passage time
τ (x, y).

Proposition 5. The function m(x, y) := E[τ (x, y)] is a solution of the Kolmogorov backward
equation

1

2
v(y)myy(x, y) + f (y)my(x, y) − ymx(x, y) = −1. (18)

The boundary conditions are

m(x, y) = 0 if x = 0, y = a or y = b. (19)

Proof. Equation (18) is obtained (under appropriate assumptions) from the PDE (7) satis-
fied by the moment-generating function M(x, y; α) by first using the series expansion of the
exponential function:

M(x, y; α) := E
[
e−ατ (x,y)] =E

[
1 − ατ (x, y) + 1

2α2τ 2(x, y) + · · · ]
= 1 − αE[τ (x, y)] + 1

2α2
E

[
τ 2(x, y)

] + · · ·
= 1 − αm(x, y) + 1

2α2
E

[
τ 2(x, y)

] + · · · .

Then, substituting the above expression into (7), we indeed deduce that the function m(x, y)
satisfies (18). Finally, since τ (0, y) = τ (x, a) = τ (x, b) = 0, we get the boundary conditions
in (19). �

Remark 4.

(i) As in the case of the probability p(x, y), if Y(t) > a for t ≥ 0, then we cannot write that
m(x, a) = 0 for x > 0. Actually, if a = 0, we might have limy↓0 m(x, y) = ∞ instead.
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(ii) Moreover, let A be the event {Y(t) > a, 0 ≤ t ≤ τ (x, y)}. We may be interested in com-
puting the mathematical expectation m∗(x, y) := E[τ (x, y) | A]. That is, we want to
compute the average time needed to leave the region C, given that Y(t) will never be
equal to a. In such a case, if Y(t) can indeed be equal to a, we would have the boundary
condition m∗(x, a) = ∞.

If we assume that Y(t) can take on the values a and b, we can state the following proposition.

Proposition 6. The function

N(y; β) :=
∫ ∞

0
e−βxm(x, y) dx (20)

satisfies the non-homogeneous second-order linear ODE

1

2
v(y)N′′(y; β) + f (y)N′(y; β) − yβN(y; β) = − 1

β
. (21)

Moreover, we have the boundary conditions

N(a; β) = N(b; β) = 0. (22)

Proof. Equation (21) is deduced from the formula∫ ∞

0
e−βxmx(x, y) dx = β

∫ ∞

0
e−βxm(x, y) dx − m(0, y)

and the boundary conditions in (19). Furthermore, (22) follows at once from (20) and (19).
We can obtain an explicit expression for the function N(y; β) for all the cases considered

in the previous section. However, in general it is difficult to calculate the inverse Laplace
transform needed to get m(x, y). Therefore, we must either try to find an approximate solution,
which can for instance be valid for large y, or invert the Laplace transform numerically in any
particular case of interest.

We now present a problem where it is possible to compute m(x, y) explicitly and exactly.
Consider the diffusion process Y(t) having infinitesimal mean f (y) = 1/y and infinitesimal
variance v(y) ≡ 1, so that (21) becomes

1

2
N′′(y; β) + 1

y
N′(y; β) − yβN(y; β) = − 1

β
. (23)

Remark 5. The diffusion process Y(t) is a Bessel process of dimension 3. For this process, the
origin is an entrance boundary [10, p. 239], which implies that if Y(0) > 0, then Y(t) > 0 for
any t > 0.

The general solution of (23) is

N(y; β) = 1√
y

{
c1I1/3

(
2

3

√
2βy3/2

)
+ c2K1/3

(
2

3

√
2β y3/2

)}
+ 1

β2y
,

where Iν( · ) and Kν( · ) are defined in (17). Moreover, suppose that (a, b) = (0, ∞). Then,
because Y(t) �= 0 for t ≥ 0, the function m(x, y) is actually the expected time taken by X(t) to
hit the y-axis. We can show that the function N(y; β) may be expressed as follows:

N(y; β) = −61/6�(2/3)

β11/6π
√

y
K1/3

(
2

3

√
2βy3/2

)
+ 1

β2y
.
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FIGURE 4. Function m(x, y) given in (24) when x = 1 and y ∈ (0, 10).

Now, it is indeed possible to invert the above Laplace transform. We find, with the help of
MAPLE, that

m(x, y) = x

y
− 37/6�(2/3)

42/3π

x4/3

y2
e−y3/9xW−4/3,1/6

(
2y3

9x

)
(24)

for x > 0 and y > 0, where Wν,κ ( · ) is a Whittaker function defined in [1, p. 505]. We can
check that limx↓0 m(x, y) = 0 (as required) and that limy→∞ m(x, y) = 0, which follows from
the definition of X(t): dX(t) = −Y(t) dt. Finally, we compute

lim
y↓0

m(x, y) = 311/6�(2/3)

25/3 π
x2/3.

The function m(1, y) is shown in Figure 4 for y ∈ (0, 10). Furthermore, the same function
is presented in Figure 5 for y ∈ (0, 0.05) in order to show the convergence of the function as y
decreases to zero.

4. Moment-generating function of τ (x, y)

As we have seen in Section 2, the moment-generating function M(x, y; α) of τ (x, y) satisfies
the Kolmogorov backward equation

1
2 v(y)Myy(x, y; α) + f (y)My(x, y; α) − yMx(x, y; α) = αM(x, y; α).

This PDE is subject to the boundary conditions in (8).

Remark 6. Let M∗(x, y; α) := E[e−ατ (x,y) | X(τ (x, y)) = 0]. This function satisfies (7), subject
to the boundary conditions

M∗(x, y; α) =
{

1 if x = 0 and a < y < b,

0 if y = a or y = b and x > 0.

Similarly,
M∗∗(x, y; α) := E[e−ατ (x,y) | Y(τ (x, y)) = a or Y(τ (x, y)) = b] (25)

https://doi.org/10.1017/jpr.2023.19 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.19


A first-passage-place problem for integrated diffusion processes 65

FIGURE 5. Function m(x, y) given in (24) when x = 1 and y ∈ (0, 0.05).

satisfies (7) as well, and the boundary conditions are

M∗∗(x, y; α) =
{

0 if x = 0 and a < y < b,

1 if y = a or y = b and x > 0.

We define the Laplace transform

�(y; α, β) =
∫ ∞

0
e−βxM(x, y; α) dx. (26)

Since ∫ ∞

0
e−βxMx(x, y; α) dx = β

∫ ∞

0
e−βxM(x, y; α) dx − M(0, y; α),

we can prove the following proposition.

Proposition 7. The function �(y; α, β) defined in (26) satisfies the non-homogeneous second-
order linear ODE

1
2 v(y)�′′(y; α, β) + f (y)�′(y; α, β) − y[β�(y; α, β) − 1] = α�(y; α, β). (27)

If Y(t) can take on the values a and b, the boundary conditions are

�(a; α, β) = �(b; α, β) = 1

β
. (28)

Remark 7. Because the moment-generating function M(x, y; α) is itself a Laplace transform,
�(y; α, β) is a double Laplace transform.

Although it is possible to find the solution to (27) that satisfies the boundary conditions in
(28) for the most important diffusion processes, the expressions obtained are quite complex.
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Therefore, inverting the Laplace transform to get the moment-generating function M(x, y; α)
is generally very difficult.

The function �(y; α, β) := ∫ ∞
0 e−βxM∗∗(x, y; α) dx, where M∗∗(x, y; α) is defined in (25),

satisfies the homogeneous ODE

1
2 v(y)� ′′(y; α, β) + f (y)� ′(y; α, β) − y[β�(y; α, β) − 0] = α�(y; α, β).

Suppose that Y(t) is a standard Brownian motion and that (a, b) = (0, ∞). We must then solve
1
2� ′′(y; α, β) = (α + βy)�(y; α, β), subject to �(0; α, β) = 1/β. We find that

�(y; α, β) = Ai
(
21/3(α + βy)/β2/3

)
βAi

(
21/3α/β2/3

) for y ≥ 0.

It is not difficult to invert the Laplace transform numerically for any values of α and y.

5. Concluding remarks

Solving first-passage problems for integrated diffusion processes is a difficult task. In this
paper, we were able to obtain explicit solutions to such problems for the most important diffu-
sion processes. In some cases, the solutions were exact ones. We also presented approximate
solutions. When it was not possible to give an analytical expression for the function we were
looking for, we could at least use numerical methods in any special case.

As mentioned in the introduction, the author has used integrated diffusion processes in
optimal control problems. These processes can serve as models in various applications. In
particular, if dX(t) = kY(t) dt, X(t) can represent the wear (if k > 0) or the remaining amount
of deterioration (if k < 0) of a machine when Y(t) is always positive, so that X(t) is strictly
increasing (or decreasing), which is realistic.

Finally, we could generalise the results presented in this paper by assuming that X(t) is
a function of one or more independent diffusion processes Y1(t), . . . , Yi(t), as for the wear
processes defined in [17]. In the case of the application to the degradation of a marine wind
turbine, environmental variables that influence its wear are, in addition to wind speed, air
temperature, humidity, salinity, etc.

Of course, if we consider at least two such variables, the problem of computing the func-
tion p(x, y1, . . . , yi) that generalises p(x, y), for example, becomes even harder, because taking
the Laplace transform of this function with respect to x will not transform the Kolmogorov
backward equation, which is a partial differential equation, into an ordinary differential
equation.

In some cases, it might be possible to exploit the symmetry present in the problem to reduce
the PDE to an ODE. That is, we might make use of the method of similarity solutions to express
the Laplace transform L(y1, y2; β) of the function p(x, y1, y2) as a function L∗(z; β), where z
is the similarity variable. For instance, in some problems L(y1, y2; β) could be a function of
z := y1 + y2, thus transforming the PDE it satisfies into an ODE. For this method to work, both
the PDE (after simplification) and the boundary conditions must be expressible in terms of the
variable z.
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