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LEVI-UMBILICAL REAL HYPERSURFACES
IN A COMPLEX SPACE FORM

JONG TAEK CHO and MAKOTO KIMURA

Abstract. We give a classification of Levi-umbilical real hypersurfaces in a

complex space form M̃n(c), n> 3, whose Levi form is proportional to the

induced metric by a nonzero constant. In a complex projective plane CP2,

we give a local construction of such hypersurfaces and moreover, we give new

examples of Levi-flat real hypersurfaces in CP2.

§1. Introduction

Let M be a (2n− 1)-dimensional manifold and TM be its tangent bundle.

A CR-structure on M is a complex rank (n− 1) subbundle H⊂ CTM =

TM ⊗ C satisfying

(i) H ∩ H̄= {0},
(ii) [H,H]⊂H (integrability),

where H̄ denotes the complex conjugation of H.
Then there exists a unique subbundle D = Re{H ⊕ H̄}, called the Levi

subbundle (maximally holomorphic subbundle) of (M,H), and a unique

bundle map J such that J2 =−I and H= {X − iJX|X ∈D}. We call

(D, J) the real representation of H. Let E ⊂ T ∗M be the conormal bundle

of D. If M is an oriented CR-manifold then E is a trivial bundle, hence

admits globally defined a nowhere zero section η, that is, a real one-form on

M such that Ker(η) =D. For (D, J) we define the Levi form by

L :D ×D→F(M), L(X, Y ) = dη(X, JY )
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where F(M) denotes the algebra of differential functions on M . If the Levi

form is nondegenerate (positive or negative definite, resp.), then the CR-

structure is called a nondegenerate (strongly pseudo-convex, resp.) pseudo-

Hermitian CR-structure.

Now, let M̃n be an n-dimensional Kähler manifold and let M2n−1 be a

real hypersurface in M̃ . Then M is called Levi-flat if the Levi form vanishes.

In the present paper, we introduce the so-called Levi-umbilicity. If the Levi

form L is proportional to the induced metric g by a nonzero constant k,

then M is said to be Levi-umbilical.

A complex n-dimensional complete and simply connected Kähler man-

ifold of constant holomorphic sectional curvature c is called a complex

space form, which is denoted by M̃n(c). A complex space form consists of a

complex projective space CPn, a complex Euclidean space CEn or a complex

hyperbolic space CHn, according as c > 0, c= 0 or c < 0. Recently, Siu [14]

proved the nonexistence of compact smooth Levi-flat hypersurfaces in CPn

of dimensions > 3. When n= 2, Ohsawa [13] proved the nonexistence of

compact real analytic Levi-flat hypersurfaces in CP2. Here, it is remarkable

that the assumption of compactness has a crucial role. Indeed, there are

noncomplete examples which are realized as ruled hypersurfaces and Levi-

flat in CPn (see Section 3). We also find that there does not exist a Levi-flat

Hopf hypersurface in CPn or CHn (cf. [6]). In the present paper, we give

noncompact examples of Levi-flat real hypersurfaces which are not ruled

hypersurfaces in CP2 (see Section 5).

On the other hand, Takagi [16], [17] classified the homogeneous real

hypersurfaces in CPn into six types. Cecil and Ryan [4] extensively studied

a real hypersurface whose structure vector ξ is a principal curvature vector,

which is realized as tubes over certain submanifolds in CPn, by using its

focal map. A real hypersurface of a complex space form is said to be a

Hopf hypersurface if its structure vector is a principal curvature vector. By

making use of those results and the mentioned work of Takagi, Makoto

Kimura [8] proved the classification theorem for Hopf hypersurfaces of CPn

whose all principal curvatures are constant. For the case CHn, Berndt [2]

proved the classification theorem for Hopf hypersurfaces whose all principal

curvatures are constant.

The main purpose of the present paper is to give a classification of Levi-

umbilical real hypersurfaces in a complex space form.
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Theorem 1. If a real hypersurface M of a complex space form M̃n(c) is

Levi-umbilical, then n= 2 or M is a Hopf hypersurface. Moreover, in case

that M is connected, complete and n> 3, we have the following.

(I) If M̃n(c) = CPn, then M is congruent to one of the following:

(1) a geodesic hypersphere, that is, a tube of radius r over CPn−1,

where 0< r < π
2 ,

(2) a tube of radius r over a complex quadric CQn−1, where 0< r < π
4 .

(II) If M̃n(c) = CHn, then M is congruent to one of the following:

(1) a horosphere in CHn,

(2) a geodesic hypersphere or a tube of radius r ∈ R+ over a totally

geodesic CHn−1,

(3) a tube of radius r ∈ R+ over a totally real hyperbolic space RHn.

(III) If M̃n(c) = CEn, then M is locally congruent to one of the following:

(1) a sphere S2n−1(r) of radius r ∈ R+,

(2) a generalized cylinder Sn−1(r)× En of radius r ∈ R+.

In Section 5, we give a construction of Levi-umbilical non-Hopf hypersur-

faces in CP2.

§2. Almost contact metric structures and the associated CR-

structures

In this paper, all manifolds are assumed to be connected and of class C∞.

First, we give a brief review of several fundamental concepts and formulas

which we need later on. An odd-dimensional differentiable manifold M has

an almost contact structure if it admits a (1,1)-tensor field φ, a vector field

ξ and a 1-form η satisfying

(1) φ2 =−I + η ⊗ ξ, η(ξ) = 1.

Then we can find always a compatible Riemannian metric, namely which

satisfies

(2) g(φX, φY ) = g(X, Y )− η(X)η(Y )

for all vector fields on M . We call (η, φ, ξ, g) an almost contact metric

structure of M and M = (M ; η, φ, ξ, g) an almost contact metric manifold.
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The fundamental 2-form Φ is defined by Φ(X, Y ) = g(φX, Y ). If M satisfies

in addition dη = Φ, then M is called a contact metric manifold, where d is

the exterior differential operator. From (1) and (2) we easily get

(3) φξ = 0, η ◦ φ= 0, η(X) = g(X, ξ).

The tangent space TpM of M at each point p ∈M is decomposed as TpM =

Dp ⊕ {ξ}p(direct sum), where we denote Dp = {v ∈ TpM |η(v) = 0}. Then

D : p→Dp defines a distribution orthogonal to ξ. For an almost contact

metric manifold M , one may define naturally an almost complex structure

on the product manifold M × R, where R denotes the real line. If the almost

complex structure is integrable, M is said to be normal. The integrability

condition for the almost complex structure is the vanishing of the tensor

[φ, φ] + 2dη ⊗ ξ, where [φ, φ] denotes the Nijenhuis torsion of φ. For more

details about the general theory of almost contact metric manifolds, we refer

to [3].

On the other hand, for an almost contact metric manifold M , the

restriction J = φ|D of φ to D defines an almost complex structure in D.

As soon as M satisfies

(4) [JX, JY ]− [X, Y ] ∈D (or [JX, Y ] + [X, JY ] ∈D)

and

(5) [J, J ](X, Y ) = 0

for all X, Y ∈D, where [J, J ] is the Nijenhuis torsion of J , then the

pair (η, J) is called an (integrable) CR-structure associated with the

almost contact metric structure (η, φ, ξ, g). For example, a normal almost

contact metric manifold has an integrable CR-structure [7]. In addition,

the associated Levi form L defined by L(X, Y ) = dη(X, JY ), X, Y ∈D, is

nondegenerate (positive or negative definite, resp.), then (η, J) is called

a nondegenerate (strongly pseudo-convex, resp.) pseudo-Hermitian CR-

structure. We may refer to [5], [7], [18] about CR-structures associated with

(almost) contact metric structures.

§3. Real hypersurfaces in a complex space form

Let M be an immersed real hypersurface of a Kähler manifold

M̃ = (M̃ ; J̃ , g̃) and N a local unit normal vector in a neighborhood of each
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point. By ∇̃, σ we denote the Levi-Civita connection in M̃ and the second

fundamental form associated with the shape operator A with respect to N ,

respectively. Then the Gauss and Weingarten formulas are given respectively

by

∇̃XY =∇XY + σ(X, Y )N, ∇̃XN =−AX

for any vector fields X and Y tangent to M . Here, we note that σ(X, Y ) =

g(AX, Y ), where g denotes the Riemannian metric of M induced from g̃. An

eigenvector (resp. eigenvalue) of the shape operator A is called a principal

curvature vector (resp. principal curvature). For any vector field X tangent

to M , we put

(6) J̃X = φX + η(X)N, J̃N =−ξ.

We easily see that the structure (η, φ, ξ, g) is an almost contact metric

structure on M , that is, satisfies (1) and (2). From the condition ∇̃J̃ = 0,

the relations (6) and by making use of the Gauss and Weingarten formulas,

we have

(∇Xφ)Y = η(Y )AX − g(AX, Y )ξ,(7)

∇Xξ = φAX.(8)

From now, let M̃n(c) be a complex space form of constant holomorphic

sectional curvature c. Then, from the Codazzi equation, we have

(9) (∇XA)Y − (∇YA)X =
c

4
{η(X)φY − η(Y )φX − 2g(φX, Y )ξ}.

By using (7) and (8), we see that a real hypersurface in a Kähler manifold

always satisfies (4) and (5), the integrability condition of the associated CR-

structure. From (8) we find that M is Levi-flat if and only if

(10) g((φA+Aφ)X, Y ) = 0, X, Y ⊥ ξ,

and M is Levi-umbilical if and only if there exists nonzero constant k ∈ R
such that

(11) g((φA+Aφ)X, Y ) = kg(φX, Y ), X, Y ⊥ ξ.

Here we recall ruled real hypersurfaces in CPn or CHn. Such a space

is a foliated real hypersurface whose leaves are complex hyperplanes CPn−1
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or CHn−1, respectively in CPn or CHn. That is, let γ : I → M̃n(c) be a

regular curve in M̃n(c) (CPn or CHn). Then for each t ∈ I, let M
(t)
n−1(c) be

a totally geodesic complex hypersurface which is orthogonal to holomorphic

plane Span{γ̇, Jγ̇}. We have a ruled real hypersurface M =
⋃
t∈I M

(t)
n−1(c).

A ruled real hypersurface is non-Hopf and particularly it is noncomplete

real hypersurface in CPn (see, [10] for the case CPn and see [1] for the case

CHn, respectively). The shape operator A is written by the following form:

(12)
Aξ = µξ + νV (ν 6= 0),
AV = νξ,
AX = 0 for any X ⊥ ξ, V,

where V is a unit vector orthogonal to ξ, and µ, ν are differentiable functions

on M . Then, we easily see that ruled real hypersurfaces in CPn or in CHn

are Levi-flat.

§4. Proof of Theorem 1

In this section, we prove Theorem 1. Let M be a Levi-umbilical real

hypersurface in a complex space form M̃n(c). If we differentiate (11)

covariantly, then we have

g ((∇XA)φY +A(∇Xφ)Y +Aφ∇XY + (∇Xφ)AY

+ φ(∇XA)Y + φA∇XY, Z) + g((Aφ+ φA)Y,∇XZ)

= k(g((∇Xφ)Y, Z) + g(φ∇XY, Z) + g(φY,∇XZ)),(13)

for any vector fields X, Y, Z ⊥ ξ. Use (7) to get

g((∇XA)φY + φ(∇XA)Y, Z)

+ g(η(Y )A2X − g(AX, Y )Aξ + η(AY )AX − g(AX, AY )ξ, Z)

+ g((Aφ+ φA)∇XY, Z)− g((Aφ+ φA)∇XZ, Y )

= k(g(φ∇XY, Z)− g(φ∇XZ, Y )).(14)

We decompose ∇XY =∇XY ⊥ + η(∇XY )ξ, where ∇XY ⊥ denotes the part

of ∇XY orthogonal to ξ. Using (8) and (11), (14) becomes
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g((∇XA)φY + φ(∇XA)Y, Z)

+ g(η(Y )A2X − g(AX, Y )Aξ + η(AY )AX − g(AX, AY )ξ, Z)

+ η(∇XY )g(U, Z)− η(∇XZ)g(U, Y ) = 0,(15)

where we have put U =∇ξξ. Use (8) to obtain

g((∇XA)Z, φY )− g((∇XA)Y, φZ)

= g(φAX, Y )g(U, Z)− g(φAX, Z)g(U, Y )

+ η(Z)g(A2X, Y )− η(Y )g(A2X, Z)

+ η(AZ)g(AX, Y )− η(AY )g(AX, Z).(16)

Taking the cyclic sum of (16) for X, Y, Z, using (9) we have

g((Aφ+ φA)X, Y )g(U, Z) + g((Aφ+ φA)Y, Z)g(U, X)

+ g((Aφ+ φA)Z, X)g(U, Y ) = 0.(17)

Using (11) in (17) again, we have

(18) k(g(φX, Y )g(U, Z) + g(φY, Z)g(U, X) + g(φZ, X)g(U, Y )) = 0.

If we put Z = U in (18), then we have

(19) k(g(φX, Y )‖U‖2 + g(φY, U)g(U, X) + g(φU, X)g(U, Y )) = 0.

Replace Y by φX in (19), then it turns to

(20) k(g(X, X)‖U‖2 − g(X, U)g(U, X) + g(φU, X)g(U, φX)) = 0.

For an adapted orthonormal basis {ei, ξ}, i= 1, · · · , 2n− 2, we put X = ei
and taking the sum for i= 1, · · · , 2n− 2, then since k 6= 0 we have

(n− 2)‖U‖2 = 0.

From this, we find that n= 2 or M is a Hopf hypersurface, that is, Aξ = µξ,

where we have used (8). Now, we assume that n> 3. Then Levi-umbilicity

condition (11) yields that φA+Aφ= kφ, k 6= 0. Due to results of [11] (in

case of CPn), [19], [15] (in case of CHn), and [12] (in case of CEn) we find

the following.
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(I) If M̃n(c) = CPn, then M is locally congruent to one of the following:

(1) a geodesic hypersphere, that is, a tube of radius r over Pn−1C,

where 0< r < π
2 ,

(2) a tube of radius r over a complex quadric CQn−1, where 0< r < π
4 .

(II) If M̃n(c) = CHn, then M is locally congruent to one of the following:

(1) a horosphere in CHn,

(2) a geodesic hypersphere or a tube of radius r ∈ R+ over a totally

geodesic CHn−1,

(3) a tube of radius r ∈ R+ over a totally real hyperbolic space RHn.

(III) If M̃n(c) = CEn, then M is locally congruent to one of the following:

(1) a sphere S2n−1(r) of radius r ∈ R+,

(2) a generalized cylinder Sn−1(r)× En of radius r ∈ R+.

Then, we have Theorem 1.

§5. Three-dimensional Levi-umbilical hypersurfaces in CP2

In this section, we give a construction of 3-dimensional Levi-flat or Levi-

umbilical real hypersurfaces in CP2. First, we prepare

Lemma 2. Let M2n−1 (n> 2) be a Levi-flat hypersurface in a Kähler

manifold M̃n. Then traceA= η(Aξ) on M . The converse holds when n= 2.

Lemma 3. Let M2n−1 (n> 2) be a Levi-umbilical hypersurface in a

Kähler manifold M̃n. Then traceA− η(Aξ) is a nonzero constant on M .

The converse holds when n= 2.

Now, according to [9], we construct Levi-flat or Levi-umbilical hypersur-

faces respectively in CP2. We denote Sn as the unit sphere of which the

center is the origin in Rn+1. We consider the following submanifolds of C3:

C3 ⊃ S5

⊃ sin rS3 × cos rS1

⊃ sin r(sin θS1 × cos θS1)× cos rS1,

where 0< r, θ < π/2. Let γ : I → (0, π/2)× (0, π/2), γ(s) = (r(s), θ(s)) be a

(nonconstant) curve defined on an interval I. We put
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(21)
M̃γ :=

⋃
s∈I sin r(s)(sin θ(s)S1 × cos θ(s)S1)× cos r(s)S1

and Mγ := π(M̃γ),

where π : S5→ CP2 is the Hopf fibration. Then M̃γ is a hypersurface of S5,

and since M̃γ is invariant under the S1-action, Mγ is a real hypersurface of

CP2. Note that Mγ is foliated by flat Lagrangian torus T 2 in CP2.

Let x, y, z ∈ S1 ⊂ C and denote

x̃= sin r sin θx, ỹ = sin r cos θy, z̃ = cos rz,

where 0< r, θ < π/2. Then the position vector Ψ of M̃γ is given by

Ψ = Ψ(r(s), θ(s)) = (x̃, ỹ, z̃) = (sin r sin θx, sin r cos θy, cos rz)

and unit normal vectors N1 and N2 of 3-dimensional submanifold

sin r(sin θS1 × cos θS1)× cos rS1

in S5 at Ψ are given as

N1 :=
∂Ψ

∂r
= (cot rx̃, cot rỹ,−tan rz̃) = (cos r sin θx, cos r cos θy,−sin rz)

and

N2 :=
1

sin r

∂Ψ

∂θ
=

(
cot θ

sin r
x̃,−tan θ

sin r
ỹ, 0

)
= (cos θx,−sin θy, 0).

Put Ψ̇ = d
dsΨ(r(s), θ(s)). Then we have

Ψ̇ = ṙN1 + θ̇ sin rN2

(
ṙ =

dr

ds
, θ̇ =

dθ

ds

)
.

By taking an arc-length parameterization, we may put (ṙ)2 + (θ̇)2 sin2 r = 1

and

(22) ṙ = cos α, θ̇ =
sin α

sin r
.

Hence Ψ̇ = cos αN1 + sin αN2. Let

Ñ =−sin αN1 + cos αN2.
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Then Ñ is a unit normal vector field of M̃γ in S5. Since Ñ is S1-invariant,

N := π∗(Ñ) is a unit normal vector field of Mγ in CP2. We have

Ψ̇ =

((
cos α cot r + sin α

cot θ

sin r

)
x̃,(

cos α cot r − sin α
tan θ

sin r

)
ỹ,− cos α tan rz̃

)
= ((cos α cos r sin θ + sin α cos θ) x,

(cos α cos r cos θ − sin α sin θ) y,− cos α sin rz) ,

and

Ñ =

((
−sin α cot r + cos α

cot θ

sin r

)
x̃,(

−sin α cot r − cos α
tan θ

sin r

)
ỹ, sin α tan rz̃

)
= ((−sin α cos r sin θ + cos α cos θ) x,

(−sin α cos r cos θ − cos α sin θ)y, sin α sin rz) .

The tangent space of M̃γ at Ψ is spanned by the following orthonormal

vectors:

iΨ, iÑ , iΨ̇ and Ψ̇.

Here iΨ is a unit vertical vector of the Hopf fibration π : S5→ CP2 and the

others are horizontal.

Let D and Ã be the flat connection of C3 and the shape operator of the

hypersurface M̃γ in S5, respectively. Then by the Weingarten formula, we

have

ÃW =−DW Ñ for W ∈ TΨ(M̃γ).

Covariant differentiation of Ñ for Ψ̇ is given by

DΨ̇Ñ =
∂

∂s
Ñ =−α̇Ψ̇

+
(

(−sin α(−ṙ sin r sin θ + θ̇ cos r cos θ)− θ̇ cos α sin θ)x,

(−sin α(−ṙ sin r cos θ − θ̇ cos r sin θ)− θ̇ cos α cos θ)y, ṙ sin α cos rz
)

=−α̇Ψ̇+

(
(sin α cos α sin r sin θ − sin α

sin r
(sin α cos r cos θ + cos α sin θ))x,
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(sin α cos α sin r cos θ +
sin α

sin r
(sin α cos r sin θ − cos α cos θ))y,

cos α sin α cos rz
)

=−(α̇+ sin α cot r)Ψ̇.

Hence we obtain

(23) ÃΨ̇ = (α̇+ sin α cot r)Ψ̇.

Also we have

Ã(iΨ) =−iÑ ,

Ã(iÑ) =−iΨ + µiÑ + νiΨ̇,

Ã(iΨ̇) = νiÑ + λiΨ̇,

where

µ :=−〈D
iÑ
Ñ , iÑ〉, ν :=−〈D

iÑ
Ñ , iΨ̇〉, λ :=−〈DiΨ̇Ñ , iΨ̇〉.

Computations (2.8) of [9] yield:

µ = sin3 α(cot r − tan r) + 3 sin α cos2 α cot r − cos3 α

sin r
(cot θ − tan θ),

(24)

ν = cos α

(
sin2 α(cot r + tan r)− cos α sin α

sin r
(cot θ − tan θ)− cos2 α cot r

)
,

(25)

λ = sin α

(
sin2 α cot r − cos α sin α

sin r
(cot θ − tan θ)− cos2 α(cot r + tan r)

)
.

(26)

Let U =−π∗(iΨ̇). Then φU = π∗(Ψ̇). Also we have ξ =−JN =−π∗(iÑ).

Then the shape operator A of Mγ in CP2 with respect to N is given by

(27) Aξ = µξ + νU, AU = νξ + λU, AφU = (α̇+ sin α cot r)φU.
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Hence with respect to Mγ in CP2, we have

traceA− η(Aξ) = α̇+ sin α cot r + λ

= α̇+ sin α

(
(1 + sin2 α) cot r − cos α sin α

sin r
(cot θ − tan θ)

− cos2 α(cot r + tan r)

)
.(28)

Proposition 4. Let (r(s), θ(s), α(s)) be a solution of the system of

nonlinear ODE,

ṙ = cos α, θ̇ =
sin α

sin r
,

α̇+ sin α

(
(1 + sin2 α) cot r − cos α sin α

sin r
(cot θ − tan θ)

− cos2 α(cot r + tan r)

)
= 0,(29)

such that the initial condition satisfying 0< r(0), θ(0)< π/2. Then the real

hypersurface Mγ in CP2, defined by (21) is Levi-flat.

A special solution of (29) is given by

θ = constant, α≡ 0 mod π.

In this case, we have α̇+ sin α cot r = λ= 0 and Mγ is a ruled real hyper-

surface.

Proposition 5. Let k be a nonzero constant and let (r(s), θ(s), α(s))

be a solution of the system of nonlinear ODE,

ṙ = cos α, θ̇ =
sin α

sin r
,

α̇+ sin α

(
(1 + sin2 α) cot r − cos α sin α

sin r
(cot θ − tan θ)

− cos2 α(cot r + tan r)

)
= k,(30)

such that the initial condition satisfying 0< r(0), θ(0)< π/2. Then the real

hypersurface Mγ in CP2, defined by (21) is Levi-umbilical.
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A special solution of (30) is given by

r = constant, α≡ π/2 mod π.

In the case α= π/2, we have µ= 2 cot 2r, ν = 0 and α̇+ sin α cot r =

λ= cot r. Hence Mγ is a geodesic sphere of radius r (0< r < π/2) with

k = 2 cot r.
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[7] S. Ianus, Sulle varietà di Cauchy-Riemann, Rend. Accad. Sci. Fis. Mat. Napoli 39
(1972), 191–195.

[8] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space,
Trans. Amer. Math. Soc. 296(1) (1986), 137–149.

[9] M. Kimura, Some non-homogeneous real hypersurfaces in a complex projective space
I (Construction), Bull. Fac. Educ. Ibaraki Univ. 44 (1995), 1–16.

[10] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math.
Z. 202(3) (1989), 299–311.

[11] M. Kon, Pseudo-Einstein real hypersurfaces of complex space forms, J. Differential
Geom. 14(3) (1979), 339–354.

[12] M. Okumura, Contact hypersutfaces in certain Kaehlerian manifolds, Tôhoku Math.
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