TPLP 23 (4): 678695, 2023. (© The Author(s), 2023. Published by Cambridge University Press. 678
doi:10.1017/S1471068423000108  First published online 6 July 2023

Integrating Logic Rules with Everything Else,
Seamlessly

YANHONG A. LIU, SCOTT D. STOLLER, YI TONG and BO LIN
Stony Brook University, Stony Brook, NY 11794, USA
(e-mails: 1iu@cs.stonybrook.edu, stoller@cs.stonybrook.edu, yittong@cs.stonybrook.edu,
bolin@cs.stonybrook.edu)

submitted 6 February 2023; revised 7 April 2023; accepted 12 May 2023

Abstract

This paper presents a language, Alda, that supports all of logic rules, sets, functions, updates,
and objects as seamlessly integrated built-ins. The key idea is to support predicates in rules as
set-valued variables that can be used and updated in any scope, and support queries using rules
as either explicit or implicit automatic calls to an inference function. We have defined a formal
semantics of the language, implemented a prototype compiler that builds on an object-oriented
language that supports concurrent and distributed programming and on an efficient logic rule
system, and successfully used the language and implementation on benchmarks and problems
from a wide variety of application domains. We describe the compilation method and results of
experimental evaluation.

KEYWORDS: language design and implementation, logic rules, sets, comprehension, aggrega-
tion, quantification, functions, updates, objects, concurrent and distributed

1 Introduction

Logic rules are powerful for expressing complex reasoning and analysis problems, es-
pecially in critical areas such as program analysis, decision support, networking, and
security (Warren and Liu 2017; Liu 2018). However, developing application programs
that use logic rules remains challenging:

e Powerful logic languages and systems support succinct use of logic rules for complex
reasoning and analysis, but not as directly or conveniently for many other aspects of
applications—for example, data aggregation, numerical computation, input/output,
modular construction, and concurrency—that are more easily expressed using set
queries, functions, state updates, and object encapsulation (Maier et al. 2018).

e At the same time, commonly used languages for building applications support many
powerful features but not logic rules, and to use a logic rule system, tedious and
error-prone interface code is required—to pass rules and data to the rule system,
invoke operations of the rule system for answering queries, and pass the results back—
manually solving an impedance mismatch, similarly as in interfaces with relational
databases (Geiger 1995), making logic rules harder to use than necessary.

What is lacking is (1) a simple and powerful language that can express application prob-
lems by directly using logic rules as well as all other features without extra interface

L))

Check fi
https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press updates.


https://doi.org/10.1017/S1471068423000108
https://orcid.org/0000-0002-5742-6489
mailto:liu@cs.stonybrook.edu
mailto:stoller@cs.stonybrook.edu
mailto:yittong@cs.stonybrook.edu
mailto:bolin@cs.stonybrook.edu
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068423000108&domain=pdf
https://doi.org/10.1017/S1471068423000108

Integrating LogicRules with Everything Else, Seamlessly 679

code, and with a clear semantics for analysis as well as execution, plus (2) a compilation
framework for implementing this powerful language, in a practical way by extending a
widely used programming language, and leveraging best performance of logic program-
ming systems.

We have developed such a powerful language, Alda, that combines the advantages of
logic languages and commonly used languages for building applications, by supporting
direct use of all of logic rules, sets, functions, updates, and objects including concurrent
and distributed processes as seamlessly integrated built-ins with no extra interfaces.

e Sets of rules can be specified directly as other definitions can, where predicates in
rules are simply set-valued variables holding the set of tuples for which the predicate
is true. Thus, predicates can be used directly as set-valued variables and vice versa
without needing any extra interface, and predicates being set-valued variables are
completely different from functions or procedures, unlike in prior logic rule languages
and extensions.

e (Queries using rule sets are calls to an inference function that computes desired values
of derived predicates (i.e., predicates in conclusions of rules) given values of base
predicates (i.e., predicates not in conclusions of rules). Thus, queries as function calls
need no extra interface either, and a rule set can be used with predicates in it holding
the values of any appropriate set-valued variables.

e Values of predicates can be updated either directly as for other variables or by the in-
ference function; declarative semantics of rules are ensured by automatically maintain-
ing values of derived predicates when values of base predicates are updated, through
appropriate implicit calls to the inference function.

e Predicates and rule sets can be object attributes as well as global and local names,
just as variables and functions can.

We also defined a formal semantics that integrates declarative and operational seman-
tics. The integrated semantics supports, seamlessly, all of logic programming with rules,
database programming with sets, functional programming, imperative programming, and
object-oriented programming including concurrent and distributed programming. Note
that predicates as variables, and queries as calls with different predicate values, also avoid
the need for higher-order predicates or more sophisticated features for reusing rules on
different predicates in more complex logic languages.

Implementing such a powerful language is nontrivial, especially to support logic rules
together with updates and objects. We describe a compilation framework for implemen-
tation that achieves generally good performance.

e The framework implements Alda by building on an object-oriented language that
supports all other features but not logic rules, and uses an efficient logic rule system
for queries using rules.

e The framework considers and analyzes different kinds of updates to predicates in
different scopes and uses an efficient implementation for each kind to minimize calls
to the inference function while still ensuring the declarative semantics of rules.

e The framework also allows optimizations from decades of study of logic rules to be
added for further efficiency improvements, both for queries using rules and for incre-
mental queries under updates.

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068423000108

680 Y. A. Liu et al.

1 class CoreRBAC: # class for Core RBAC component/object

2 def setup(): # method to set up the object, with no arguments
3 self .USERS, self.ROLES, self.UR := {},{},{}

4 # set users, roles, user-role pairs to empty sets
5 def AddRole(role): # method to add a role

6 ROLES.add (role) # add the role to ROLES

7 def AssignedUsers(role): # method to return assigned users of a role

8 return {u: u in USERS | (u,role) in UR} # return set of users having the role

9 class HierRBAC extends CoreRBAC: # Hierarchical RBAC extending Core RBAC
def setup():
super () .setup () # call setup of CoreRBAC, to set sets as in there
self .RH := {} # set ascendant -descendant role pairs to empty set
def AddInheritance(a,d): # to add inherit. of an ascendant by a descendant
#
#

RTINSy

RH.add((a,d)) add pair (a,d) to RH
5 rules trans_rs: rule set defining transitive closure

6 path(x,y) if edge(x,y) # path holds for (x,y) if edge holds for (x,y)

7 path(x,y) if edge(x,z), path(z,y) # ... if edge(x,z) holds and path(z,y) holds
18 def transRH(Q): # to return transitive RH and reflexive role pairs
19 return infer (path, edge=RH, rules=trans_rs) + {(r,r): r in ROLES}

20 def AuthorizedUsers (role): # to return users having a role transitively

21 return {u: u in USERS, r in ROLES | (u,r) in UR and (r,role) in transRHQ)}

22 h = new(HierRBAC, []) # create HierRBAC object h, with no args to setup
23 h.AddRole(’chair?) # call AddRole of h with role ’chair’

24 h.AuthorizedUsers (’chair’) # call AuthorizedUsers of h with role ‘chair’

Fig. 1. An example program in Alda, for role-based access control (RBAC), demonstrating
logic rules used with sets, functions, updates, and objects.

There has been a significant amount of related research, as discussed in Section 5. Our
work contains two main contributions:

e A language that supports direct use of logic rules with sets, functions, updates, and
objects, all as built-ins, seamlessly integrated, with a formal semantics.

e A compilation framework for implementation in a widely used programming language,
where additional optimizations for rules can be exploited when available.

We have developed a prototype implementation of the compilation framework for Alda
and experimented with a variety of programming and performance benchmarks. Our
experiments strongly confirm the power and benefit of a seamlessly integrated language
and the generally good performance of the implementation. Our implementation and
benchmarks are publicly available (Tong et al. 2023).

2 Alda language

We first introduce rules and then describe how our overall language supports rules
with sets and functions as well as imperative updates and object-oriented programming.
Figure 1 shows an example program in Alda that uses all of rules, sets, functions, updates,
and objects. It will be explained throughout Sections 2.1-2.6 when used as examples. A
complete exposition of the formal semantics is in (Liu et al. 2023, Appendix A).

2.1 Logic rules

We support rule sets of the following form, where name is the name of the rule set,
declarations is a set of predicate declarations, and the body is a set of rules.

rules name (declarations):
rule+

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068423000108

Integrating LogicRules with Everything Else, Seamlessly 681

A rule is either one of the two equivalent forms below (for users accustomed to either
form), meaning that if hypothesis; through hypothesis; all hold, then conclusion
holds.

concluston if hypothesis;, hypothesisz, ..., hypothesisy

if hypothesis;, hypothesisy, ..., hypothesisy: conclusion
If a conclusion holds without a hypothesis, then if and : are omitted.

Declarations are about predicates used in the rule set, for advanced uses, and are
optional. For example, they may specify argument types of predicates, so rules can be
compiled to efficient standalone imperative programs (Liu and Stoller 2009) that are ex-
pressed in typed languages (Rothamel and Liu 2007). They may also specify assumptions
about predicates (Liu and Stoller 2020) to support different desired semantics (Liu and
Stoller 2021; 2022). We omit the details because they are orthogonal to the focus of the
paper. In particular, we omit types to avoid unnecessary clutter in code.

We use Datalog rules (Abiteboul et al. 1995; Maier et al. 2018) in examples, but
our method of integrating semantics applies to rules in general. Each hypothesis and
conclusion in a rule is an assertion, of the form

p(arg1,..., argq),
where p is a predicate, and each argj is a variable or a constant. We use numbers and
quoted strings to represent constants, and the rest are variables. As is standard for safe
rules, all variables in the conclusion must be in a hypothesis. If a conclusion holds without
a hypothesis, then each argument in the conclusion must be a constant, in which case
the conclusion is called a fact. Note that a predicate is also called a relation, relating the
arguments of the predicate.

Exzample. For computing the transitive closure of a graph in the running example,
the rule set, named trans_rs, in Figure 1 (lines 15-17) can be written. The rules are the
same as in dominant logic languages except for the use of lower-case variable names, the
change of :- to if, and the omission of dot at the end of each rule. |

Terminology. Consider a set of rules. Predicates not in any conclusion are called base
predicates, and the other predicates are called derived predicates. We say that a predicate
p depends on a predicate g if p is in the conclusion of a rule whose hypotheses contain g
or contain a predicate that depends on g recursively. We say that a derived predicate p
fully depends on a set s of base predicates if p does not depend on other base predicates.

Exzample. In rule set trans_rs, edge is a base predicate, and path is a derived predicate.
path depends on edge and itself. path fully depends on edge. ]

2.2 Integrating rules with sets, functions, updates, and objects

Our overall language supports all of rule sets and the following language constructs as

built-ins; all of them can appear in any scope—global, class, and local.

e Sets and set expressions (comprehension, aggregation, quantification, and high-level
operations such as union) to make non-recursive queries over sets easy to express.

e Function and procedure definitions with optional keyword arguments, and function
and procedure calls.

e Imperative updates by assignments and membership changes, to sets and data of other
types, in sequencing, branching, and looping statements.

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068423000108

682 Y. A. Liu et al.

o Class definitions containing object field and method (function and procedure) defini-
tions, object creations, and inheritance.

A name holding any value is global if it is introduced (declared or defined) at the global
scope; is an object field if it is introduced for that object; or is local to the function,
method, or rule set that contains it otherwise. After a name is defined, the value that it
is holding is available: globally for a global name, on the object for an object field, and
in the enclosing function, method, or rule set for a local name.

Example. Rule set trans rs in Figure 1 (defined on lines 15-17 and queried using a
call to an inference function. infer, on line 19) is used together with sets (defined on lines
3 and 12), set expressions (on lines 8, 19, and 21), functions (defined on lines 7-9, 18-19,
and 20-21), procedures (defined on lines 2-3, 5-6, 10-12, and 13-14), updates (on lines
3,6, 12, 14), classes (defined on lines 1 and 9, with inheritance), and objects (created on
line 22). No extra code is needed to convert edge and path, declare logic variables, and
SO on. |

The key ideas of our seamless integration of rules with sets, functions, updates, and
objects are: (1) a predicate is a set-valued variable that holds the set of tuples for which
the predicate is true, (2) queries using rules are calls to an inference function that com-
putes desired sets using given sets, (3) values of predicates can be updated either directly
as for other variables or by the inference function, and (4) predicates and rule sets can
be object attributes as well as global and local names, just as sets and functions can.

Integrated semantics, ensuring declarative semantics of rules. In our overall
language, the meaning of a rule set rs is completely declarative, exactly following the
standard least fixed-point semantics of rules (Fitting 2002; Liu and Stoller 2009):

Given values of any set s of base predicates in rs, the meaning of s is, for all derived
predicates in rs that fully depend on s, the least set of values that can be inferred,
directly or indirectly, by using the given values and the rules in rs;
for any derived predicate in rs that does not fully depend on s, that is, depends on
any base predicate whose values are not given, its value is undefined.
The operational semantics for the rest of the language ensures this declarative semantics
of rules. The precise constructs for using rules with sets, functions, updates, and objects
are described in Sections 2.3-2.6.

2.3 Predicates as set-valued variables

For rules to be easily used with everything else, our most basic principle in designing the
language is to treat a predicate as a set-valued variable that holds the set of tuples that
are true for the predicate, that is:

For any predicate p over values z1, ...,zq, assertion p( z1,..., z4) is true—that
is, p(z1,..., z4) is a fact—if and only if tuple (zi,...,z,) is in set p. Formally,
p( Z1,..., Tg) < (21, ...,Tq) in p

This means that, as variables, predicates in a rule set can be introduced in any scope—
as global variables, object fields, or variables local to the rule set—and they can be written
into and read from without needing any extra interface.

Example. In rule set trans_rs in Figure 1, predicate edge is exactly a variable holding
a set of pairs, such that edge(z,y) is true iff (z,y) is in edge, and edge is local to trans_rs.

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068423000108

Integrating LogicRules with Everything Else, Seamlessly 683

In general, edge can be a global variable, an object field, or a local variable of trans_rs.
Similarly for predicate path. |

Writing to predicates is discussed later under updates to predicates, but reading and
using values of predicates can simply use all operations on sets. We use set expressions
including the following:

exp in sexp membership

ezp not in sexp negated membership
sexp1 + sexpo union

{ezp: vi in sezpi,...,vy in sexpy | bezp} comprehension

agg sexzp, where agg is count, max, min, sum aggregation

some wj in sexpi, ...,vp in sexpy | bezp existential quantification

A comprehension returns the set of values of exp for all combinations of values of vari-
ables that satisfy all membership clauses v; in sexp; and condition bexp. An aggregation
returns the count, max, etc. of the set value of sexp. An existential quantification returns
true iff for some combination of values of variables that satisfies all wv; in sezp clauses,
condition bexp holds. When an existential quantification returns true, variables vq,...,vg
are bound to a witness. Note that these set queries, as in (Liu et al. 2017), are more
powerful than those in Python.

Ezxample. For computing the transitive closure T of a set E of edges, the following
while loop with quantification can be used (we will see that we use objects and updates
as in Python except for the syntax := for assignment in this paper):

T := E.copy()
while some (x,z) in T, (z,y) in E | (x,y) not in T:
T.add ((x,y)) m
In the comprehension and aggregation forms, each v; can also be a tuple pattern that
elements of the set value of sexp; must match (Liu et al. 2017). A tuple pattern is a tuple
in which each component is a non-variable expression, a variable possibly prefixed with
=, a wildcard _, or recursively a tuple pattern. For a value to match a tuple pattern, it
must have the corresponding tuple structure, with corresponding components equal the
values of non-variable expressions and variables prefixed with =, and with corresponding
components assigned to variables not prefixed with =; multiple occurrences of a variable

must be assigned the same value; corresponding components of wildcard are ignored.

Exzample. To return the set of second component of pairs in path whose first compo-
nent equals the value of variable x, and where that second component is also the first
component of pairs in edge whose second component is 1, one may use a set comprehension
with tuple patterns:

{y: (=x,y) in path, (y,1) in edge} n
Now that predicates in rules correspond to set-valued variables, instead of functions
or procedures, we can further see that logic variables, that is, variables in arguments of
predicates in rules, are like pattern variables, that is, variables not prefixed with = in

patterns. These variables are used for relating values, through what is generally called
unification; they do not hold values, unlike variables prefixed with = in patterns.

2.4 Queries as calls to an inference function

For inference and queries using rules, calls to a built-in inference function infer, of the
following form, are used, with queryy’s and p,=sexp;’s being optional:

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068423000108

684 Y. A. Liu et al.

infer(queryi, ..., query;, p1=Sexpi, ...,DP; = SexP;, rules=rs)
rs is the name of a rule set. Each sezp, is a set-valued expression. Each p, is a base
predicate of rs and is local to rs. Each guery, is of the form p (arg1,..., arg,), where
p is a derived predicate of rs, and each argument arg; is a constant, a variable possibly
prefixed with =, or wildcard _. A variable prefixed with = indicates a bound variable whose
value will be used as a constant when evaluating the query. So arguments of queries are
patterns too. If all arg;,’s are _, the abbreviated form p can be used.

Function infer can be called implicitly by the language implementation or explicitly by
the user. It is called automatically as needed and can be called explicitly when desired.

Exzample. For inference using rule set trans_rs in Figure 1, where edge and path are
local variables, infer can be called in many ways, including:

infer (path, edge=RH, rules=trans_rs)

infer (path(_,_), edge=RH, rules=trans_rs)

infer (path(1,_), path(_,=R), edge=RH, rules=trans_rs)
The first is as in Figure 1 (line 19). The first two calls are equivalent: path and path(_,.)
both query the set of pairs of vertices having a path from the first vertex to the second
vertex, following edges given by the value of variable ru. In the third call, path(1,_) queries
the set of vertices having a path from vertex 1, and path(_,=R) queries the set of vertices
having a path to the vertex that is the value of variable g.

If edge or path is a global variable or an object field, one may call infer on trans.rs
without assigning to edge or querying path, respectively. |

The operational semantics of a call to infer is exactly like other function calls, except
for the special forms of arguments and return values, and of course the inference function
performed inside:

(1) For each value k from 1 to 4, assign the set value of expression sexp;, to predicate
pr that is a base predicate of rule set rs.

(2) Perform inference using the rules in rs and the given values of base predicates of rs
following the declarative semantics, including assigning to derived predicates that
are not local.

(3) For each value k from 1 to 7, return the result of query queryy, as the k th component
of the return value. The result of a query with [ distinct variables not prefixed with
= is a set of tuples of [ components, one for each of the distinct variables in their
order of first occurrence in the query.

Note that when there are no p=sezp;’s, only defined values of base predicates that are not
local to rs are used; and when there are no queryy’s, only values of derived predicates
that are not local to rs may be inferred and no value is returned. This is the case for
implicit calls to infer on 7s.

2.5 Updates to predicates

Values of base predicates can be updated directly as for other set-valued variables, and
values of derived predicates are updated by the inference function.

Base predicates of a rule set rs that are local to rs are assigned values at calls to
infer on rs, as described earlier. Base predicates that are not local can be updated by
assignment statements or set update operations. We use

lexp := exp

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068423000108

Integrating LogicRules with Everything Else, Seamlessly 685

for assignments, where iezp can also be a nested tuple of variables, and each variable is
assigned the corresponding component of the value of ezp.

Derived predicates of a rule set rs can be updated only by calls to the inference
function on rs. The updates must ensure the declarative semantics of rs:

Whenever a base predicate of rs is updated in the program, the values of the derived
predicates in rs are maintained according to the declarative semantics of rs by calling
infer ON 78.

Updates to derived predicates of rs outside rs are not allowed, and any violation will
be detected and reported at compile time if possible and at runtime otherwise.

Simply put, updates to base predicates trigger updates to derived predicates, and other
updates to derived predicates are not allowed. This ensures the invariants that the derived
predicates hold the values defined by the rule set based on values of the base predicates,
as required by the declarative semantics. Note that this is the most straightforward
semantics, but the implementation can avoid many inefficiencies with optimizations.

Ezxample. Consider rule set trans_rs in Figure 1. If edge is not local, one may assign a
set of pairs to edge:

edge := {(1,8),(2,9),(1,2)}

If edge is local, the calls to infer in the example in Section 2.4 assign the value of rH to
edge.

If path is not local, then a call infer(edge=RH, rules=trans_rs) updates path, contrasting
the first two calls to infer in the example in Section 2.4 that return the value of path.

If path is local, the return value of infer can be assigned to variables. For example, for
the third call to infer in the example in Section 2.4, this can be

froml,toR := infer(path(1l,_), path(_,=R), edge=RH, rules=trans_rs)

If both edge and path are not local, then whenever edge is updated, an implicit call
infer(rules=trans.rs) is made automatically to update path. ]

For the RBAC example in Figure 1, different ways of using rules are possible, including
(1) allloc: adding a rule path(x,x) if role(x,x) to the rule set, adding role=ROLES in the call
to infer, and removing the union in function transkH, so all predicates are local variables;
(2) nonloc: as in allloc, except to replace predicates edge, role, and path with RH, ROLES,
and a new field transkH, respectively, replace call transRH() with field transRH, and remove
function transrH; (3) union: as in Figure 1; and other combinations of aspects of (1)—(3).

2.6 Using predicates and rules with objects and classes

Predicates and rule sets can be object fields as well as global and local names, just as
sets and functions can, as discussed in Section 2.2. This allows predicates and rule sets
to be used seamlessly with objects in object-oriented programming.

For other constructs than those described above, we use those in high-level object-
oriented languages. We mostly use Python syntax (looping, branching, indentation for
scoping, ‘:’ for elaboration, ‘#’ for comments, etc.) for succinctness, but with a few con-
ventions from Java (keyword new for object creation, keyword extends for subclassing, and
omission of seif, the equivalent of this in Java, when there is no ambiguity) for ease of
reading.

Example. We use role-based access control (RBAC) to show the need of using rules
with all of sets, functions, updates, and objects and classes.

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068423000108

686 Y. A. Liu et al.

RBAC is a security policy framework for controlling user access to resources based on
roles and is widely used in large organizations. The ANSI standard for RBAC (ANSI
INCITS 2004) was approved in 2004 after several rounds of public review (Sandhu et al.
2000; Jaeger and Tidswell 2000; Ferraiolo et al. 2001), building on much research during
the preceding decade and earlier. High-level executable specifications were developed for
the entire RBAC standard (Liu and Stoller 2007), where all queries are declarative except
for computing the transitive role-hierarchy relation in Hierarchical RBAC, which extends
Core RBAC.

Core RBAC defines functionalities relating users, roles, permissions, and sessions. It
includes the sets and update and query functions in class corerBaC in Figure 1, as in (Liu
and Stoller 2007).!

Hierarchical RBAC adds support for a role hierarchy, rH, and update and query func-
tions extended for ru. It includes the update and query functions in class HierRBAC in
Figure 1, as in (Liu and Stoller 2007), except that function transti() in (Liu and Stoller
2007) computes the transitive closure of rH plus reflexive role pairs for all roles in ROLES
by using a complex and inefficient while loop much worse than that in Section 2.3 (due
to Python’s lack of some with witness) plus a union with the set of reflexive role pairs
{(r,r): r in ROLES}, whereas function transrH() in Figure 1 simply calls infer and unions
the result with reflexive role pairs.

Note though, in the RBAC standard, a relation transkH is used in place of transrH(), in-
tending to maintain the transitive role hierarchy incrementally while rE and ROLES change.
It is believed that this is done for efficiency, because the result of transRH() is used con-
tinually, while RH and ROLES change infrequently. However, the maintenance was done
inappropriately (Liu and Stoller 2007; Li et al. 2007) and warranted the use of transRH()
to ensure correctness before efficiency.

Overall, the RBAC specification relies extensively on all of updates, sets, functions,
and objects and classes with inheritance, besides rules: (1) updates for setting up and
updating the state of the RBAC system, (2) sets and set expressions for holding the
system state and expressing set queries exactly as specified in the RBAC standard, (3)
methods and functions for defining and invoking update and query operations, and (4)
objects and classes for capturing different components—coreRBAC, HierRBAC, constraint
RBAC, their further refinement, extensions, and combinations, totaling 9 components,
corresponding to 9 classes, including 5 subclasses of HierkBac (ANSI INCITS 2004; Liu
and Stoller 2007). [

3 Compilation

We describe our compilation framework for implementing Alda, by building on an object-
oriented language that supports all features except rules and queries and on an efficient
logic rule engine for queries using rules. Three main tasks are (1) compiling rule sets to
generate rules accepted by the rule engine, (2) compiling queries using rules to generate
queries accepted by the rule engine, together with automatic conversion of data and query
results, and (3) compiling updates to predicates that require implicit automatic queries
and updates of the query results. The compiler must appropriately handle scoping of rule

1 Only a few selected sets and functions are included, and with small changes to names and syntax.

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068423000108

Integrating LogicRules with Everything Else, Seamlessly 687

sets and predicates for all three tasks. Besides that, task (1) is straightforward, task (2)
is also straightforward but tedious, and task (3) requires the most analysis, so we focus
on task (3) below.

We first describe how to compile all possible updates to predicates, starting with the
checks and actions needed to correctly handle updates for a single rule set with implicit
and explicit calls to infer. We then describe how to implement the inference in infer.
In (Liu et al. 2023, Appendix B), we systematize powerful optimizations that can be
added in the overall compilation framework; clearly separated handling of updates and
queries in our compilation framework allows optimizations to be added in a modular
fashion.

3.1 Compiling updates to predicates

The operational semantics to ensure the declarative semantics of a rule set rs is concep-

tually simple, but for efficiency, the implementation required varies, depending on the

kind of updates to base predicates of rs outside rs. Note that inside rs there are no
updates to base predicates of rs, by definition of base predicate.

(1) Local updates. Local variables of rs, that is, predicates local to rs, can be assigned
values only at explicit calls to infer on rs. Such a call passes in values of local
variables that are base predicates of rs before doing the inference. Values of local
variables that are derived predicates of rs can only be used in constructing answers
to the queries in the call, and the answers are returned from the call.

There are no updates outside rs to local variables that are derived predicates of rs,
by definition of local variables.

(2) Non-local updates. For updates to non-local variables of rs, an implicit call to

infer on 7s needs to be made only after every update to a base predicate of rs.
Statements outside rs that update derived predicates of rs are identified and re-
ported as errors.
In languages or application programs where variables hold data values, such as in
database languages and applications, these updates can be determined simply at
compile time, for example, if s holds a set value, then s :=s+{x} updates the set value
of s. This is also the case when logic rules are used in these languages and programs.
In programs where variables may be references to data values, each update needs to
check whether the updated variable may alias a predicate of rs, conservatively at
compile-time if possible, and at runtime otherwise.

To satisfy these requirements, the overall method for compiling an update to a variable
v outside rule sets is:

e In languages or application programs where variables hold data values, report a
compile-time error if v is a derived predicate of any rule set; otherwise, for each rule
set rs that contains v as a base predicate, insert code, after the update, that calls
infer on rs with no arguments for base predicates and no queries.

e Otherwise, if v may refer to a predicate in a rule set, insert code that does the following
after the update: if v refers to a derived predicate of any rule set, report a runtime
error and exit; otherwise for each rule set rs, if v refers to a base predicate of rs, call
infer on rs with no arguments for base predicates and no queries.

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068423000108

688 Y. A. Liu et al.

Our method for compiling an explicit call to infer on a rule set directly follows the
operational semantics of infer.

In effect, function infer is called to implement a wide range of control: from inferring
everything possible using all rule sets and values of all base predicates at every update,
to answering specific queries using specific rules and specific sets of values of specific base
predicates at explicit calls.

Obviously, updates in different cases may have significant impact on program effi-
ciency. Update analysis is needed to determine the case and generate correct code. Our
compilation method above minimizes calls to infer in each case.

3.2 Implementing inference and queries

Any existing method can be used to implement the functionality inside infer. The infer-
ence and queries for a rule set can use either bottom-up or top-down evaluation (Kifer
and Liu 2018; Tekle and Liu 2010; 2011), so long as they use the rule set and values of
the base predicates according to the declarative semantics of rules.

The inference and queries can be either performed by using a general logic rule engine,
for example, XSB (Sagonas et al. 1994; Swift et al. 2022), or compiled to specialized
standalone executable code as in, for example, (Liu and Stoller 2009; Rothamel and Liu
2007; Jordan et al. 2016), that is then executed. Our current implementation uses the
former approach, by indeed using the well-known XSB system, as described in Section 4,
because it allows easier extensions to support more kinds of rules and optimizations
that are already supported in XSB. Other powerful logic rule engines, including efficient
answer set programming (ASP) systems such as Clingo (Gebser et al. 2019), can certainly
be used also.

4 Implementation and experimental evaluation

We have implemented a prototype compiler for Alda. The compiler generates executable
code in Python. The generated code calls the XSB logic rule engine (Sagonas et al. 1994;
Swift et al. 2022) for inference using rules.

We implemented Alda by extending the DistAlgo compiler (Liu et al. 2012; 2017; Lin
and Liu 2022). DistAlgo is an extension of Python with high-level set queries as well as
distributed processes. The compiler is implemented in Python 3, and uses the Python
parser. So Python syntax is used in place of the ideal syntax presented in Section 2,
allowing any user with Python to run Alda directly.

The Alda implementation extends the Dist Algo compiler to support rule-set definitions,
function infer, and maintenance of derived predicates at updates to non-local variables.
It handles direct updates to variables used as predicates, not updates through aliasing,
as we found this to be the only update case in all benchmarks and other examples we
have seen; we think this is because using logic rules with updates is similar to using
queries and updates in relational databases, with no need of updates through aliasing.
Currently Datalog rules extended with unrestricted negation are supported, and well-
founded semantics computed by XSB is used; extensions for more general rules can be
handled similarly, and inference using XSB can remain the same. Calls to infer are
automatically added at updates to non-local base predicates of rule sets.

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068423000108

Integrating LogicRules with Everything Else, Seamlessly 689

In particular, the following Python syntax is used for rule sets, where a rule can be
either one of the two forms below, so the only restriction is that the name rules is reserved.

def rules (name = rsname):
conclusion, if_(hypothesisi, hypothesisa, ..., hypothesisp)
if (hypothesisi, hypothesisa, ..., hypothesisp): conclusion

Rule sets are translated into Prolog rules at compile time. The directive :- auto_table. is
added for automatic tabling in XSB.

For function infer, the implementation translates the values of predicates and the list
of queries into facts and queries in standard Prolog syntax, and translates the query
answers back to values of set variables. It invokes XSB using a command line in between,
passing data through files; this external interface has an obvious overhead, but it has not
affected Alda having generally good performance. infer automatically reads and writes
non-local predicates used in a rule set.

Note that the overhead of the external interface can be removed with an in-memory
interface from Python to XSB, which is actively being developed by the XSB team.?
However, even with the overhead of the external interface, Alda is still faster or even
drastically faster than half or more of the rule engines tested in OpenRuleBench (Liang
et al. 2009) for all benchmarks measured except DBLP (even though OpenRuleBench
uses the fastest manually optimized program for each problem for each rule engine), and
than not using rules at all (without manually writing or adapting a drastically more
complex, specialized algorithm implementation for each problem).

Building on top of DistAlgo and XSB, the compiler consists of about 1100 lines of
Python and about 50 lines of XSB. This is owing critically to the overall framework and
comprehensive support, especially for high-level queries, already in the DistAlgo compiler
and to the powerful query engine of XSB. The parser for the rule extension is about 270
lines, and update analysis and code generation for rules and inference are about 800 lines.

The current compiler does not perform further optimizations, because they are or-
thogonal to the focus of this paper, and our experiments already showed generally good
performance. Further optimizations can be implemented in either the Alda compiler to
generate optimized rules and tabling and indexing directives, or in XSB. Incremental
maintenance under updates can also be implemented in either one, with a slightly richer
interface between the two.

We discuss our experiments on the benchmarks summarized in Table 1. Detailed de-
scription of the benchmarks are in (Liu et al. 2022; 2023). Just as the benchmarks
selected, the experiments selected are also meant to show generally good performance
even under the most extreme overhead penalties we have encountered—runs with large
data (DBLP and PA), large query results (transitive closure TC), large rules (Wine), fre-
quent switches among different ways of using rules and other features (RBAC and PA),
and frequent external invocations of the rule engine (RBAC). Our extensive experiments
with other uses of Alda have experienced minimum performance overhead.

2 A version for Unix, not yet Windows, has been released: passing data of size 100 million in memory
took about 30 nanoseconds per element (Swift et al. 2022, release notes). So even the largest data
in our experiments, of size a few millions, would take 0.1-0.2 seconds to pass in memory, instead of
10-20 seconds with the current external interface.

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068423000108

690 Y. A. Liu et al.

Table 1. Benchmarks from different kinds of problems. RBAC benchmarks are for differ-
ent ways of using rules as at the end of Section 2.4. PA is a mizture of problems from
class hierarchy analysis. Under Variants, suffizes py and da indicate using while loops
like that in Section 2.3 in Python and DistAlgo, respectively, instead of using rules.

Variants
Benchmark sets Benchmarks and timing  Problem kinds Code/data size
Open- 13 incl. LUBM, TCrev, Many kinds of Largest rule set:
RuleBench Mondial, DBLP, TCda, rules and queries, 967 rules,
(Liang et al. 2009) TC, WordNet, TCpy, but missing Largest data size:
Wine ORBtimer  aggregate queries 2.4M+
RBAC RBACallloc, RBACda, Interleaved object Program size:
as in RBACnonloc, RBACpy, queries and updates 385-423,
Section 2.6 RBACunion RBACtimer with function and Data size:
recursive rules 10K+
Program PA (on any prog.: PAopt, Interleaved rules, Program size:
Analysis numpy, pandas, PAtimer aggregate and set 55 XSB, 33 Alda,
matplot, pytorch, queries, and largest data size:
sympy, etc.) recursive functions  5.1M+

All measurements were taken on a machine with an Intel Xeon X5690 3.47 GHz CPU,
94 GB RAM, running 64-bit Ubuntu 16.04.7, Python 3.9.9, and XSB 4.0.0. For each
experiment, the reported running times are CPU times averaged over 10 runs. Garbage
collection in Python was disabled for smoother running times when calling XSB. Program
sizes are numbers of lines excluding comments and empty lines. Data sizes are number
of facts.

We summarize the results from the experiments below. Detailed measurements and
explanations are in (Liu et al. 2022; 2023).

e Compared with XSB programs in OpenRuleBench, the corresponding Alda programs
are much smaller, almost all by dozens or even hundreds of lines, because all bench-
marking code is in a single shared 45-line ORBtimer, much easier in Python than
XSB. Compilation times are all 0.6 seconds or less.

e Running times for all benchmarks and variants, except for PA, are as expected, for
example, TC is drastically faster than TCpy and T'Cda, and essentially as fast as
XSB if not for the overhead of using external interface with XSB; and RBACnonloc is
much faster than RBACallloc due to updates being much less frequent than queries.
The overhead of using external interface is obvious: for example, for TC, up to 5.9
seconds, out of 29.2 seconds, for graphs of 100K edges; for PA, 13.1 seconds, out of
15.2 seconds, on the largest program, SymPy; and worst for DBLP, 26.9 seconds, out
of 30.6 seconds, on over 2.4M facts.

However, even so, Alda is competitive, as described above, and the overhead is ex-
pected to be reduced to 1% of it with an in-memory Python-XSB interface.

e For PA, the corresponding XSB programs were all slower and even drastically slower
than Alda programs, even 120 times slower on PyTorch. Significant effort was spent

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068423000108

Integrating LogicRules with Everything Else, Seamlessly 691

on performance debugging and manual optimization before we eventually created a
version that is faster than Alda—>5.1 vs. 15.2 seconds on SymPy.

5 Related work and conclusion

There has been extensive effort in design and implementation of languages to support
programming with logic rules together with other programming paradigms, by extending
logic languages, extending languages in other paradigms, or developing multi-paradigm
or other standalone languages.

A large variety of logic rule languages have been extended to support sets, functions,
updates, and/or objects, etc. (Kifer and Liu 2018; Korner et al. 2022). For example,
see Maier et al. (2018) for Datalog and variants extended with sets, functions, objects,
updates, higher-order extensions, and more. In particular, many Prolog variants support
sets, functions, updates, objects, constraints, etc. For example, Prolog supports assert
for updates, as well as cut and negation as failure that are imperative instead of declar-
ative (Sterling and Shapiro 1994); Flora (Yang and Kifer 2000; Kifer et al. 2020) builds
on XSB and supports objects (F-logic), higher-order programming (HiLog), and updates
(Transaction Logic); and Picat (Zhou 2016) builds on B-Prolog and supports updates,
comprehensions, etc. Lambda Prolog (Miller and Nadathur 2012) extends Prolog with
simply typed lambda terms and higher-order programming. Functional logic languages,
such as Mercury (Somogyi et al. 1995) and Curry (Hanus 2013), combine functional
programming and logic programming. Some logic programming systems are driven by
scripting externally, for example, using Lua for IDP (Bruynooghe et al. 2014), and shell
scripts for LogicBlox (Aref et al. 2015). Additional examples of Datalog extensions in-
clude Flix (Madsen et al. 2016; Madsen and Lhotdk 2020), which supports lattices and
monotone functions, and DDlog (Ryzhyk and Budiu 2019), which supports incremental
maintenance under updates to input relations. These languages and extensions do not
support predicates as set-valued variables together with commonly used updates and
objects in a simple and direct way, or do not support them at all.

Many languages in other programming paradigms, especially including imperative lan-
guages and object-oriented languages, have been extended to support rules by being a
host language. This is generally through explicit library interfaces of the host languages
to connect with a particular logic language, for example, a Java interface for XSB through
InterProlog (Calejo 2004; Swift et al. 2022), C++ and Python interfaces for ASP sys-
tems dlvhex (Redl 2016) and Potassco (Banbara et al. 2017), a Python interface for IDP
(Vennekens 2017), Rust and other interfaces for DDlog (Ryzhyk and Budiu 2019), and
many more, for example, for miniKanren (Byrd 2009). Hosting logic languages through
explicit interfaces requires programmers to write extra wrapper code for going to the rule
language and coming back—declare predicates and/or logic variables, wrap features in
special objects, functions, macros, etc., and/or convert data to and from special repre-
sentations. They are in the same spirit as interfaces such as JDBC (Reese 2000) for using
database systems from languages such as Java.

Multi-paradigm languages and other standalone languages have also been developed.
For example, the Mozart system for the Oz multi-paradigm programming language (Roy
and Haridi 2004) supports logic, functional, and constraint as well as imperative and
concurrent programming. However, it is similar to logic languages extended with other
features, because it supports logic variables, but not state variables to be assigned

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068423000108

692 Y. A. Liu et al.

to as in commonly used imperative languages. Examples of other languages involv-
ing logic and constraints with updates and/or objects include LOGRES (Cacace et al.
1990), which integrates object-oriented data modeling and updates with rules under
inflationary semantics; TLA+ (Lamport 1994), a logic language for specifying actions;
CLAIRE (Caseau et al. 2002), an object-oriented language that supports functions, sets,
and rules whose conclusions are actions; LINQ (Meijer et al. 2006; LINQ 2023), an ex-
tension of C# for SQL-like queries; IceDust (Harkes et al. 2016), a Java-based language
for querying data with path-based navigation and incremental computation; extended
LogiQL in SolverBlox (Borraz-Sénchez et al. 2018), for mathematical and logic pro-
gramming on top of Datalog with updates and constraints; and other logic-based query
languages, for example, Datomic (Anderson et al. 2016) and SOUL (De Roover et al.
2011). These are either logic languages lacking general imperative and objected-oriented
programming constructs, or imperative and object-oriented languages lacking the power
and full declarativeness of logic rules.

In conclusion, Alda supports ease of programming with logic rules together with all
of sets, functions, updates, and objects as seamlessly integrated built-ins, without extra
interfaces or boiler-plate code. As a direction for future work, many optimizations can
be added to improve the efficiency of implementations. This includes optimizing the
logic rule engines used (Liu and Stoller 2009; Tekle and Liu 2011), the interfaces and
interactions with them, and using other efficient rule systems such as Clingo (Gebser
et al. 2019) and specialized rule implementations such as Souffle (Jordan et al. 2016) to
obtain the best possible performance.

Acknowledgments

We thank David S. Warren for an initial 28-line XSB program for interface to XSB, and
Tuncay Tekle for help implementing some benchmarks and running some preliminary
experiments. We also thank Thang Bui for additional applications in program analysis
and optimization, and students in undergraduate and graduate courses for using Alda
and its earlier versions, called DA-rules.

This work was supported in part by NSF under grants CCF-1954837, CCF-1414078,
and IIS-1447549 and ONR under grants N00014-21-1-2719, N00014-20-1-2751, and
N00014-15-1-2208.

References

ABITEBOUL, S., HULL, R. AND VIANU, V. 1995. Foundations of Databases: The Logical Level.
Addison-Wesley.

ANDERSON, J., GAARE, M., HoLGUiN, J., BAILEY, N. AND PRATLEY, T. 2016. The Datomic
database. In Professional Clojure. Wiley Online Library, Chapter 6, 169-215.

ANSI INCITS. 2004. Role-Based Access Control. ANSI INCITS 359-2004, American National
Standards Institute, International Committee for Information Technology Standards.

ARgrF, M., TEN CATE, B., GREEN, T. J., KIMELFELD, B., OLTEANU, D., Pasaric, E.,
VELDHUIZEN, T. L. AND WASHBURN, G. 2015. Design and implementation of the LogicBlox
system. In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data. 1371-1382. https://doi.org/10.1145/2723372.2742796.

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1017/S1471068423000108

Integrating LogicRules with Everything Else, Seamlessly 693

BANBARA, M., KAUFMANN, B., OSTROWSKI, M. AND SCHAUB, T. 2017. Clingcon: The next
generation. Theory and Practice of Logic Programming 17, 4, 408-461.

BoRRAZ-SANCHEZ, C., KLABJAN, D., PasaLic, E. AND AREF, M. 2018. SolverBlox: Algebraic
modeling in Datalog. In Declarative Logic Programming: Theory, Systems, and Applications,
M. Kifer and Y. A. Liu, Eds. ACM and Morgan & Claypool, Chapter 6, 331-356. https://
doi.org/10.1145/3191315.3191322.

BRUYNOOGHE, M., BLOCKEEL, H., BoGAERrTS, B., DE CAT, B., DE POOTER, S., JANSEN,
J., LABARRE, A., RAMON, J., DENECKER, M. AND VERWER, S. 2014. Predicate logic as a
modeling language: Modeling and solving some machine learning and data mining problems
with IDP3. Theory and Practice of Logic Programming 15, 6, 783-817. https://doi.org/10.
1017/S147106841400009X.

ByrD, W. E. 2009. Relational programming in miniKanren: Techniques, applications, and im-
plementations. Ph.D. thesis, Indiana University.

CAcACE, F., CErl, S., CRESPI-REGHIZZI, S., TANCA, L. AND ZICARI, R. 1990. Integrating
object-oriented data modelling with a rule-based programming paradigm. In Proceedings of
the 1990 ACM SIGMOD International Conference on Management of Data, 225—236.

CALEJO, M. 2004. InterProlog: Towards a declarative embedding of logic programming in Java.
In Proceedings of the 9th European Conference on Logics in Artificial Intelligence. LNCS, vol.
3229. Springer, 714-717.

CASEAU, Y., JOsSET, F.-X. AND LABURTHE, F. 2002. Claire: Combining sets, search and rules
to better express algorithms. Theory and Practice of Logic Programming 2, 6, 769-805.

DE ROOVER, C., NOGUERA, C., KELLENS, A. AND JONCKERS, V. 2011. The SOUL tool suite
for querying programs in symbiosis with Eclipse. In Proceedings of the 9th International Con-
ference on Principles and Practice of Programming in Java, 71-80.

FERrAIOLO, D. F., SANDHU, R., GAVRILA, S., KUuHN, D. R. AND CHANDRAMOULI, R. 2001.
Proposed NIST standard for role-based access control. ACM Transactions on Information
and Systems Security 4, 3, 224-274.

Frrring, M. 2002. Fixpoint semantics for logic programming: A survey. Theoretical Computer
Science 278, 1, 25-51.

GEBSER, M., KAMINSKI, R., KAUFMANN, B. AND ScHAUB, T. 2019. Multi-shot ASP solving
with clingo. Theory and Practice of Logic Programming 19, 1, 27-82. https://doi.org/10.
1017/51471068418000054.

GEIGER, K. 1995. Inside ODBC. Microsoft Press.

HanNus, M. 2013. Functional logic programming: From theory to Curry. In Programming Logics.
Springer, 123-168.

HARkES, D. C., GROENEWEGEN, D. M. AND VISSER, E. 2016. IceDust: Incremental and even-
tual computation of derived values in persistent object graphs. In 30th European Conference
on Object-Oriented Programming. LIPIcs, vol. 56. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 11:1-11:26.

JAEGER, T. AND TIDSWELL, J. 2000. Rebuttal to the NIST RBAC model proposal. In Proceed-
ings of the 5th ACM Workshop on Role Based Access Control. 66.

JOrRDAN, H., ScHOLZ, B. AND SUBOTIC, P. 2016. Soufflié: On synthesis of program analyzers.
In Proceedings of the International Conference on Computer Aided Verification. Springer,
422-430.

KIFER, M. AND Liu, Y. A., Eds. 2018. Declarative Logic Programming: Theory, Systems, and
Applications. ACM and Morgan & Claypool.

KIFER, M., YAaNG, G., WAN, H. AND ZHAO, C. 2020. Ergo Lite (a.k.a. Flora-2): User’s Manual
Version 2.1. Stony Brook University. http://flora.sourceforge.net/. Accessed May 25,
2023.

KORNER, P., LEUSCHEL, M., BARBOsA, J. A., CosTA, V. S., DAHL, V., HERMENEGILDO,
M. V., MORALES, J. F., WIELEMAKER, J., D1az, D., ABREU, S. AND CIATTO, G. 2022. Fifty
years of Prolog and beyond. Theory and Practice of Logic Programming 22, 6, 776-858.

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1145/3191315.3191322
https://doi.org/10.1145/3191315.3191322
https://doi.org/10.1017/S147106841400009X
https://doi.org/10.1017/S147106841400009X
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
http://flora.sourceforge.net/
https://doi.org/10.1017/S1471068423000108

694 Y. A. Liu et al.

LAMPORT, L. 1994. The temporal logic of actions. ACM Transactions on Programming Lan-
guages and Systems 16, 3, 872-923.

L1, N., Byun, J.-W. AnND BERTINO, E. 2007. A critique of the ANSI standard on role-based
access control. IEEE Security and Privacy 5, 6, 41-49.

LiaNg, S., Fopor, P., WAN, H. AND KIFER, M. 2009. OpenRuleBench: An analysis of the
performance of rule engines. In Proceedings of the 18th International Conference on World
Wide Web. ACM Press, 601-610.

LiN, B. anD Liu, Y. A. 2014 (Latest update January 30, 2022). DistAlgo: A language for
distributed algorithms. http://github.com/DistAlgo. Accessed May 25, 2023.

LINQ 2023. Language Integrated Query (LINQ). https://docs.microsoft.com/dotnet/
csharp/ling. Accessed May 25, 2023.

Liu, Y. A. 2018. Logic programming applications: What are the abstractions and implementa-
tions? In Declarative Logic Programming: Theory, Systems, and Applications, M. Kifer and
Y. A. Liu, Eds. ACM and Morgan & Claypool, Chapter 10, 519-557. Also https://arxiv.
org/abs/1802.07284.

Liu, Y. A. AND STOLLER, S. D. 2007. Role-based access control: A corrected and simplified spec-
ification. In Department of Defense Sponsored Information Security Research: New Methods
for Protecting Against Cyber Threats. Wiley, 425-439.

Liu, Y. A. AND STOLLER, S. D. 2009. From Datalog rules to efficient programs with time and
space guarantees. ACM Transactions on Programming Languages and Systems 31, 6, 1-38.
https://doi.org/10.1145/1552309.1552311.

Liu, Y. A. AND STOLLER, S. D. 2020. Founded semantics and constraint semantics of logic
rules. Journal of Logic and Computation 30, 8 (Dec.), 1609-1638. Also http://arxiv.org/
abs/1606.06269.

Liu, Y. A. AND STOLLER, S. D. 2021. Knowledge of uncertain worlds: Programming with logical
constraints. Journal of Logic and Computation 81, 1 (Jan.), 193-212. Also https://arxiv.
org/abs/1910.10346.

Liu, Y. A. AND STOLLER, S. D. 2022. Recursive rules with aggregation: A simple unified
semantics. Journal of Logic and Computation 32, 8 (Dec.), 1659-1693. Also http://arxiv.
org/abs/2007.13053.

Liu, Y. A., STOLLER, S. D. AND LIN, B. 2017. From clarity to efficiency for distributed algo-
rithms. ACM Transactions on Programming Languages and Systems 39, 3 (May), 12:1-12:41.
Also http://arxiv.org/abs/1412.8461.

Liu, Y. A., STOLLER, S. D., LiN, B. AND GORBOVITSKI, M. 2012. From clarity to efficiency
for distributed algorithms. In Proceedings of the 27th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications, 395—410.

Liu, Y. A., STOLLER, S. D., TONG, Y. AND LIN, B. 2023. Integrating logic rules with everything
else, seamlessly. Computing Research Repository arXiv:2305.19202 [cs.PL).

Liu, Y. A., STOLLER, S. D., Tong, Y., LiN, B. AND TEKLE, K. T. 2022. Programming
with rules and everything else, seamlessly. Computing Research Repository arXiv:2205.1520/
[¢s.PL]. http://arxiv.org/abs/2205.15204.

Liu, Y. A., STOLLER, S. D., TONG, Y. AND TEKLE, K. T. 2023. Benchmarking for integrating
logic rules with everything else. In Proceedings of the 39th International Conference on Logic
Programming (Technical Communications). Open Publishing Association.

MADSEN, M. AND LHOTAK, O. 2020. Fixpoints for the masses: Programming with first-class
Datalog constraints. Proceedings of the ACM on Programming Languages 4, OOPSLA, 1-28.

MADSEN, M., YEE, M.-H. AND LHOTAK, O. 2016. From Datalog to Flix: A declarative language
for fixed points on lattices. ACM SIGPLAN Notices 51, 6, 194-208.

MAIER, D., TEKLE, K. T., KIFER, M. AND WARREN, D. S. 2018. Datalog: Concepts, history

and outlook. In Declarative Logic Programming: Theory, Systems, and Applications, M. Kifer
and Y. A. Liu, Eds. ACM and Morgan & Claypool, Chapter 1, 3-120.

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


http://github.com/DistAlgo
https://docs.microsoft.com/dotnet/csharp/linq
https://docs.microsoft.com/dotnet/csharp/linq
https://arxiv.org/abs/1802.07284
https://arxiv.org/abs/1802.07284
https://doi.org/10.1145/1552309.1552311
http://arxiv.org/abs/1606.06269
http://arxiv.org/abs/1606.06269
https://arxiv.org/abs/1910.10346
https://arxiv.org/abs/1910.10346
http://arxiv.org/abs/2007.13053
http://arxiv.org/abs/2007.13053
http://arxiv.org/abs/1412.8461
http://arxiv.org/abs/2205.15204
https://doi.org/10.1017/S1471068423000108

Integrating LogicRules with Everything Else, Seamlessly 695

MEUER, E., BECKMAN, B. AND BIERMAN, G. 2006. LINQ: reconciling object, relations and XML
in the .NET framework. In Proceedings of the 2006 ACM SIGMOD International Conference
on Management of Data. 706-706.

MILLER, D. AND NADATHUR, G. 2012. Programming with Higher-Order Logic. Cambridge
University Press.

REDL, C. 2016. The DLVHEX system for knowledge representation: Recent advances (system
description). Theory and Practice of Logic Programming 16, 5-6, 866-883.

REESE, G. 2000. Database Programming with JDBC and JAVA. O’Reilly Media, Inc.

RoTHAMEL, T. AND L1u, Y. A. 2007. Efficient implementation of tuple pattern based retrieval.
In Proceedings of the ACM SIGPLAN 2007 Workshop on Partial Evaluation and Program
Manipulation, 81-90. https://doi.org/10.1145/1244381.1244394.

Roy, P. V. AND HARIDI, S. 2004. Concepts, Techniques, and Models of Computer Programming.
MIT Press.

RyzHYK, L. AND Bupiu, M. 2019. Differential datalog. In Datalog 2.0, 3rd International Work-
shop on the Resurgence of Datalog in Academia and Industry, 56—67.

SAaconas, K., SwirT, T. AND WARREN, D. S. 1994. XSB as an efficient deductive database
engine. In Proceedings of the 1994 ACM SIGMOD International Conference on Management
of Data. ACM Press, 442-453.

SANDHU, R., FERRAIOLO, D. AND KUHN, R. 2000. The NIST model for role-based access control:
Towards a unified standard. In Proceedings of the 5th ACM Workshop on Role-Based Access
Control, 47-63.

SOMOGYI, Z., HENDERSON, F. J. AND CONWAY, T. C. 1995. Mercury, an efficient purely declara-
tive logic programming language. Australian Computer Science Communications 17, 499-512.

STERLING, L. AND SHAPIRO, E. 1994. The Art of Prolog, 2nd ed. MIT Press.

SwirT, T., WARREN, D. S.; SacoNas, K., FrEIRg, J., Rao, P., Cui, B., JounNsoN, E.,
DE CASTRO, L., MARQUES, R. F., SAHA, D., DAWSON, S. AND KIFER, M. 2022. The XSB
System Version 5.0,z. http://xsb.sourceforge.net. Latest release May 12, 2022.

TeEKLE, K. T. AND L1u, Y. A. 2010. Precise complexity analysis for efficient Datalog queries. In
Proceedings of the 12th International ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming, 35—44. https://doi.org/10.1145/1836089.1836094.

TeKLE, K. T. AND Liu, Y. A. 2011. More efficient Datalog queries: Subsumptive tabling beats
magic sets. In Proceedings of the 2011 ACM SIGMOD International Conference on Manage-
ment of Data, 661-672. http://doi.acm.org/10.1145/1989323.1989393.

Tonag, Y., LiN, B., Liu, Y. A. AND STOLLER, S. D. 2023. ALDA. http://github.com/
DistAlgo/alda. Accessed May 25, 2023.

VENNEKENS, J. 2017. Lowering the learning curve for declarative programming: A Python API
for the IDP system. In Proceedings of 19th International Symposium on Practical Aspects of
Declarative Languages. Springer, 86—102.

WARREN, D. S. AND Liu, Y. A. 2017. AppLP: A dialogue on applications of logic programming.
Computing Research Repository arXiv:1704.02375 [cs.PL].

YaNG, G. AnND KIFER, M. 2000. FLORA: Implementing an efficient DOOD system using a
tabling logic engine. In Proceedings of the 1st International Conference on Computational
Logic. Springer, 1078-1093. https://doi.org/10.1007/3-540-44957-4_72.

ZHoUu, N.-F. 2016. Programming in Picat. In Proceedings of the 10th International Symposium
on Rule Technologies: Research, Tools, and Applications. Springer, 3—18.

https://doi.org/10.1017/51471068423000108 Published online by Cambridge University Press


https://doi.org/10.1145/1244381.1244394
http://xsb.sourceforge.net
https://doi.org/10.1145/1836089.1836094
http://doi.acm.org/10.1145/1989323.1989393
http://github.com/DistAlgo/alda
http://github.com/DistAlgo/alda
https://doi.org/10.1007/3-540-44957-4_72
https://doi.org/10.1017/S1471068423000108

	Introduction
	Alda language
	Logic rules
	Integrating rules with sets, functions, updates, and objects
	Predicates as set-valued variables
	Queries as calls to an inference function
	Updates to predicates
	Using predicates and rules with objects and classes

	Compilation
	Compiling updates to predicates
	Implementing inference and queries

	Implementation and experimental evaluation
	Related work and conclusion
	References

