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Jumps in granular chute flow are obtained as continuous solutions of the properly adapted
Saint–Venant equations. We elucidate their internal structure via a dynamical systems
approach and show that the jumps in phase space manifest themselves as trajectories
organized around the stable/unstable manifold of the fixed point representing the uniform
flow. Based on this, we derive an analytic approximate expression for the jump length.
The paper concludes with a numerical experiment confirming the stability of the jumps.
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1. Introduction

In recent years, much effort has been devoted to bringing the description of granular
flows on a par with the well-established theory of hydrodynamics. Flowing granular matter
behaves as a fluid with special properties and often admits a continuum hydrodynamic-like
description. Indeed, many of the phenomena known from water have their counterpart
in the flow of granular materials. One of the most spectacular examples is that of the
hydraulic jump.

Stationary granular jumps, just like those in water, occur when a supercritical (fast)
granular flow turns subcritical. Or in other words, when the Froude number

F = F(x, t) = ū(x, t)√
h(x, t)g cos ζ

(1.1)

falls below the critical value 1. This transition reveals itself in practice by a marked
increase in the thickness of the flowing sheet, see figure 1. Here h(x, t) and ū(x, t) denote
the height of the sheet and its depth-averaged velocity, respectively, g = 9.81 m s−2 is the
gravitational acceleration and ζ is the inclination angle of the chute.

Granular jumps are of immense importance from a practical point of view. One encounters
them in snow and rock avalanches, where they may be triggered by natural obstacles or
man-made flow retention structures, or by a sudden decrease in the inclination angle of the
mountainside. They are ubiquitous also in agricultural and industrial applications, whenever
granular materials are transported along chutes and similar devices.
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FIGURE 1. Schematic view of a granular jump on a tilted chute, i.e. the transition zone of
length L from a shallow supercritical flow (Froude number F > 1) to a thicker subcritical one
(F < 1). For shallow granular flows, the jump is aptly described by the height profile h(x) and
the depth-averaged velocity ū(x), governed by the granular Saint–Venant equations (2.1) and
(2.2). The jump connects two gradually varied flow regimes. In fact, the non-constancy of h(x)
on either side of the jump is essential for the stability of the profile.

During the past decades, granular jumps have become the subject of numerous studies.
Pioneering work was done by Savage (1979) and Brennen, Sieck & Paslaski (1983), who
undertook to derive a granular counterpart for the Bélanger equation relating the heights
before and after the jump. This work initiated a surge of subsequent publications in
which a variety of related granular flow phenomena were investigated, including upstream
travelling bores (Gray & Hutter 1997; Gray, Tai & Noelle 2003), oblique jumps (Gray
et al. 2003; Hákonardóttir & Hogg 2005; Gray & Cui 2007), the granular counterpart of
the circular hydraulic jump known from the kitchen sink (Boudet et al. 2007), granular jets
impacting on an inclined plane generating jumps in the form of teardrops and other closed
shapes (Johnson & Gray 2011), and granular jumps on chutes with a basal topography
(Viroulet et al. 2017). Recently, Faug, Einav and their co-workers have ventured also
into the regime of accelerated granular flows, exploring a wide range of stationary and
non-stationary jumps (Faug 2015; Faug et al. 2015; Méjean, Faug & Einav 2017; Méjean
et al. 2020).

Mathematically, the above studies follow the classic Bélanger approach, in which one
first determines the gradually varying height profiles of the super- and subcritical regimes,
respectively, from the granular analogue of the so-called ‘backwater equation’ (Rouse
1946; Viroulet et al. 2017). Subsequently, the mass conservation and momentum balance in
macroscopic algebraic form (known as the Rankine–Hugoniot shock relations) are solved
to determine the ratio of the heights before and after the jump; this then specifies the exact
point where the super- and subcritical regimes must be connected by means of a vertical
segment, i.e. with zero spatial extent. The state of the art in this direction has advanced
as far as to augment the original analysis by the inclusion of the effects induced by the
inclination of the chute (such as a gravity component) and the friction of the granular
sheet with the floor of the channel (Méjean et al. 2017). The drawback of this approach,
however, is that it does not capture the internal structure of the jump.

Savage (1979), in order to account for the non-zero spatial extent of this structure,
approximated the jump by a linear height profile connecting the super- and subcritical
regimes. Indeed, if one follows the above methodology, the structure of the jump can only
be introduced independently in a heuristic way.

In the present paper, we adopt a different approach based on the mass and momentum
balance in their differential form, cf. (2.1) and (2.2). Thanks to the fact that the momentum
balance contains a diffusive term accounting for the normal stresses (which prevents the
slope from becoming infinitely steep), this yields profiles that connect the super- and
subcritical regimes in a continuous way. As a result, we are in a position to give an analytical
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expression for the length of the granular jump in terms of the system parameters, valid
throughout the parameter space except for a few singular cases. This length, apart from
being one of the characteristic features of the jump, is also one of the central ingredients of
the generalized Bélanger relation proposed in recent years (Faug et al. 2015; Méjean et al.
2017), which up to now had to be determined empirically via experiments or numerically.

The paper is organized as follows. In § 2 we present the Saint–Venant equations
governing incompressible shallow granular flows, i.e. the mass and momentum balances
augmented by the constitutive relations for the friction with the chute and the viscous-like
force caused by the in-plane stresses. It is argued that these equations provide an
appropriate framework for analysing the so-called ‘laminar’ jumps, which do not exhibit
recirculation zones and for which density variations are negligible. In § 3 we focus upon
the stationary wave solutions of the granular Saint–Venant equations, thereby suppressing
the time-dependence and turning them into ordinary differential equations (ODEs). This
paves the way for the formulation of a dynamical system, consisting of two coupled
first-order ODEs. The trajectories in the phase space of this dynamical system are then
exploited to unravel the internal structure of the granular jump. In fact, we find four
qualitatively different types of granular jumps, summed up in figure 5. Next, in § 4, we
give an analytic expression for the length of the jump in terms of the system parameters,
and we discuss the range of its validity. The paper concludes in § 5, where we recapitulate
our main findings and comment upon the stability of the jump profiles.

2. The governing equations

2.1. Mass and momentum balance
For our purposes, the behaviour of a flowing granular sheet is conveniently described
in terms of its height h(x, t) and depth-averaged velocity ū(x, t). The latter is defined
as ū(x, t) = ∫ h(x,t)

0 u(x, z, t) dz/h(x, t), where u(x, z, t) is the detailed velocity profile
depending on the depth z. Flow variations in the cross-wise direction are ignored, hence
both h(x, t) and ū(x, t) depend only on x and t, cf. figure 1. This is a good approximation
for the laminar jumps studied in the present paper, yet by adopting this one-dimensional
view one leaves aside any secondary cross-wise flow patterns, such as the convective
motion induced by the boundaries of the chute or the aforementioned recirculation zones
in the jump region (Brodu, Richard & Delannay 2013; Faug et al. 2015).

Furthermore, we treat the granular sheet as an incompressible fluid (Savage 1979).
This is a suitable approximation for the jumps we are interested in, although it must
be mentioned that in reality there is a small but noticeable density increase across the
jump (Faug et al. 2015; Méjean et al. 2020). For large Froude numbers of the incoming
flow, this density increase becomes quite pronounced, in which case the assumption of
incompressibility fails, but this lies beyond the laminar regime discussed here.

The pressure within the sheet is assumed to grow linearly with depth, which is called
‘lithostatic’ pressure in analogy to the well-known hydrostatic pressure for water. This is
a good approximation for sufficiently shallow granular flows for which saturation effects
in the pressure may be neglected (Duran 2000; Gray & Edwards 2014).

The two quantities h(x, t) and ū(x, t) are governed by a system of two coupled partial
differential equations (PDEs), namely the mass conservation

ht + (hū)x = 0, (2.1)

and the momentum balance (Gray & Edwards 2014; Razis et al. 2014)

(hū)t + (hū2)x = gh sin ζ − μ(h, ū)gh cos ζ − ( 1
2 gh2 cos ζ )x + ν(ζ )(h3/2ūx)x , (2.2)
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where we have chosen to work with dimensional quantities in order to make our results
directly comparable with previous studies on granular chute flow. In the remainder of
this paper, however, we generally group the parameters in such a way that the relevant
dimensionless numbers (Froude, Reynolds and ζ ) show up.

The four terms featuring on the right-hand side of (2.2) represent the forces that act on
the sheet: (i) the gravity component along the x-direction; (ii) the adverse force stemming
from the friction with the chute bed, modelled as a (height- and velocity-dependent)
friction coefficient μ(h, ū) multiplied by the normal reaction force acting on the granular
sheet (Pouliquen 1999); (iii) the force resulting from variations in h(x, t), i.e. the negative
gradient of the depth-averaged pressure; (iv) the viscous-like diffusive term arising from
depth-averaging the in-plane stresses in the sheet (Gray & Edwards 2014).

The last of these is the granular analogue of ν(hūx)x used for water (Kranenburg
1992; Balmforth & Mandre 2004), which proved to be an essential extension of the
shallow water equations, preventing the profile from becoming non-smooth, keeping its
slope everywhere finite. Also in granular flows the diffusive term plays a similar role. It
always remains very small compared to the other terms in the momentum balance (Razis,
Kanellopoulos & van der Weele 2018), yet its contribution is crucial for two reasons: (a) It
comes into action when there are variations in ū(x, t) (implying also variations in h(x, t)),
flattening them out and averting the build-up of discontinuities. (b) Being the only term in
the equation of motion that involves a second-order derivative, it adds a second dimension
to the phase space of the associated dynamical system (see § 3), thus paving the way
for a host of two-dimensional structures – e.g. spiral points or Hopf bifurcations (Razis,
Kanellopoulos & van der Weele 2019) – that were not possible in the one-dimensional
phase space of the inviscid theory. We note that our results do not depend critically on
the exact form of the viscous-like term. It is simply too small for that; other versions may
be anticipated to produce qualitatively similar jumps as long as they represent a diffusive
force (i.e. featuring a second-order spatial derivative).

2.2. Constitutive relations
The above equations (2.1) and (2.2) must be supplemented by constitutive relations for
μ(h, ū) and ν(ζ ). For the friction coefficient μ(h, ū) we use the expression first introduced
by Pouliquen (1999), which gives an accurate description as long as the granular sheet is
fully dynamic and does not exhibit stopping regions (Pouliquen & Forterre 2002; Edwards
& Gray 2015):

μ(h, ū) = μ1 + μ2 − μ1

1 + Ks
√

g cos ζ h3/2 ū−1
. (2.3)

Recent studies (Edwards et al. 2017, 2019) have enriched this friction law by an offset in
the Froude number F = ū/

√
hg cos ζ appearing in (2.3), yet for smooth glass beads the

offset is zero (Russell et al. 2019), so for an experimental verification of our results we
recommend using this material. In the above friction law, μ1(= tan ζ1), μ2(= tan ζ2) and
Ks are experimentally obtained parameters. In the present paper we will take μ1 = 0.384
(i.e. ζ1 = 21.0◦), μ2 = 0.594 (ζ2 = 30.7◦) and Ks = 209 m−1. Here ζ1,2 denote the two
inclination angles that delimit the interval in which uniform granular flows are possible.
For ζ < ζ1 the granular sheet remains at rest, whereas for ζ > ζ2 it sweeps downwards in
an accelerated fashion.

The parameter Ks is in fact a compound quantity, namely Ks = β/L, denoting the ratio
of the smallest value of the Froude number (β) for which the granular sheet is still
fully dynamic and the length scale L. For F < β, stagnant regions appear (Edwards &
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Gray 2015); the present study focuses on flows with F > β throughout, for which the
granular sheet is everywhere in motion. For recent work on the non-dynamic regime,
featuring a generalized friction law, see Edwards et al. (2017, 2019).

The length L is the thickness of the deposition layer (usually ranging from 1 to 2 particle
diameters) that is left on the bed of a roughened chute after a uniform flow has passed
over it. The precise values of β and L depend on the specifics of the particles and the
chute (Pouliquen & Forterre 2002; Forterre & Pouliquen 2003; Gray & Edwards 2014;
Razis et al. 2014; Edwards & Gray 2015; Edwards et al. 2017). We choose β = 0.136
and L = 0.65 mm, representing the laboratory chute of Pouliquen & Forterre (2002) with
spherical glass beads of diameter 0.50 ± 0.04 mm, so that Ks = 209 m−1. Also the chosen
values of the limiting angles ζ1 and ζ2 correspond to that same set-up.

For the coefficient ν(ζ ), we adopt the expression derived on the basis of μ(I)-rheology
by Gray & Edwards (2014):

ν(ζ ) = 2g sin ζ

9Ks
√

g cos ζ
γ (ζ ), where γ (ζ ) = μ2 − tan ζ

tan ζ − μ1
. (2.4)

It should be noted that this parameter ν(ζ ) has dimensionality m3/2 s−1, which differs
from the dimensions m2 s−1 of the familiar viscosity coefficient of fluid dynamics.
So the granular term ν(ζ )(h3/2ūx)x as a whole is viscous-like, yet its composition is
fundamentally different from that of the analogous term for standard fluids. For a detailed
discussion of the origins and interpretation of the expression (2.4) we refer to Gray &
Edwards (2014) and Razis et al. (2014). Here we restrict ourselves to noting that the
coefficient ν(ζ ) is positive (and hence represents a positive diffusive force, smoothing
the profile) in the interval ζ1 < ζ < ζ2, decreasing monotonically from infinity at ζ = ζ1
to zero at ζ = ζ2. Outside this interval, (2.4) gives a negative value and loses its validity;
this is a consequence of the ill-posedness of the μ(I)-rheology in these regions (Gray &
Edwards 2014).

In closing this section on the governing equations, let us briefly discuss an elementary
yet important solution to (2.1) and (2.2), namely steady uniform flow. In this case, the
sheet has a uniform thickness hn (known as the natural height in open channel hydraulics)
and flows at constant velocity ūn . All derivatives with respect to x and t then vanish, so
(2.1) is satisfied trivially. In (2.2) the only terms that survive are those of gravity and
friction, which must therefore precisely balance each other: tan ζ = μ(h, ū). Using the
friction law (2.3), this yields the following relation between the velocity and the thickness
of a uniformly flowing sheet:

ūn = Ks
√

g cos ζ

γ (ζ )
h3/2

n , (2.5)

known as the depth-averaged Bagnold velocity law (Bagnold 1966; Duran 2000).

3. The dynamical systems approach

3.1. Granular jumps as stationary waveforms
The granular jumps we are interested in are stationary waveforms, meaning that their
height and depth-averaged velocity do not depend on time. With h = h(x) and ū = ū(x),
the governing equations (2.1) and (2.2) become ODEs. The first one reduces to (hū)′ = 0,
with the prime denoting differentiation with respect to x , and can readily be integrated to
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give
hū = Q. (3.1)

The integration constant Q is the flux of material per unit width. With ū(x) = Q/h(x),
and hence ū′ = −Qh−2h′ and ū′′ = −Q(h−2h′′ − 2h−3(h′)2), the momentum balance (2.2)
takes the form of a nonlinear second-order ODE for h(x):

ν

Q
h3/2h′′ − ν

2Q
h1/2(h′)2 +

(
h3

h3
c

− 1
)

h′ − (tan ζ − μ(h))
h3

h3
c

= 0, (3.2)

where, thanks to the substitution ū = Qh−1, the friction coefficient μ(h, ū) has now also
become a function of h alone:

μ(h) = μ1 + μ2 − μ1

1 + γ (ζ )(h/hn)5/2
. (3.3)

Here hc denotes the critical height for which the Froude number equals 1, and hn is the
uniform flow height from (2.5), known in hydraulics as the natural height:

hc =
(

Q2

g cos ζ

)1/3

, hn =
(

Qγ (ζ )

Ks
√

g cos ζ

)2/5

. (3.4a,b)

The former follows from the definition of the Froude number (1.1) by substituting ū = Q/h
and setting F = 1. The latter is found from (2.5) with ūn = Q/hn .

It may be noted that the coefficients in (3.2) have been grouped in such a way that all
terms are dimensionless. In particular, the combination Q/(νh1/2) is the granular Reynolds
number, and (hc/h)3/2 is the Froude number. We will come back to these numbers in the
context of (3.12a,b).

In analogy with the standard theory of open channel flow, one may use the quotient hc/hn

to characterize granular chutes as being (i) mild if hc < hn , (ii) critical if hc = hn , or (iii)
steep if hc > hn . This is illustrated in figure 2. For the critical case, hc = hn = γ (ζ∗)/Ks,
while the corresponding value of ζ∗ is determined by γ 3(ζ∗) cos ζ∗ = Q2K3

s /g. The channel
is mild/steep for inclination angles that are smaller/larger than ζ∗, cf. figure 2(a).

Alternatively, one can hold the angle ζ constant and change the value of Q (by tuning
the inflow of material at the top of the chute). Then the chute is critical for

Q∗(ζ ) =
√

g
K3

s

γ 3(ζ ) cos ζ , (3.5)

while it is mild/steep for Q smaller/larger than Q∗(ζ ). Equation (3.5) defines the critical
line separating the mild and steep regimes, depicted by the dashed curve in the (ζ, Q)
parameter diagram of figure 2(b).

The first two terms in (3.2) are due to the viscous-like (diffusive) term ν(h3/2ūx)x in
the momentum balance (2.2). In the absence of these terms, i.e. in the inviscid limit
ν = 0, we would be left with a first-order ODE, namely the granular counterpart of the
classic ‘backwater equation’ of open channel hydraulics (Chanson 2009). The backwater
equation predicts the gradually varying profiles of the granular sheet before and after
the jump, yet it is unable to capture the jump itself, which must then be represented
by a vertical segment (satisfying the Rankine–Hugoniot shock relations) linking the two
aforementioned profiles. As noted in § 1, this is the standard way of dealing with hydraulic
and granular jumps to date (Gray & Cui 2007; Johnson & Gray 2011; Faug et al. 2015;
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Q∗(ζ)

h Q

S

S

M M

hc

hn

ζ
ζ1 ζ1ζ2 ζ2ζ∗

ζ

(b)(a)

FIGURE 2. (a) The heights hc and hn vs. ζ defined by (3.4a,b) at a given fixed value of Q.
For inclination angles ζ1 < ζ < ζ∗ the chute is termed mild (M), whereas for ζ∗ < ζ < ζ2 it is
termed steep (S). The vertical dashed line marks the border between the regimes M and S. (b) The
mild and steep regimes in the (ζ, Q) parameter diagram, separated by the dashed curve Q∗(ζ ) of
(3.5). Plot (a) represents a horizontal sweep through plot (b).

Viroulet et al. 2017; Méjean et al. 2017, 2020). The central point of the present paper
is that we go beyond this: we show how stationary jumps naturally arise as continuous
solutions of the viscous equation (3.2).

3.2. The dynamical system governing granular jumps
The second-order ODE (3.2) can be cast in the form of two coupled first-order ODEs (i.e.
a dynamical system) as follows:

h′ = s ≡ f1(s), (3.6a)

s′ = s2

2h
− Q

νh3
c

(
h3 − h3

c

)
s

h3/2
+ Q

νh3
c
(tan ζ − μ(h)) h3/2 ≡ f2(h, s), (3.6b)

where the symbol s has been chosen to denote the slope h′(x) of the height profile.
Fixed points of the above system are found by setting (3.6a) and (3.6b) equal to zero

simultaneously, i.e. f1(s) = s = 0 and f2(h, s) = 0. The first of these gives s = 0, implying
that any fixed point corresponds to a flat region of the flow.

Substituting s = 0 into (3.6b), one finds tan ζ = μ(h), i.e. the previously mentioned
balance between gravity and friction that characterizes a uniform flow (in accordance with
the companion condition s = 0). With μ(h) as in (3.3), this balance takes the form

tan ζ = μ1 + μ2 − μ1

1 + γ (ζ )(h/hn)5/2
, (3.7)

which can be rewritten as

γ (ζ )(h/hn)
5/2 = μ2 − tan ζ

tan ζ − μ1
(= γ (ζ )) , (3.8)

where in the last, bracketed step we have used the definition of γ (ζ ) from (2.4). Now,
unless γ (ζ ) is zero or infinite, this immediately leads to the conclusion that h/hn = 1.
Thus, in the interval of interest ζ1 < ζ < ζ2, where γ (ζ ) is finite, we find that the
dynamical system has a single real fixed point (h, s) = (hn, 0).
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The value of hn varies between two limiting cases: (i) for ζ1 the value of γ (ζ ) diverges
and we find from (3.4a,b) that hn(ζ1) → ∞ (i.e. a sheet of unbounded thickness), whereas
(ii) for ζ2 we have γ (ζ2) = 0 and hn(ζ2) = 0, which represents an empty chute. Figure 2(a)
shows how the natural thickness hn decreases as a function of ζ .

A linear stability analysis of the fixed point (hn, 0) shows that it is a saddle, i.e. the two
eigenvalues of the Jacobian matrix are real and of opposite sign:

λ1,2 = 1
2

⎧⎨
⎩∂f2

∂s
±

√(
∂f2

∂s

)2

+ 4
∂f2

∂h

⎫⎬
⎭ , (3.9)

with f2(h, s) as defined in (3.6b). These eigenvalues λ1,2 are given with the understanding
that the index 1 corresponds to the plus sign, and 2 to the minus sign, and that all
derivatives are evaluated at the fixed point (h, s) = (hn, 0):

∂f2

∂h

∣∣∣∣
(hn ,0)

= 5
2

(μ2 − μ1)γ Qh1/2
n

(1 + γ )2νh3
c

,
∂f2

∂s

∣∣∣∣
(hn ,0)

= − Q

νh3/2
n

(
h3

n

h3
c

− 1
)

. (3.10a,b)

The eigenvalues will play a central role in § 4 where we study the length of the jump. Here
we note that λ1 > 0 > λ2, with λ2 being larger in absolute value than λ1 for mild channels,
and vice versa for steep channels.

We now turn to the nullclines of the system (3.6a) and (3.6b), given by h′ = 0 and s′ = 0,
respectively. Evidently, the fixed point (hn, 0) lies at the intersection of the two nullclines.
The nullclines play a crucial role in the analysis of the jumps because they govern the
asymptotic behavior of the trajectories in phase space, as evidenced in figure 3. That is to
say, they determine the gradually varying profiles before and after the jump.

The nullclines are given by: (i) f1(s) = s = 0, i.e. simply the horizontal axis in the phase
space, and (ii) f2(h, s) = 0, which has a more intricate shape, depicted by the thick dashed
curves in figure 3(a,b). Since f2(h, s) = 0 is a quadratic equation in s, it can be solved
explicitly to yield

s1,2(h) = Q
νh1/2

⎧⎨
⎩h3

h3
c

− 1 ±
√(

h3

h3
c

− 1
)2

− 2
νh1/2

Q
h3

h3
c

(tan ζ − μ(h))

⎫⎬
⎭ , (3.11)

where we have collected all quantities involved in dimensionless groups, among which
one may recognize the Reynolds number (as defined for granular chute flow by Gray &
Edwards (2014), featuring the coefficient ν(ζ ) from the viscous-like term) and the Froude
number. Indeed, for the stationary wave profiles considered here, these dimensionless
numbers are given by

R = R(h) = ū
√

h
ν

= Q
νh1/2

, F = F(h) = ū√
hg cos ζ

= Q√
h3g cos ζ

=
(

hc

h

)3/2

.

(3.12a,b)

The nullcline s1,2(h) given by (3.11) consists of two branches, the asymptotic behaviour
of which is especially relevant for the jump profile as a whole. For small h, i.e. in the
extreme supercritical regime, the behaviour of the nullcline (3.11) may be inferred from
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FIGURE 3. Phase portraits of the dynamical system (3.6a) and (3.6b) for mild (a) and steep
(b) chutes, which are seen to be each other’s mirror image. The dashed thick curves (magenta)
designate the nullcline (3.11), governing the asymptotic behavior for small and large h. The solid
red and blue curves represent the two types of jumps occurring on each chute; the jump region
always manifests itself as a near-parabolic orbit following the ‘backbone curve’ formed by the
stable/unstable manifold of the saddle, indicated by the thin black dashed line. The remaining
manifolds of the saddle (unstable and stable, respectively) are locally tangent to the nullclines
s2(h) and s1(h). (a) Mild: The curves travel together in the supercritical regime and then go their
separate ways; the associated profiles h(x) (see insets) are the jumps M3 → M1 and M3 → M2.
(b) Steep: Here the curves start out differently and come together in the subcritical regime; the
profiles h(x) (insets) are the jumps S3 → S1 and S2 → S1. The dotted lines indicate the levels hc
and hn , and the grey arrows in the background show the direction field. The length scales h and
x are expressed in metres; the slope s = dh/dx is dimensionless. Parameter values: ζ = 22.0◦,
Q = 0.02 m2 s−1 (mild) and Q = 0.06 m2 s−1 (steep).
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its series expansion around h = 0:

s1(h) = (μ2 − tan ζ )

[
h3

h3
c

(
1+ γ 2(ζ )

1+ γ (ζ )

h5/2

h5/2
n

)
+ h6

h6
c

(
1 + (μ2 − tan ζ )

νh1/2

2Q

)]
+ O(h8),

(3.13)

where μ2 features prominently because limh→0 μ(h) = μ2. The dimensionless groups of
the Froude and Reynolds numbers are also apparent in (3.13). The fact that the leading term
is of order h3 explains the almost horizontal departure from s1(0) = 0 of the associated
dashed line in figure 3(a).

At the other end, i.e. in the extreme subcritical regime for large h, the nullcline attains a
constant value,

lim
h→∞

s2(h) = tan ζ − μ1, (3.14)

which corresponds to a linearly increasing height profile h(x). It is not horizontal with
respect to the laboratory, as is the case for hydraulic jumps in water, but tilted downward
with respect to this horizontal with an offset angle ζ1. This offset was first observed
experimentally by Faug et al. (2015).

Figure 3(a) gives a detailed view of granular jumps in a mild chute. For small values of
h, where the flow is supercritical, the trajectories run close to the nullcline s1(h) of (3.11).
Then they depart from it and start to follow a near-parabolic path, whose shape is dictated
by the stable manifold of the saddle point. Indeed, this manifold serves as a ‘backbone’
around which all jump trajectories are organized, following the local direction field. Close
to the top of the orbit they cross the critical value hc, where the Froude number F =
(hc/h)3/2 drops below 1, and the flow becomes subcritical. Subsequently, the trajectories
descend to the neighbourhood of the saddle (hn, 0) and turn either right or left (or, in the
borderline case, land exactly upon the saddle).

The red trajectory in figure 3(a) turns right and connects to the rightmost branch s2(h)

of the nullcline, forming the profile M1; here we adopt the standard nomenclature for open
channel flow, where one distinguishes three gradually varied profiles M1, M2 and M3 for
hydraulically mild channels and, likewise, three gradually varied profiles S1, S2 and S3
for steep channels (Rouse 1946; Le Méhauté 1976). The granular profile M1 eventually
attains the constant slope s = tan ζ − μ1. As mentioned above, for water the offset is
zero and the asymptotic slope attained for large h is simply tan ζ , corresponding to a free
surface parallel to the horizon. This situation is met when the flow encounters a wall or a
sluice gate. The same is true for granular flows: the jump M3 → M1 (now with the offset)
typically occurs between two sluice gates, the first of which may simply be the inlet at the
top of the chute.

The blue trajectory of figure 3(a) bends off to the left of the saddle, i.e. it goes to
smaller values of h with negative slope s. This constitutes a qualitatively different jump,
ending with the profile M2 instead of M1. In contrast to M1, the profile M2 loses height
continually, and at some point may be anticipated to drop below the level hc and become
supercritical again. Since the profile M2 is typically found for chutes ending in a fall
without any hindrances, this opens up the possibility of having supercritical discharge
conditions at the outlet of the chute. This is a novel prediction of the theory presented
here, expanding the inviscid result according to which discharge always takes place in
such a way that F = 1 locally (Rouse 1946; Chow 1959).

The jump trajectories and profiles for a steep chute (figure 3b) are seen to be the
mirror images of those for mild ones (figure 3a), revealing the close connection that exists
between these two classes of jumps. For steep chutes it is the unstable manifold of the
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FIGURE 4. Phase portrait of the dynamical system (3.6a) and (3.6b) for a critical chute.
Interestingly, the transition from the supercritical nullcline s1(h) to its subcritical counterpart
s2(h) can now take place in any guise ranging from an abrupt jump (upper inset) to a relatively
flat interval (lower inset). The reason for this is that, in this special case, the stable and unstable
manifolds of the saddle (hn, 0) (denoted by the thin black dashed lines emanating from this point)
do not act as backbones for the connecting trajectories. As in figure 3, h and x are expressed
in metres, while the slope s = dh/dx is dimensionless. The parameter values are ζ = 22.0◦,
Q = Q∗ = 0.02876 m2 s−1, cf. (3.5).

saddle point that serves as the ‘backbone’ for the jumps. The red and blue trajectories now
do not start together but rather end together, both of them converging to the rightmost
branch of the nullcline s2(h), i.e. the profile S1 with asymptotic slope s = tan ζ − μ1.

In between the mild and steep cases, one finds the borderline critical situation for
which hn = hc. This configuration requires a considerable amount of fine-tuning and
can hardly be expected to be found in practice. For completeness, however, we illustrate
it in figure 4. In accordance with the above observations, we see that the phase space
trajectories connecting the two nullclines are their own mirror images. Indeed, the phase
space itself exhibits a near-perfect symmetry around the level h = hc.

The distinguishing feature of this critical case is that the connection between the
supercritical branch s1(h) and the subcritical branch s2(h) does not necessarily involve
a jump. Indeed, figure 4 shows that it can just as well take place via a relatively flat flow
region. The reason for this is that the stable and unstable manifolds of the saddle point
(hn, 0) do not form any pronounced loop in the upper half-plane of phase space (as they
do in the mild and steep cases, where they act as backbones for the jumps) but rather
connect straight away, without any detours, to s1(h) and s2(h); see the thin black curves
emanating from the saddle. We also observe that, since there is no room for a gradually
varied profile between hn and hc in this critical case (i.e. there is no C2 profile), the only
branches that can contribute to the transition are C3 (supercritical) and C1 (subcritical).
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FIGURE 5. Overview of the four qualitatively different jump types encountered in shallow
granular flow on a chute tilted at angles ζ1 < ζ < ζ2 (for which uniform flows are possible) and
with varying influx Q. In the mild regime of the (ζ, Q) parameter diagram one finds M3 → M1
and M3 → M2 (cf. figure 3a), and in the steep regime S3 → S1 and S2 → S1 (cf. figure 3b).
The branches M1 and S1 exhibit an offset from the horizontal by an angle ζ1, experimentally
detected by Faug et al. (2015) and analytically derived in (3.14). The dashed curve, Q∗(ζ ) given
by (3.5), corresponds to critical chute conditions, for which the transition (C3 → C1) does not
necessarily take place via a jump, see figure 4.

Hence only one type of transition is possible on a critical chute, namely C3 → C1, which
can, however, manifest itself as anything ranging from a vigorous jump to a nearly flat
region, corresponding respectively to the hill- and valley-shaped connections of figure 4.

The above findings are summarized in figure 5, which gives an overview of the various
qualitatively different jump types in the mild and steep regimes of the (ζ, Q) parameter
diagram. This figure may be compared with the experimentally obtained diagram of Faug
et al. (2015) and its numerical counterpart given by Méjean et al. (2020). Indeed, our study
fully explains the earlier diagrams as far as the jumps for ζ < ζ2 are concerned, which are
termed either ‘diffuse’ or ‘laminar’ by these previous authors (Faug 2015; Faug et al. 2015;
Méjean et al. 2017, 2020).

The phase diagrams of the aforementioned authors also feature several types of jumps
which are not accounted for in the framework of the granular Saint–Venant equations
presented here. These jumps correspond to inclination angles beyond ζ2, where the
incoming flow is accelerating and would develop into an uncontrollable avalanche if it
were not hindered in some way. This is done by a properly adjusted sluice gate, in front of
which the granular flow organizes itself in the form of a standing jump. These jump types
often exhibit ‘recirculation patterns’ and ‘internal rollers’, as well as variations in density
(i.e. in the volume fraction of the particles), and belong to a different kind of flow that
must be treated separately.

4. On the length of the jump

Based on the observation that the jump region in phase space manifests itself as a
near-parabolic trajectory, we are able to derive an analytical approximate expression for
one of the jump’s most prominent features, namely its length L. In the derivation that
follows, we consider a granular jump on a steep chute. At the end of the section we
demonstrate that a similar analysis holds for jumps on a mild chute and arrive at a
unifying expression for the jump length L that is valid for both regimes – apart from some
well-defined cases such as the borderline situation of a critical chute.
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FIGURE 6. (a) The ‘backbone’ parabola spar(h) in phase space (solid black curve), which in the
jump region hn < h < (2hc − hn) approximates the unstable manifold (dashed) around which
the trajectories are organized. The parameter values are the same as in figure 3(b). (b) The
tanh-profile (4.2) corresponding to the backbone parabola (solid black line) together with the
actual profiles S3 → S1 (red) and S2 → S1 (blue). The length L derived from the tanh profile,
given by the analytic expression (4.6), is seen to be in very good agreement with the actual extent
of the jumps.

4.1. Steep regime
In the steep regime, the near-parabolic trajectories start out from the immediate vicinity
of the saddle (hn, 0) and are to a good approximation centred around the critical
value h = hc. As we have seen, they are organized around the unstable manifold of the
saddle point, which acts as a backbone for all jumps. Here we will approximate this
backbone by a parabola, which may conveniently be written as spar(h) = A(h − hn)(2hc −
hn − h). This form expresses the fact that the approximative parabola crosses the line
s = 0 at the points h = hn and h = 2hc − hn , which are positioned symmetrically around
h = hc. The highest point of this parabola is spar(hc) = A(hc − hn)

2. The positive constant
A is determined from the fact that the slope of the parabola at (hn, 0) should be aligned
with the vector field, which here means with the saddle’s unstable eigenvector. This slope
is given by the positive eigenvalue, i.e. λ1 of (3.9), leading to A = λ1/[2(hc − hn)].

This means, with s = dh/dx , that the profile of the flow along this central parabola is
described by the following first-order ODE:

dh
dx

= A(h − hn)(2hc − hn − h), with A = λ1

2(hc − hn)
, (4.1)

which can be solved analytically to yield

hpar(x) = hc + (hc − hn) tanh
(
λ1

2
x

)
. (4.2)

Here the integration constant has been chosen such as to satisfy the condition hpar(0) = hc,
i.e. the jump corresponding to the backbone parabola is centred around the point where it
crosses the critical level hc. In figure 6 this reference jump, given by (4.2) and represented
by the dashed curve, is compared with two profiles obtained from numerically solving the
full dynamical system (3.6a) and (3.6b), denoted by the solid curves. The agreement in
the jump region is very satisfactory.
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The small deviations are partly due to the fact that the red and blue trajectories do not
exactly coincide with the saddle’s manifold, and partly to the fact that the manifold is not
precisely reproduced by the parabolic approximation. As for the first imprecision, we note
that for each individual trajectory, the approximative tanh profile might be made to fit the
observed jump more closely by choosing not the backbone parabola but another one that
lies closer to the actual trajectory; to this end, one would select a point (hp, sp) on the
trajectory in question and determine the coefficients C1 and C2 of the specific parabola
s(h) = C1(h − hc)

2 + C2 that passes through this point.
As for the second source of imprecision, it may be noted that the accuracy of

reproducing the manifold in the jump region can be enhanced at will by approximating
it in terms of a power series in (h − hc), keeping any desired number of terms. Or even
better, one could use a power series in (h − h∗), where h∗ denotes the height corresponding
to the maximum of the manifold (which lies on the nullcline, i.e. close to but not exactly
on the vertical line h = hc). The gain in accuracy, however, comes at the expense of
analytic elegance. The current approximation is free from numerical fitting and contains
only quantities that come straight from the dynamical systems approach. Moreover, any
power series with terms higher than quadratic would result in a much more intricate form
than a tanh profile.

Now, the jump length L may be defined as the distance in the x-direction in which
h(x) completes 99 % of its course. Since tanh(αx) = 0.99 at αx = 2.65, this gives for the
reference jump: LS = 2 × 2.65/α = 10.6/λ1 (where the subscript S serves as a reminder
that we are considering a steep chute). With λ1 given by (3.9) and (3.10a,b), this takes the
form

LS = 10.6hn
2νh1/2

n

Q[1 − (hn/hc)3]

⎧⎨
⎩1 +

√
1 + 10

γ (μ2 − μ1)νh1/2
n (hn/hc)3

(1 + γ )2Q[1 − (hn/hc)3]2

⎫⎬
⎭

−1

. (4.3)

For typical granular jumps, the quantity under the square root does not deviate significantly
from 1 – mainly due to the smallness of the parameter ν(ζ ), which in turn can be traced
back to the large value of the experimental constant Ks, cf. (2.4) – meaning that the value
of the term in curly brackets is close to 2. This leads to

LS ≈ 10.6hn
νh1/2

n

Q[1 − (hn/hc)3]
= 10.6hn

F2
n

Rn

(
F2

n − 1
) , (4.4)

where Rn = R(hn) and Fn = F(hn) denote the Reynolds and Froude numbers associated
with the height h = hn , cf. (3.12a,b). For the steep chutes under consideration, this is the
height of the incoming supercritical flow, just upstream of the jump. In phase space the
trajectories are then in the vicinity of the saddle point and are just about to commence
their near-parabolic path. The analytical expression (4.4), with the parameter values used
in figure 6, gives a length of 0.072 m indicated by the double arrow in the figure; this is
seen to agree very well with the spatial extent of the actual jumps (shown in red and blue).

From a dimensional point of view, it may be noted that from the system parameters
one can construct a characteristic length. Given that the combination νh3/2/Q has the
dimensions of a length, an obvious candidate for such a characteristic length is νh3/2

n /Q,
where hn also brings in the other system parameters g, ζ and Ks. In this light, it stands
to reason that the jump length LS given in (4.3) and (4.4) features the group νh3/2

n /Q
multiplied by a non-dimensional expression.
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4.2. Mild regime
Jumps on a mild chute are the mirror images of those on a steep chute. In the mild case,
hn > hc, and the near-parabolic orbits do not start in the neighbourhood of (hn, 0) but
end there, following the backbone formed by the stable manifold of the saddle point. This
manifold can again be approximated by a parabola through (hn, 0), which this time has
to comply with the direction of the stable eigenvector. The slope of this vector is equal
to the negative eigenvalue of the saddle, i.e. λ2 of (3.9). The positive constant A thus
becomes A = −λ2/[2(hn − hc)], and the reference jump is given by hpar(x) = hc + (hn −
hc) tanh(−λ2x/2), while the expression for its length reads LM = −10.6/λ2 (where the
subscript M stands for mild). In an analogous fashion as for the steep case, this leads to

LM ≈ 10.6hn
νh1/2

n

Q[(hn/hc)3 − 1]
= 10.6hn

F2
n

Rn

(
1 − F2

n

) , (4.5)

with Rn and Fn again denoting the Reynolds and Froude numbers of the flow at the height
h = hn . In this mild case, however, this height is found just downstream of the jump, i.e.
in the subcritical regime. In phase space this occurs when the trajectories pass through
the vicinity of the saddle point, where they leave their near-parabolic path and connect to
the nullcline s2(h), either towards the right or to the left (for jumps of type M3 → M1 or
M3 → M2, respectively).

4.3. A unified view
The above analysis nicely illustrates the mirror symmetry that exists between jumps on
mild chutes and those on steep ones. We note that (4.4) and (4.5) can be captured in one
universal equation for the jump length:

L ≈ 10.6hn
F2

n

Rn | F2
n − 1 | = 2.36hn

tan ζ

| F2
n − 1 | , (4.6)

where in the last step we have used the identity F2
n/Rn = (2/9) tan ζ . The Reynolds number

surprisingly drops out of the final expression (4.6). This can be attributed to the fact that
the parameter ν(ζ ) as defined for granular flow, (2.4), is not solely a function of the
intrinsic properties of the granular material (via the factor Ks) but also of the external
parameters ζ and g. It is the slope ζ that eventually survives in (4.6).

In fact, since hn and Fn depend on ζ and the flux Q, (4.6) can also be seen as a function
of these two parameters: L = L(ζ, Q). Contour plots of this latter function are shown in
figure 7. A central role here is played by the critical curve Q∗(ζ ), (3.5), separating the mild
and steep regimes. In (4.6) this corresponds to the case Fn = 1, when hn = hc, for which
the predicted length evidently diverges.

As we have seen in figure 4, this borderline situation is quite different from the generic
cases of mild and steep chutes, since the transition from the supercritical profile (C3) to
the subcritical one (C1) is not dictated by the manifolds of the saddle point. As a matter
of fact, the transition does not even have to take the form of a jump but can just as well
occur via a very smooth flow zone linking the profiles C3 and C1. Accordingly, the length
of the connecting region can assume a wide range of different values, and a different
analysis would be needed to capture this singular case. (We will not pursue such an analysis
here, since the critical case may be anticipated to be very rare in practice given the high
amount of fine-tuning required.) In the context of figure 7, this implies that the length
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FIGURE 7. Contour plot of the jump length L(ζ, Q) predicted by (4.6) in the (ζ, Q) parameter
plane for ζ between ζ1(= 21.0◦) and 23◦. The value of the jump length, indicated for several
representative contour lines, is measured in metres. The prediction diverges on the dashed curve
(Q∗(ζ ) given by (3.5)) separating the mild (M) and steep (S) regimes; as a result, (4.6) should not
be used in the grey zone surrounding this critical curve. Also the vicinity of the vertical axis ζ =
ζ1 must be excluded (as indicated by the grey shading) since the parabolic approximation of the
manifold in question becomes increasingly poor here. The black diamonds mark the parameter
values in the mild regime for which the parabola happens to be an excellent approximation;
to the left/right of these diamonds, the parabola lies above/below the manifold. In the steep
regime, the parabolic approximation remains satisfactory everywhere, and the associated
prediction for the jump length is accurate throughout.

predicted by (4.6) – being derived on the premise that the transition takes place along the
manifold – necessarily loses its validity in the neighbourhood of the critical curve Q∗(ζ ),
indicated by the grey zone surrounding it.

Away from this grey zone, the parabola is always found to give a fair approximation
in the depicted steep regime (S). However, in the mild regime (M) things are more
complicated. The parabolic approximation happens to be excellent along the line
demarcated by the black diamonds in figure 7, yet it becomes less accurate as one drifts
away from that line. This is not immediately translated into a loss of accuracy of the
predicted length. Indeed, (4.6) proves to give satisfactory agreement with the actual
lengths (obtained from solving the full dynamical system) well beyond the nominal range
of validity of the parabolic approximation. One has to wander quite close to the critical
curve Q∗(ζ ) or to the vertical axis defined by the limiting angle ζ1 before the prediction
fails. Both cases are shrouded by a grey zone, and both are characterized by L(ζ, Q)
diverging to infinity. In the former case, the parabola significantly undershoots the stable
manifold of the saddle, while in the latter case it overshoots it by a wide margin. Here it
may be noted that the limit ζ → ζ1 is problematic anyhow, since ν(ζ ), γ (ζ ) and hn(ζ ) all
tend to infinity at this angle.

At the other end of the phase diagram, for ζ → ζ2 (not depicted in figure 7), we find
L → 0, just as one would expect because the parameter ν(ζ ) approaches zero here. As ν(ζ )
becomes smaller, the derivatives involved in the viscous-like term grow larger (in order to
preserve the continuity of the profile), and the jump becomes very steep, reminiscent of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

95
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.951


On the structure of granular jumps 912 A54-17

the inviscid scenario. Before the actual limiting angle ζ2 is reached, however, the predicted
jump length (4.6) becomes smaller than the grain diameter, and one should not stretch
the theory beyond this point. It may be anticipated that here the jumps will cease to be
laminar and that one progressively enters the regime of ‘steep colliding’ granular jumps
with recirculation, as in the experiments by Faug et al. (2015), which lie outside the scope
of this paper.

In summary, our results indicate that (with the exception of the grey zones and those
regions where L becomes less than the size of a grain), (4.6) provides a trustworthy
analytical prediction of the jump length found by solving the full dynamical system. As a
next step, it would be very interesting to test this prediction experimentally. We sincerely
hope that the present study may serve as a roadmap for such a future experimental survey.

5. Conclusion

In this paper we have presented granular jumps on a chute as continuous solutions of the
Saint–Venant equations governing shallow granular flow. To the best of our knowledge,
this is the first time that these jumps have been obtained entirely within the natural
framework formed by the aforementioned equations, without resorting to additional
techniques. Prior studies invariably relied on the Rankine–Hugoniot conditions across the
shock zone, at the cost of concealing the internal structure of the jump. Our study has
elucidated precisely this structure. To achieve this goal, the dynamical systems approach
proved to be instrumental.

Indeed, in phase space the jumps manifest themselves as trajectories that leap from
the supercritical branch of the nullcline to the opposite subcritical branch via a striking
near-parabolic connection, see figure 3. As we have seen, the viscous-like term in the
granular Saint–Venant equations is of vital importance to make this leap possible, even
though the associated force always remains tiny in comparison to the other forces featuring
in the momentum balance. The conspicuous near-parabolic shape of the jump region has
been exploited to derive the approximate analytic expression (4.6) for the length of a
typical jump (away from the grey zones in figure 7) in terms of the system parameters.
It will be highly interesting to put this result to the test experimentally and investigate
in a systematic manner the dependence of the jump length L on the various parameters
involved. As mentioned in § 2, we recommend the use of smooth glass beads, as in the
experiments by Pouliquen & Forterre (2002), Faug et al. (2015) and Russell et al. (2019).
The results of such a study may then also be compared with the numerical results of
Méjean et al. (2020) on ‘laminar’ jumps. This would provide a comprehensive, three-fold
approach to the problem at hand.

The phase portraits also have provided the necessary geometric perspective for revealing
the mirror symmetry that exists between mild and steep granular jumps, see figure 3.
This has led to a classification of the complete spectrum of jumps in fully dynamic
(F > β) shallow granular flows on a chute without hindrances and tilted at an angle
ζ1 < ζ < ζ2, being the realm in which uniformly flowing sheets are possible. In these
flows we distinguish four different, yet intimately related types of granular jumps, which
are summarized in figure 5.

The dynamical systems approach, despite the wealth of insight it provides, does
not say anything about the stability of the solutions obtained. In order to settle this
important issue, one must return to the original time-dependent PDEs, i.e. the granular
Saint–Venant equations (2.1) and (2.2). The stability of the profiles can be demonstrated
by inserting them, in perturbed form, as initial conditions into these PDEs. As an example,
figure 8 shows the time evolution of a slightly perturbed profile of type M3 → M1. The
perturbation (a small surplus of material in the shape of a Gaussian-like bump) is seen
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FIGURE 8. Stability of the granular jump M3 → M1: an initial perturbation (black dashed line)
is positioned on the jump’s lower, supercritical flank, and its evolution is computed from the
granular Saint–Venant equations (2.1) and (2.2). The perturbation is seen to break into a dimple
and a hump, which both travel to the right and decay with time, evidencing the stability of the
jump. The position of the dimple is indicated by the arrow below the profile, while the hump is
indicated by the arrow above it. In the second snapshot (at t = 0.32 s) the dimple has passed the
critical level h = hc and is now travelling along the upper, subcritical flank. The evolution of the
system has been evaluated using the method of lines (Schiesser 1991; Razis et al. 2018), with
a computational space step Δx = 0.6 × 10−4 m. The grid independence of the result has been
checked by using smaller space steps.

to generate interesting wave phenomena, which we plan to report in a future publication.
In the present context, however, it suffices to note that these waves decay with time, thus
confirming the stability of the jump.
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