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Abstract

Bidirectional transformations (BXs) are a mechanism for maintaining consistency between multiple
representations of related data. The lens framework, which usually constructs BXs from lens com-
binators, has become the mainstream approach to BX programming because of its modularity and
correctness by construction. However, the involved bidirectional behaviors of lenses make the equa-
tional reasoning and optimization of them much harder than unidirectional programs. We propose
a novel approach to deriving efficient lenses from clear specifications via program calculation, a
correct-by-construction approach to reasoning about functional programs by algebraic laws. To sup-
port bidirectional program calculation, we propose contract lenses, which extend conventional lenses
with a pair of predicates to enable safe and modular composition of partial lenses. We define sev-
eral contract-lens combinators capturing common computation patterns including fold, filter, map,
and scan, and develop several bidirectional calculation laws to reason about and optimize contract
lenses. We demonstrate the effectiveness of our new calculation framework based on contract lenses
with nontrivial examples.
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1 Introduction

A bidirectional transformation (BX) is a pair of mappings between source and view data
objects, one in each direction. When the source is updated, a (forward) transformation
executes to obtain an updated view. For a variety of reasons, the view may also be
subjected to direct manipulation, requiring a corresponding (backward) transformation
to keep the source consistent. Much work has gone into this area with applications in
databases (Bancilhon & Spyratos, 1981; Bohannon et al., 2006; Tran et al., 2020), software
model transformation (Stevens, 2008; He & Hu, 2018; Tsigkanos et al., 2020; Stevens,
2020), graph transformation (Hidaka et al., 2010), etc; in particular, there has been several
language-based approaches that allow transformations in both directions to be programmed
together (e.g., Foster et al., 2007; Matsuda et al., 2007; Voigtländer, 2009; Ko et al., 2016).

The lens framework (Foster et al., 2007) is the leading approach to BX programming. A
lens consists of a pair of transformations: a forward transformation get producing a view
from a source, and a backward transformation put which takes a source and a possibly
modified view, and reflects the modifications on the view to the source, producing an
updated source. It can be represented as a record using Haskell-like notations as:

data S ↔ V = Lens {get : S → V , put : S → V → S}
The additional argument S in put ensures that a view does not have to contain all the
information of the source for backward transformation to be viable.

These two transformations should be well behaved in the sense that they satisfy the
following round-tripping properties:

put s (get s) = s GETPUT

get (put s v) = v PUTGET

The GETPUT property requires that no-change to the view should be reflected as no-change
to the source, while the PUTGET property requires that all changes in the view should be
completely reflected to the source so that the changed view can be successfully recovered
by applying the forward transformation to the updated source.

One main advantage of lenses is their modularity. The lens composition �1; �2 : S ↔ T
of lenses �1 : S ↔ V and �2 : V ↔ T is defined as:1

�1; �2 = Lens g p
where

g = get�2
◦ get�1

p s t′ = put�1
s (put�2

(get�1
s) t′)

In the forward direction, lens composition is simply a function composition of the two get
functions. In the backward direction, it will first put the updated t′ back to the intermediate
v produced by get�1

s using �2, and then put the updated v back to s.
Lenses are programmed in special languages that preserve round-tripping properties by

construction. One popular type of such languages are lens combinators, that is, higher-
order functions that construct complex lenses by composing simpler ones. Designing
lens languages that are expressive and easy-to-use has been a popular research topic

1 Note that the order of the composition of lenses is left-to-right, while the function composition is right-to-left.
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Contract lenses: Reasoning about bidirectional programs via calculation 3

(Bohannon et al., 2008; Foster et al., 2008; Barbosa et al., 2010; Hofmann et al., 2011;
Matsuda & Wang, 2015a, 2018; Ko et al., 2016), effectively creating the paradigm of
bidirectional programming.

This flourishing scene of languages invites the next question of software development:
what are the suitable methods of BX program construction?

Is there an algebraic theory of lens combinators that would underpin optimization of lens expres-
sions in the same way that the relational algebra and its algebraic theory are used to optimize
relational database queries? ... This algebraic theory will play a crucial role in a more serious
implementation effort. (Foster et al., 2007)

Motivated by this question, we propose a calculation framework which optimizes lenses
over lists from clear specifications using the algebraic structures of lens combinators.

1.1 Program calculation and the challenge of partiality

Program calculation (Bird, 1989b) is an established technique for reasoning about and
optimizing functional programs. The idea is that program developments may benefit from
simple properties and laws: equivalences between programming constructs. And conse-
quently, one may calculate with programs — in the same way that one calculates with
numeric quantities in algebra — to transform simple specifications into sophisticated and
efficient implementations. Each step of a calculation is a step of equational reasoning,
where properties of a fragment of the program, such as relations between data structures
and algebraic identities, are applied to transform the program structure. A great advantage
of this method is that the resulting implementation is guaranteed to be semantically equiv-
alent to the original specification, removing the onerous task of verifying the correctness
of the resulting implementation.

Our observation is that program calculation is a good fit to BX programming in a num-
ber of different ways. In terms of philosophy, both advocate correctness by construction
aiming at significantly reducing the verification and maintenance effort. In terms of rep-
resentation, both rely heavily on forming programs using composition and computation
patterns: in BX languages, the computation patterns are typically captured as lens combi-
nators which are designed to preserve well-behavedness, and in program calculation, the
use of computation patterns allows general algebraic laws such as fusion laws and Horner’s
rule (Gibbons, 2002, 2011) to be applied to specific instances without the need of special
analysis.

However, the more complex setting of BX as compared to unidirectional programs posts
unique challenges to program calculation. First of all, calculating BX cannot be superfi-
cially treated as calculating twice, once in each direction, as the round-tripping properties
bind get and put closely together, demanding simultaneous reasoning with both. Moreover,
lenses are often partially defined, making it hard to reason about the construction and com-
positions of combinators like map, fold, and scan. Semantic preservation amid calculation
is difficult in this case as well (note that a change in the definedness of a function changes
its semantics).

In this context, the term partiality links to round-tripping properties. A lens is partial
when its put component cannot successfully restore consistency for certain inputs, even
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if this function is total (Stevens, 2014).2 This partiality can be inherent, where the get
component is non-surjective; there is no meaningful put semantics for values outside the
codomain of get. This partiality can also be of design choices, as forcing a lens to be total
may introduce unwanted complexity. As an example, consider following definition of list
mapping as a (high-order) lens which takes a lens � of type A ↔ B and return a lens of type
[A] ↔ [B]:

bmap : (A ↔ B) → ([A] ↔ [B])
bmap � = Lens (map get�) p

where p (x : xs) (y : ys) = put� x y : p xs ys
p = [ ]

This lens is partial: when the view list is updated to be longer, the put component can-
not deal with the inconsistency of the structure (length) between the original source
list and the updated view list correctly; it only returns a new source list of the same
length as the original one. As a result, the PUTGET property is broken, as shown by
getbmap bid (putbmap bid [1] [2, 3]) = [2] �= [2, 3] where bid is the trivial identity lens. It is
common in practice to assume that only certain view updates are permitted, for example,
the length of the view list is preserved. With such an assumption, bmap serves as a correct
lens.

As a remark, for some lenses such as bmap, it is possible to make their definitions total
without contracts and any other constraints on sources and views by using more com-
plicated machinery such as default values (Foster et al., 2007; Pacheco & Cunha, 2011).
However, giving total definitions to lenses (especially their put components) requires more
involved types and semantics and leads to extra programming work for designing lenses.
It is totally not necessary to endure this extra complication when we can guarantee that
the changes on views always satisfy certain constraints, such as preserving the struc-
tures (lengths) of views. Moreover, forcing total definitions also results in challenges to
the development of calculation laws, again due to the additional complications of types
and semantics. For example, the calculation law of bmap with default values will require
additional semantic conditions on them as shown in Appendix A.

In this work, instead of insisting on giving total definitions to all lenses, we use a pair
of predicates to constrain the changes on the source and view so that partial lenses can be
constructed correctly and composed well. It also facilitates the development of simple but
powerful calculation laws.

1.2 Contributions

In this paper, we develop a calculation framework to reason about and optimize bidi-
rectional programs over lists. Our goal is to transform lenses with clear specifications to
efficient ones by applying calculation laws. Specifically, we propose an extension to tra-
ditional lenses, which we call contract lenses, to enable the construction and composition
of possibly partial lenses. We develop several contract-lens combinators, which are high-
order functions that characterize key bidirectional computation patterns on lists. And we

2 In this paper, we assume all functions are total.
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establish related calculation laws that lay the foundation of a general algebraic theory for
BX calculation.

Contract Lenses. The main idea of contract lenses is to utilize a pair of fine-grained
predicates, one on source and one on view, to characterize the bidirectional behavior on
propagating changes in a compositional way. Composition of contract lenses is justified by
the implication relation between the view predicate of the former lens and the source pred-
icate of the latter lens. We also provide an equivalence relation between contract lenses for
calculation. (Section 4)

Contract-Lens Combinators. We develop bidirectional computation patterns on the list
data structure using contract lenses, including bidirectional fold, map, and scan. An inter-
esting finding is that some bidirectional versions of map and scan cannot be expressed as
instances of bidirectional fold due to the requirement of maintaining the consistency of
inner dependencies of data structures (Section 5).

Contract-Lens Calculation Laws. We establish calculation laws that transform compo-
sitions of such combinators into equivalent but efficient forms. We provide bidirectional
versions of many algebraic laws, including fold fusion, map fusion, fold-map fusion, and
the scan lemma. These laws comprise a bidirectional algebraic theory that manipulates
lenses directly, which underpins the optimization of bidirectional programs (Section 6).

Mechanized Proofs in Agda. We prove the technical details of our calculation framework
in Agda, including the correctness of all contract-lens combinators and calculation laws,
as well as most of the examples. The proof consists of 4k lines of Agda code (Section 9
and Supplementary Files).

Moreover, we showcase the ability of our framework to construct and calculate lenses
by advanced examples that either have intricate partial bidirectional behaviors or are well
studied in both BXs and program calculation literature (Section 7). Section 8 discusses
related works, and Section 10 concludes.

One thing worth noting is that our primary goal is to propose a calculation frame-
work without restricting to any specific reasoning method. Users are free to calculate
contract lenses with pencil/paper proofs following the tradition of program calculation
(Bird, 1989b) or formalize the calculation via theorem provers like our mechanized proofs
in Agda. It is even possible to develop automatic reasoning tools based on our framework.

2 Background: Program calculation

Program calculation (Bird, 1989b; Gibbons, 2002) is a technique for constructing efficient
programs that are correct by construction. It is suitable for humans to derive efficient pro-
grams by hand (Bird, 1989b), as well as for compilers to optimize programs automatically
(Gill et al., 1993; Hu et al., 1996). The principle of program calculation is to express the
initial specification of the programming problem in terms of a set of higher-order functions,
which support generic algebraic laws, so that an efficient implementation can be calculated
through a process of equational reasoning based on the algebraic laws.
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2.1 Specification with folds

Fold is a computation pattern that captures structural recursion. In Haskell, there are two
versions of fold on list: foldl : (b → a → b) → b → [a] → b and foldr : (a → b → b) →
b → [a] → b, which can be used to define a range of functions. We give some examples
as follows, which are also used in the remainder of the paper:

maximum = foldr max (−∞)
sum = foldr (+) 0
map f = foldr (λa r → f a : r) [ ]
filter p = foldr (λa r → if p a then a : r else r) [ ]
scanr f b0 = foldr (λa bs → (f a (head bs)) : bs) [b0 ]
inits = foldr (λa r → [ ] : map (a:) r) [[ ]]
tails = foldr (λa r → (a : head r) : r) [[ ]]

Here, maximum computes the maximum of a list, sum sums up all the elements in a list,
map f applies function f to each element of a list, filter p accepts a list and keeps those
elements that satisfy p, scanr keeps the intermediate results of foldr in a list (similarly we
have a scanl), inits returns all initial segments (prefix lists) of a list, and tails returns all tail
segments (postfix lists) of a list.

Note that foldr f e has two arguments, which can be combined into one foldr′ alg where
alg is a function of type Either () (a, b) → b:

foldr′ : (Either () (a, b) → b) → [a] → b
foldr′ alg [ ] = alg (Left ())
foldr′ alg (x : xs) = alg (Right (x, foldr′ alg xs))

Now we have foldr f e = foldr′ alg, where alg is defined below:

alg (Left ()) = e
alg (Right (a, b)) = f a b

One advantage of writing foldr′ this way is that it can be generalized to arbitrary
algebraic data types such as trees (Gibbons, 2002), and its dual unfoldr′ can be easily
defined:

unfoldr′ : (b → Either () (a, b)) → b → [a]
unfoldr′ coalg b = case coalg b of

Left () → [ ]
Right (a, b) → a : unfoldr′ coalg b

There are some variants of the above functions that will be used later:

inits′ = tail ◦ inits
tails′ = init ◦ tails
scanl′ f x = tail ◦ scanl (flip f ) x
scanr′ f x = init ◦ scanr f x

The main difference is that they remove the empty list from the result. For example,
inits′ [1, 2, 3] = [[1], [1, 2], [1, 2, 3]].
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Note that the functions defined with fold are all executable programs. But we call
them specifications in the context of program calculation because such definitions (despite
being clear and concise) are not necessarily efficient (especially when multiple folds are
composed together). Program calculation is about turning such specifications into more
efficient (though likely less clear) implementations.

2.2 Algebraic laws

The foundation of program calculation is the algebraic laws, which can be applied step by
step to derive efficient implementations. The most important algebraic law for fold is the
foldr fusion law:

h ◦ f = g ◦ FL h

h ◦ foldr′ f = foldr′ g
FOLD FUSION

It states that a function h composed with a foldr′ can be fused into a single foldr′ if the
fusible condition h ◦ f = g ◦ FL h is satisfied. Note that FL is the so-called list functor,
which is defined by:

FL h = const () + id × h

where + and × on functions are defined by (f + g) (Left x) = Left (f x), (f + g) (Right y) =
Right (g y), and (f × g) (x, y) = (f x, g y). The function const and id are defined by
const x = x and id x = x.

There is a corresponding fusion law for foldl too. And for some special cases of fold,
the fusible conditions are always satisfied and therefore omitted from the laws:

map f ◦ map g = map (f ◦ g) MAP FUSION

foldr′ f ◦ map g = foldr′ (f ◦ Fm g) FOLD-MAP FUSION

map (foldl f e) ◦ inits = scanl f e SCAN LEMMA

Note that Fm is the so-called map functor, which is defined by:

Fm h = const () + h × id

It is worth noting that it is possible for an algebraic law to abstract a complex deriva-
tion step. For instance, the following Horner’s lemma shows a big step to fuse a complex
composition into a single foldl.

Lemma 1 (Horner’s Rule). Let ⊕ and ⊗ are associative operators. Suppose ⊗ distributes
through ⊕ and b is a left-identity of ⊕, then:

foldl (⊕) b ◦ map (foldl (⊗) a) ◦ tails = foldl (�) a

where x � y = (x ⊗ y) ⊕ a, and a is the value passed to foldl (⊗). �

2.3 A calculational example

The maximum segment sum problem (mss for short) is to compute the maximum of the
sums of the segments in a list. Developing an efficient implementation of it is challenging,
and it has become a classic example to show off the power of program calculation.
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The idea is to start with a straightforward specification as follows:

mss = maximum ◦ map maximum ◦ map (map sum) ◦ map tails ◦ inits

Given a list, we first enumerate all the segments by map tails ◦ inits. Then we calculate the
sum of all segments by map (map sum) and get the maximum of these results of sum by
maximum ◦ map maximum. This implementation is easy to understand but very inefficient
(O(n3) where n is the length of the list). Through program calculation, one can step-by-step
rewrite the program through applying a sequence of algebraic laws to reach a version that
has time complexity O(n). The details of the calculation can be found in Bird (1989a).

The challenge that this paper aims to address is: Can the same be done for bidirectional
programs — deriving efficient lenses from clear specifications?

3 Overview

In this section, we informally introduce contract lenses and demonstrate how they facilitate
the construction of a bidirectional program calculation framework.

3.1 Taming partiality with contract lenses

The core idea of contract lenses is to enrich traditional lenses with source and view
conditions (also called contracts) restricting the changes on source and view, as below:

{cs} � {cv}
where � is a lens with only get and put. The contracts are highlighted through the paper.
Though we write cs and cv around the lens � for readability in this section, a contract lens
is formally defined as a four-tuple consisting of get, put, cs, and cv.3

This is a BX setting, so we assume that it is the views that are actively updated and
the sources are passively changed accordingly. Given a source s and an updated view v,
the view condition cv is a predicate that takes two arguments: the original view get� s
and updated view v, restricting the permitted values of the updated view in relation to the
original view. The source condition cs has a similar structure. It takes two arguments: the
original source s and the updated source put� s v, specifying an invariant that must hold for
source changes as a result of valid view changes.

For the list mapping lens bmap we have seen in the introduction, we are interested in a
condition that rules out any changes to the structure (length) of the view, which we specify
as the following predicate:

eqlength = λxs xs′ → length xs = length xs′

This condition is enough to ensure that the put component of bmap can always restore
consistency between the updated view and source without breaking the round-tripping
properties. In addition, we can conclude for bmap that if the view length does not change,

3 In spite of the similaritye of syntax, contracts are different from Hoare logic, which we will discuss in details
in Section 8.2.

https://doi.org/10.1017/S0956796823000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000059


Contract lenses: Reasoning about bidirectional programs via calculation 9

the source length does not change either. This gives rise to the following contract lens
where {eqlength} serves as both the view and source conditions:4

{eqlength} bmap � {eqlength}
Two lenses can be composed if the view condition of the former matches the source
condition of the latter. For example, we can compose two bmaps:

{eqlength} bmap �1 {eqlength}; {eqlength} bmap �2 {eqlength}
With contract lenses, the partiality issues of lens composition is reduced to local reasoning
of adjacent conditions. Moreover, since we always want the modification on view (and
source) to satisfy the contracts, the round-tripping properties also only need to hold when
the contracts are satisfied, which significantly simplify the design of lenses. For instance,
when designing {eqlength} bmap � {eqlength}, we do not need to consider how to put back
the changes to source when the length of view is changed any more.

The idea of introducing contracts is natural because when updating a view of type V in
a BX setting, we usually want the updated view to satisfy certain constraints (like being
of the same length as the original view), instead of allowing it to be any value of type V .
Another option of solving the partiality problem is to give total definitions to all lenses.
However, as we have discussed in Section 1.1, it leads to several obstacles to designing
lenses and developing a calculation framework, which we avoid by using contracts lenses.

3.2 Calculation with contract lenses

Once we have established the composition of contract lenses, we can start to design a
calculation framework for lenses.

For the sake of demonstration, we start with a contrived example: given a list of
nonempty lists, we extract all head elements of the lists and then filter out the even ele-
ments. (More realistic examples will be given in Section 7.) In the unidirectional setting,
one can apply the FOLD-MAP FUSION law to fuse the two passes of the list as follows:5

filter even ◦ map head
= { expressing filter as foldr }

foldr (λa r → if even a then a : r else r) [ ] ◦ map head
= { FOLD-MAP FUSION }

foldr ((λa r → if even a then a : r else r) ◦ head) [ ]

With contract-lens combinators, we can give a bidirectional version of the specification:

{eqlength} bmap bhead {eqlength}; {eqlength} bfilter even {ceven}
where bhead = CLens head (λxs x′ → x′ : tail xs)

The view condition of bfilter even is defined as:

ceven = λxs xs′ → eqlength xs xs′ ∧ all even xs′

4 One might expect a bidirectional version of map to have more complicated source and view conditions, for
example, imposing the source and view conditions of the parameter � to all elements in the list. In Section 5.2,
we will show alternative definitions of bidirectional map with different contracts.

5 Since all functions are total, here we assume the head and tail functions only take nonempty lists (for instance,
the List+ type in Agda stdlib implemented as a record of an element and a normal list).
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which depends on the predicate even.6 The combinator bfilter is a bidirectional version
of filter implemented by bfoldr′, which is a bidirectional version of foldr with contracts
(Section 5). We have already seen bmap in Section 1.1. In this example, bfilter even is also
given source and view conditions including eqlength, which is needed to be composed with
{eqlength} bmap bhead {eqlength}. The contracts of {eqlength} bfilter even {ceven} make
sense: if the number of even elements is not changed, the total number of elements will
neither be changed because the odd elements, which do not appear in the view, remain
invariant.

The advantage of calculating with contract lenses is that we only need to care about
the round-tripping properties under the source and view conditions, which simplifies the
design of lenses, and as a result simplifies the calculation laws. For bfoldr′, we have a
bidirectional version of FOLD-MAP FUSION law called BFOLDR’-BMAP FUSION, with
which we can bidirectionalize the calculation process of filter even ◦ map head we have
seen before:7

{eqlength} bmap bhead {eqlength}; {eqlength} bfilter even {ceven}
= { expressing bfilter as bfoldr′ }

{eqlength} bmap bhead {eqlength}; {eqlength} bfoldr′ (bfilterAlg even) {ceven}
= { BFOLDR’-BMAP FUSION }

{eqlength} bfoldr′ (bmapF bhead; (bfilterAlg even)) {ceven}
The bmapF is a bidirectional version of Fm used in the FOLD-MAP FUSION law, and

the bfilterAlg even is a bidirectional version of λa r → if even a then a : r else r defined in
Section 5.1.2.

This “banality” of the calculation is the strength of our framework, as we have success-
fully set up a system that allows programmers to reason about lenses in almost exactly the
same way as they have done for unidirectional programs for decades. In the rest of the
paper, we will formally develop the contract lens framework and continue to demonstrate
the kind of reasoning that it enables through examples far more advanced than the ones we
have seen in this section.

4 Contract lenses

In this section, we formally define contract lenses, a natural extension of the traditional
lenses with contracts. This novel construction enables us to express a wide class of partial
BXs while ensuring safe and modular composition.

4.1 Contract lenses

Lenses essentially manipulate changes. A put propagates a change in view back to a
change in source with respect to a get function. As we have already seen in Section 3,

6 The definition of the contracts of bfilter is technically given by the definition of bfilter, which will be more
clear in Section 5.1.2. Again, we write the contracts around bfilter for readability in this section.

7 We omit administrative parameters for contracts taken by higher-order contract lenses bfoldr′ and bmapF for
simplicity. They are easy to be reconstructed from the definitions of lens combinators.
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Contract lenses: Reasoning about bidirectional programs via calculation 11

to guarantee correct change propagation, we extend lenses with a pair of constraints, cs
and cv, describing the conditions of changes in the source and the view, respectively.

Definition 1 (Contract Lenses). A contract lens8 between source of type S and view of
type V consists of a pair of transformations get and put together with a pair of relations:
a source condition cs : S → S → Set and a view condition cv : V → V → Set.

data S ↔ V = CLens {
get : S → V ,
put : S → V → S,
cs : S → S → Set,
cv : V → V → Set

}
where the following round-tripping properties are satisfied for every s : S and v : V:

cv (get s) v ⇒ cs s (put s v) BACKWARDVALIDITY

cv (get s) v ⇒ get (put s v) = v CONDITIONEDPUTGET

cs s s ⇒ cv (get s) (get s) FORWARDVALIDITY

cs s s ⇒ put s (get s) = s CONDITIONEDGETPUT

�

For backward transformations, the BACKWARDVALIDITY law and the
CONDITIONEDPUTGET say that if the change in the view satisfies cv, then the change in
the source should satisfy cs, and the put-get law holds. For forward transformations, the
FORWARDVALIDITY law and the CONDITIONEDGETPUT say that if the source s satisfies
cs s s, then the view get s should satisfy cv, and the get-put law holds. The condition cs s s
in the CONDITIONEDGETPUT law is necessary to keep the system consistent: if the get-put
law put s (get s) = s holds, replacing v with get s in the BACKWARDVALIDITY law, we
have cs s (put s (get s)) = cs s s. The BACKWARDVALIDITY law and FORWARDVALIDITY

law are important for the proof of the Theorem 1, which states that the composition of
contract lenses preserves round-tripping properties. Essentially, they guarantee that the
contracts are propagated by get and put.

We have a few remarks to make here.
First, as we have discussed in Section 1, all functions including get and put components

of lenses are total in this paper. For simplicity, some function definitions are abridged and
lack some catch-all patterns. Complete definitions of these functions can be found in the
Agda formalization.

Second, to be more consistent with our Agda formalisation, we use the Set type in Agda
to represent the type for predicates. Note that any value b of type Bool can be transformed
into Set by using the expression b = True. For readability, we allow this transformation to
be implicit in the rest of the paper. That is to say, anywhere a value of type Set is needed,
we can fill in a value of type Bool.

8 The name contract lenses is inspired by the paradigm of Programming by Contract, which requires every
function to have a pre-condition and a post-condition. They are required to hold before entering the function
and after leaving the function, respectively.

https://doi.org/10.1017/S0956796823000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000059


12 H. Zhang et al.

Third, the role of source conditions in contract lenses are primarily for describing
the “effect” on source updates after ruling out those view updates, which can be seen
in the rule BACKWARDVALIDITY: when inputs are restricted to satisfy the view con-
dition, the corresponding outputs are guaranteed to satisfy the source condition. This
guarantee is necessary for contract-lens composition. The rule FORWARDVALIDITY and
CONDITIONEDGETPUT are conditioned on cs s s, a predicate on the identity source update,
which should hold in most of the cases. The requirement here is necessary for proving the
correctness of contract-lens composition. Also note that even though we add conditions
to the traditional GETPUT and PUTGET laws, we do not weaken the properties of lenses.
Since we always want them to hold, the condition cv (get s) v should always be satisfied
when we compute put s v, and the condition cs s s should always be satisfied when we
compute get s.9

We use the following notational conventions:
• We use cs�, cv�, get�, put� to refer to the source condition, view condition, forward

transformation, and backward transformation of a contract lens �, respectively.
• Lists start from index 1 and the notation xi refers to the i-th element of a list x.
Now we give some simple examples of contract lenses. We leave more interesting

examples in Section 5.

Example 1 (Embedding Traditional Lenses into Contract Lenses). As contract lenses are
extensions of traditional lenses, traditional lenses can be embedded into contract lenses
by adding dummy conditions ctrue, where ctrue = �. �

Example 2 (Bidirectional Inits). An interesting example is a bidirectional version of inits′

defined in Section 2.1. The view condition essentially describes the range of the inits′. It is
a little complicated, but this kind of detailed specification is needed for calculation:

binits : [a] ↔ [[a]]
binits = CLens inits′ p eqlength cv′

where p v′ = if null v′ then [ ] else last v′

cv′ v v′ = (∀ 1 < i ≤ |v′|, init v′
i = v′

i−1) ∧ (init v′
1 = [ ]) ∧ eqlength v v′

With the help of the condition on the view change (which keeps the “inits” structure), our
putback function becomes very simple, just returning the last element if it is not empty. �

4.2 Composition of contract lenses

Contract lenses are compositional, which is similar to that of traditional lenses, except that
we need to be sure that the change conditions match well.

Definition 2 (Composition of Contract Lenses). For two contract lenses �1 : S ↔ V and
�2 : V ↔ T, if ∀ (v : V ) (v′ : V ), cs�2 v v′ ⇒ cv�1 v v′ and ∀ v : V , cv�1 v v ⇒ cs�2 v v hold,
then they can be composed into a contract lens �1; �2 : S ↔ T as defined below.

9 We write get when we just want to use get as a total function without considering the satisfaction of the source
condition.
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�1; �2 = CLens g p cs�1 cv�2

where
g = get�2

◦ get�1

p s t = put�1
s (put�2

(get�1
s) t) �

Theorem 1 (Well-behaved Composition). For any two contract lenses �1 : S ↔ V and
�2 : V ↔ T, their composition �1; �2 : S ↔ T satisfies the round-tripping properties. �

Notice that we not only require the backward implication cs�2 v v′ ⇒ cv�1 v v′, but also
the forward one cv�1 v v ⇒ cs�2 v v. Intuitively, the latter is used to establish a connec-
tion between the FORWARDVALIDITY law of �1 and �2. Moreover, we can strengthen
the condition of composition to make it easier to use. We say that two predicates
c1 : A → A → Set and c2 : B → B → Set are equivalent, written as c1 ⇔ c2, if A = B and
∀ (a : A) (a′ : A), c1 a a′ ⇔ c2 a a′. The condition of composition can be strengthened to
cs�2 ⇔ cv�1 , which is sufficient in most cases.

4.3 Equivalence of contract lenses

Now we define an equivalence relation over contract lenses.

Definition 3 (Lens Equivalence). For lens �1 : S ↔ V and �2 : S ↔ V, we say �1 is
equivalent to �2, written as �1 = �2, if

• cs�1 ⇔ cs�2

• cv�1 ⇔ cv�2

• ∀ s : S, get�1
s = get�2

s
• ∀ (s : S) (v : V ), cv�1 (get�1

s) v ⇒ put�1
s v = put�2

s v
�

Theorem 2 (Lens Equivalence is an Equivalence Relation). The equivalence relation
between contract lenses is reflexive, symmetric, and transitive. �

There is nothing special about this definition of the equivalence relation. The equiv-
alence relation for contract lenses is the base for our equational program reasoning and
plays an important role in developing our program calculation theory of contract lenses.

5 Contract-lens combinators

Lens combinators have become a popular approach to programming BXs because of
their modularity and correctness-by-construction. In this section, we define several lens
combinators to capture fundamental patterns (higher-order functions) for easy construc-
tion of complex contract lenses in a compositional manner as well as to demonstrate the
expressiveness and flexibility of our new contract lens framework.

Since BXs can be considered as unidirectional forward programs with additional put
semantics, our idea is to bidirectionalize widely used recursion schemes in (forward)
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functional programming including fold, map, filter, and scan. The main challenge is that
these functions are usually not bijective, which requires contracts to make them total and
suitable for calculation. Different contracts will lead to different bidirectional version of
the same high-order functions and are useful for different situations. We will give both
total bidirectional versions of these functions, and their variants which have some addi-
tional conditions on the source and the view to make them flexible for composing with
each other. It will be interesting to see later that although map and scan can be imple-
mented by fold, it turns out to be more useful to implement bidirectional versions of map
and scan individually to attain better control over their contracts and behaviors.

5.1 Bidirectional fold

As we have seen in Section 2.1, folds are of vital importance in program calculation. We
start with bfoldr, a bidirectional version of foldr′, with trivial source and view conditions:

bfoldr : {� : Either () (S, V ) ↔ V | cs� ⇔ ctrue ∧ cv� ⇔ ctrue} → ([S ] ↔ V )

One challenge for designing higher-order contract lenses is that they usually impose certain
constraints to the contracts of their lens parameters. For instance, a trivial bidirectional
version of foldr′ requires the parameter lens to have the trivial contract ctrue. To specify
such requirements, we use similar syntax to refinement types, which is easily readable and
understandable by humans and is also suitable for pencil/paper proofs. In theorem provers,
one could use existential types to express the requirements of contracts like our Agda
formalization.

We introduce the following syntactic sugar to specify the source and view conditions of
parameters for higher-order contract lenses:

{cs′} S ↔ V {cv′} ≡ {� : S ↔ V | cs� ⇔ cs′ ∧ cv� ⇔ cv′}
The type of bfoldr can be simplified to

bfoldr : ({ctrue} Either () (S, V ) ↔ V {ctrue}) → ([S ] ↔ V )

Given a simple contract lens � : Either () (S, V ) ↔ V with trivial contracts, bfoldr � returns
a contract lens of type [S ] ↔ V also with trivial contracts, synchronizing a list of type [S ]
with a value of type V . For the get direction, we simply use the unidirectional foldr′. For
the put direction, we recursively construct an updated source list (using unfoldr′) from the
original source and an updated view step by step through put�, the backward transformation
of �. Formally, we define bfoldr as follows:

bfoldr � = CLens (foldr′ get�) (curry $ unfoldr′ coalg) ctrue ctrue
where

coalg ([ ], v′) = case put� (Left ()) v′ of
Left () → Left ()
Right (a′, b′) → Right (a′, ([ ], b′))

coalg (a : as, v′) = case put� (Right (a, g as)) v′ of
Left () → Left ()
Right (a′, b′) → Right (a′, (as, b′))
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Note that the put direction of the above definition is inefficient since it computes “g as”
every time coalg (a : as, v′) is called. A more efficient implementation is to calculate
all g as in advance using a scanr as shown in Appendix B.1. We will use the efficient
definition of bfoldr in the following sections.

Similarly, we can define bfoldl, which is omitted here. The following example shows
how the bidirectional fold works.

Example 3 (Bidirectional Maximum). Considering that we want to synchronize a list with
its maximum, we can define it in terms of bfoldr by

bmaximum : [Int ] ↔ Int
bmaximum = bfoldr bmax

where bmax is a bidirectional version of max whose backward transformation uses the
modified value to replace the maximum value of the parameter pair:10

bmax : Either () (Int, Int) ↔ Int
bmax = CLens g p ctrue ctrue

where
g (Left ()) = −∞
g (Right (x, y)) = max x y
p (Left ()) (−∞) = Left ()
p (Left ()) v′ = Right (v′, −∞)
p (Right (x, y)) v′ = if x ≥ y then Right (v′, min v′ y) else Right (min v′ x, v′)

To see a computation instance of bmaximum, we refer to Appendix C.1. �

5.1.1 Bidirectional fold: Preserving length and transmitting constraints

While bfoldr is useful when it is total in both get and put directions, we may wish to keep
the length of the source unchanged after put. For example, considering the bmaximum
in Example 3, we may wish to keep the length of the source list after putbmaximum, and
furthermore, we hope that the source and view conditions of bfoldr be able to express some
extra constraints on the elements. All these can be concisely expressed as the following
higher-order contract lens:

bfoldr′ : (ĉs : S → S → Set) → (ĉv : V → V → Set)
→ ({lift ĉs ĉv} Either () (S, V ) ↔ V {ĉv}) → ([S ] ↔ V )

bfoldr′ ĉs ĉv � = bfoldr � {cs = licond ĉs, cv = ĉv}
The lift and licond, two high-order predicates, require their arguments to be of the same
shape and structurally lift predicates over sum types (Either) and list types, respectively:

lift : (S → S → Set) → (V → V → Set) → Either () (S, V ) → Either () (S, V ) → Set
lift p q a a′ = (a = Left () ∧ a′ = Left ()) ∨

(a = Right (x, y) ∧ a′ = Right (x′, y′) ∧ p x x′ ∧ q y y′)
licond : (S → S → Set) → [S ] → [S ] → Set
licond p xs xs′ = eqlength xs xs′ ∧ (∀ 1 ≤ i ≤ |xs|, p xsi xs′

i)

10 We treat ∞ as a value of type Int as well for simplicity.
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The lens combinator bfoldr′ takes two predicates ĉs and ĉv and have the same definition of
get and put components as bfoldr. The ĉs represents the constraints on the elements of the
source list, and the ĉv represents the view condition. Notice that the predicate parameters ĉs
and ĉv are kind of administrative; their main role is to guarantee that the source condition
of the parameter lens is of shape lift cs′ cv′ for some cs′ and cv′. Idealy, we can make them
existentially bound. We opt to have explicit predicate parameters to make the presentation
clear and more consistent with our Agda formalization.

Example 4 (Bidirectional Maximum Preserving Length). A direct use of bfoldr′ is to define
a bidirectional version of maximum that preserves the length of the source list.

bmaximum′ : [Int ] ↔ Int
bmaximum′ = bfoldr′ eqlength ĉv bmax′

where
ĉv = λx x′ → x �= −∞ ∨ x′ = − ∞
bmax′ = bmax {cs = lift ctrue cv, cv = ĉv}

One may doubt that the put (Left ()) v′ = Right (v′, −∞) in bmax′ might break the equal
length condition. In fact, it will never be executed because the view condition requires the
maximum value to be unchanged when it is −∞. �

5.1.2 Bidirectional filter

As an application of bidirectional folds, we construct the bidirectional filter, which
appears frequently in application scenarios of BXs, often in the forms of explicit
combinators (Foster et al., 2007) or SQL selection commands (Abou-Saleh et al.,
2018).

The unidirectional version of filter can be implemented by foldr as filter pr =
foldr (λx xs → if pr x then x : xs else xs) [ ], which returns a list of elements satisfying the
predicate pr. With the bfoldr′ introduced above, we are able to define a bidirectional
version of filter which preserves the lengths of the source and view lists:

bfilter : (pr : a → Bool) → ([a] ↔ [a])
bfilter pr = bfoldr′ ctrue (fcond pr) (bfilterAlg pr)

where
bfilterAlg : (pr : a → Bool) → (Either () (a, [a]) ↔ [a])
bfilterAlg pr = CLens g p (lift ctrue (fcond pr)) (fcond pr)

where
g (Left ()) = [ ]
g (Right (x, xs)) = if pr x then x : xs else xs
p (Left ()) [ ] = Left ()
p (Right (x, xs)) xs′ = Right (if pr x then (head xs′, tail xs′) else (x, xs′))

The function fcond is defined as fcond pr = licond (λ x′ → pr x′). The bfilterAlg pr is
essentially a bidirectional version of the function λx xs → if pr x then x : xs else xs. One
example of bfilter is the bfilter even defined in Section 3.2.
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5.2 Bidirectional map

Map is another important high-order function in functional programming and program
calculation, which applies a function to each element of a list. In this section, we will give
three different definitions of bidirectional map with different source and view conditions.
The first one is bmap, which is just a bidirectional map that preserves the length of the
source and view list. It has no other constraints on the source and view. The second one
is bmap′, which takes the constraint on individual elements of the list into consideration.
The third one is bmapl (and bmapr), which goes a step further and takes into account the
constraints on adjacent elements of the list as well. These three bidirectional versions of
map cover a large range of applications. In particular, the most powerful bmapl is helpful
in our later calculation of bidirectional maximum segment sum.

5.2.1 Bidirectional map: Preserving length

First, we give bmap which preserves the lengths of both source and view lists. It simply
requires the parameter to have trivial contracts like bfoldr:

bmap : ({ctrue} S ↔ V {ctrue}) → ([S ] ↔ [V ])
bmap � = CLens (map get�) p eqlength eqlength

where p as bs′ = map (λ(x, y) → put� x y) (zip as bs′)

It is clear to see that if the change on the view does not change its length, after backward
propagation through putbmap �, the length of the source will not be changed.

As shown in Section 2.1, map is just a special version of fold. Similarly, we can also
implement bmap using bfoldr′ as shown in Appendix B.2. One example of bmap is the
bmap bhead defined in Section 3.2.

5.2.2 Bidirectional map: Preserving inner constraints

The above bmap assumes that the lens argument it takes never introduces any constraint.
But this is not always the case. When the parameter lens has nontrivial contracts, the bidi-
rectional map combinator should reflect these contracts in its result lens. Thus, we define
another version of bidirectional map which takes the inner constraints on elements of lists
into consideration:

bmap′ : (S ↔ V ) → ([S ] ↔ [V ])
bmap′ � = bmap � {cs = licond cs�, cv = licond cv�}

The bmap′ simply lifts the contracts of its parameter to all elements in the source and view
lists. As seen above, bmap′ is a generalized version of bmap; they are equivalent when the
parameter lens � has trivial contracts. Also, we can implement bmap′ using bfoldr′ in the
same way as shown in Appendix B.2. One example of bmap′ is shown in Appendix C.2

In the above definition of bmap′ �, we directly use cs� and cv� in the contracts of the
result lens. The bmap′ � has no requirement on the contracts of �. Another alternative def-
inition of bmap′ more similar to the definition of bfoldr′ which takes predicate parameters
is as follows:
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bmap′ : (ĉs : S → S → Set) → (ĉv : V → V → Set)
→ ({ĉs} S ↔ V {ĉv}) → ([S ] ↔ [V ])

bmap′ ĉs ĉv � = bmap � {cs = licond ĉs, cv = licond ĉv}
We use the first definition in the paper as it takes fewer arguments.

5.2.3 Bidirectional map: Preserving constraints on adjacent elements

In practice, it is very common that map f is composed with a function that produces a
list with some constraints on adjacent elements. For instance, map f may be composed
with inits′, where the result of [as1, as2, . . . , asn ] produced by inits′ [a1, a2, . . . , an ] has
the constraint (init asi = asi−1) ∧ (init as1 = [ ]).

In bidirectional programming, we need to carefully specify this kind of constraints.
Recall the binits in Section 4.1 with the following view condition:

cvbinits = λt as → (∀ 1 < i ≤ |as|, init ai = ai−1) ∧ (init a1 = [ ]) ∧ eqlength t as

The composition binits; bmap � inviolates the condition in Definition 2. This motivated
us to introduce bmapl, another bidirectional version of map which is able to express
constraints on adjacent elements.

The core idea is that for bmap′ �, we augment the parameter lens � of type S ↔ V with an
extra argument of type S representing the adjacent element, which leads to a parameterized
lens �′ : S → (S ↔ V ). Notice that �′ is still a bidirectional version of a function of type
S → V , so we need to restrict the get components of all �′ s to be the same function for
any s : S. We again use similar syntax to refinement types to express the requirement on
the parameters and define the following syntactic sugar:

A ⇒ (S ↔ V ) ≡ {� : A → (S ↔ V ) | ∃ f : S → V. ∀ a : A. get� a = f }
Our two syntactic sugars can be used nestedly:

A ⇒ ({cs′} S ↔ V {cv′}) ≡
{� : A → {�′ : S ↔ V | cs� ⇔ cs′ ∧ cv� ⇔ cv′} | ∃ f : S → V. ∀ a : A. get� a = f }

The bidirectional map preserving constraints on adjacent elements is defined as follows:

bmapl : (c̃s : S → S → Set) → (c̃v : V → V → Set) → (as0 : S)
→ (� : (a : S) ⇒ ({λ a′ → c̃s a a′} S ↔ V {λ b′ → c̃v (get(� a) a) b′}))
→ ([S ] ↔ [V ])

bmapl c̃s c̃v as0 � = CLens g p cs′ cv′

where bs0 = get(� as0) as0

g as = map (λ(a′, a) → get� a′ a) (zip (as0 : init as) as)
p as bs′ = scanl′ (λ(a, b′) a′ → put� a′ a b′) as0 (zip as bs′)
cs′ t as = (∀ 1 ≤ i ≤ |as|. c̃s asi−1 asi) ∧ eqlength t as
cv′ t bs = (∀ 1 ≤ i ≤ |as|. c̃v bsi−1 bsi) ∧ eqlength t bs

The constraints on adjacent elements of lists are specified by c̃s and c̃v. For exam-
ple, if we take c̃s to be λx y → (init y = x) and as0 to be [ ], then the source condition
of the bmapl as0 � is equivalent to cvbinits, and thus, the composition binits; bmapl [ ] � is
valid.

https://doi.org/10.1017/S0956796823000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000059


Contract lenses: Reasoning about bidirectional programs via calculation 19

Fig. 1. Implementation of bmapl. The left figure shows the computation of the get and the right
figure shows the computation of the put.

The implementation of bmapl a0 � is visualized in Figure 1. The parameterized lens � :
(a : S) ⇒ ({λ a′ → c̃s a a′} S ↔ V {λ b′ → c̃v (get(� a) a) b′}) takes the adjacent element
of source as the argument. As we have mentioned in Section 4.1, get� a means using the get
component of � a simply as a total function. For the get direction, when computing bi from
ai, we pass the adjacent element ai−1 to � and make sure that we have c̃v bi−1 bi, which
ensures the view list satisfies the constraints on adjacent elements. For the put direction,
when computing a′

i from b′
i and ai, we pass a′

i−1 to � and make sure that we have c̃s a′
i−1 a′

i,
which ensures the updated source list satisfies the constraints on adjacent elements.

Note that we use the name bmapl because the constraints are leftward on every pair of
ai−1 and ai. Similarly, we have a bmapr which are used to deal with constraints rightward
on every pair of ai and ai+1, usually generated by some scanr′ (⊕) a0. The implementation
is almost the same except for replacing scanl′ in the code with scanr′. One example of
bmapl is shown in Appendix C.3.

5.2.4 Bidirectional map using inner bidirectional fold

As we have seen so far, bmapl � is useful to give a bidirectional version for map f with
expressive contraints. What if f is a fold? Since bmapl takes a parameterized lens of type
S ⇒ (S ↔ V ), we cannot directly pass either bfoldr or bfoldr′ to bmapl. Moreover, since
the bidirectional fold we needed depends on the c̃s in the source condition of the result of
bmapl, it is actually difficult to give a general bidirectional fold. Fortunately, we can define
some special bidirectional versions of fold to cope with some frequently used constraints,
such as λai−1 ai → init ai = ai−1. The bfoldlinit shown below is such a special bfold that
can be used inside bmapl:

bfoldlinit : (c̃v : V → V → Set) → (b0 : V )
→ (� : (b : V ) ⇒ ({λ t′ → t′ = Right ( , b)}

Either () (S, V ) ↔ V )
{λ b′ → c̃v b b′})
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→ [S ] ⇒ ([S ] ↔ V )
bfoldlinit c̃v b0 � as = CLens g p cs′ cv′

where g = foldl (λb a → get� b (Right (a, b))) b0

p [ ] b′ = case put� (g as) (Left ()) b′ of

Right (a, ) → as ++ [a]
p as′ b′ = case put� (g as) (Right (last as′, g (init as′))) b′ of

Right (a, ) → as ++ [a]
cs′ = λ as′ → (init as′ = as)
cv′ = λ b′ → (c̃v (g as) b′)

The bfoldlinit takes a parameterized contract lens and returns another parameterized con-
tract lens which is suitable to be passed to bmapl. Notice that the result parameterized
lens bfoldlinit c̃v b0 � of type [S ] ⇒ ([S ] ↔ V ) indeed has the same get component for
any argument as : [S ], because the get component does not use as at all. The get direc-
tion is a standard foldl, and the put direction only computes the last element of the new
source list, since other elements are given as the argument indicated by the source condition
λ as′ → (init as′ = as).

For an example usage of bfoldlinit, we refer to Appendix C.4.

5.3 Bidirectional scan

After discussing bidirectional fold and map, we turn to bidirectional scan, which is an effi-
cient computation pattern using an accumulation parameter and is useful for optimization
(as will be seen later). The main challenge to bidirectionalize scan is that the result of scan
may have constraints between adjacent elements similar to bmapl. In this section, we give
a powerful bidirectional version of scan with the help of contract lenses:

bscanl : (c̃v : V → V → Set) → (b0 : V )
→ (� : (b : V ) ⇒ ({λ t′ → t′ = Right ( , b)}

Either () (S, V ) ↔ V
{λ b′ → c̃v b b′}))

→ ([S ] ↔ [V ])
bscanl c̃v b0 � = CLens g p eqlength cv′

where
g = scanl′ (λb a → get� b (Right (a, b))) b0

p as bs′ = map (λ((a, b), (b′′, b′)) → fstRight (put� b′′ (Right (a, b)) b′)) abb
where bs = g as

abb = zip (zip as (b0 : init bs)) (zip (b0 : init bs′) bs′)
fstRight (Right (x, )) = x

cv′ t bs = (∀ 1 ≤ i ≤ |bs|. c̃v bsi−1 bsi) ∧ eqlength t bs

The implementation of bscanl c̃v b0 � is visualized in Figure 2. The get direction is a
standard scanl′. For the put direction, when computing a′

i from ai and b′
i, we pass b′

i−1 to
the lens � to restrict the result of put is of form Right ( , b′

i−1).
For an example usage of bscanl, we refer to Appendix C.5.
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Fig. 2. Implementation of bscanl. The left figure shows the computation of the get and the right
figure shows the computation of the put.

6 Bidirectional calculation laws

So far, we have seen that fundamental high-order functions such as fold, filter, map, and
scan can be extended naturally from unidirectional to bidirectional, and that these bidi-
rectional versions can be used to describe various bidirectional behaviors through suitable
definitions of get, put, and the source/view conditions. In this section, we shall develop
several important bidirectional calculation laws for manipulating them, including bidirec-
tional versions of FOLD FUSION, MAP FUSION, and SCAN LEMMA. These bidirectional
calculation laws are useful to reason about and optimize bidirectional programs.

6.1 Bidirectional fold fusion

We start with a bidirectional version of the FOLD FUSION law for bfoldr. To characterize
bidirectional fold fusion law, we first bidirectionalize the list functor FL in Section 2.2:

blistF : V
→ ({ctrue} V ↔ T {ctrue})
→ ((Either () (S, V )) ↔ (Either () (S, T)))

blistF b0 � = CLens g p ctrue ctrue
where g (Left ()) = Left ()

g (Right (a, b)) = Right (a, get� b)
p (Left ()) = Left ()
p (Right (a, b)) (Right (a′, c′)) = Right (a′, put� b c′)
p (Left ()) (Right (a′, c′)) = Right (a′, put� b0 c′)

The tricky part lies in the last line above when there is a mismatch in the constructors of
source and view. The implementation chooses a default value b0 of type V to help with
this process. With this bidirectional list functor, we can have the following bidirectional
fold fusion law, which is similar to the unidirectional fold fusion law but with this explicit
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default value:

�1; � = blistF (get�1
(Left ())) �; �2

bfoldr �1; � = bfoldr �2
BFOLDR FUSION

It reads that the lens composition bfoldr �1; � can be fused into a single lens bfoldr �2 if
there exists �2 such that the equation �1; � = blistF (get�1

(Left ())) �; �2 holds.
Similarly, we have another fusion law for bfoldr′, for which we need a slightly different

bidirectional version of the list functor FL. The good thing is that we do not need the
default value anymore because the contracts of bfoldr′ guarantee that there will not be any
mismatch:

blistF′ : (S → S → Set) → (V ↔ T)
→ (Either () (S, V ) ↔ Either () (S, T))

blistF′ ĉs � = CLens g p (lift ĉs ĉv) (lift ĉs ĉt)
where g (Left ()) = Left ()

g (Right (a, b)) = Right (a, get� b)
p (Left ()) (Left ()) = Left ()
p (Right (a, b)) (Right (a′, c′)) = Right (a′, put� b c′)
ĉv = cs�

ĉt = cv�

Then, the fusion law is stated as:

�1; � = blistF′ ĉs �; �2

bfoldr′ ĉs ĉv �1; � = bfoldr′ ĉs ĉt �2
BFOLDR’ FUSION

6.2 Bidirectional map fusion

The bidirectional map fusion laws for bmap and bmap′ are quite easy since they just map
� to each element of the list in both forward and backward transformations. Since bmap is
a special case of bmap′, we only give the bidirectional map fusion law for bmap′:

bmap′ �1; bmap′ �2 = bmap′ (�1; �2) BMAP’ FUSION

Similarly, we can give the bidirectional map fusion law for bmapl:

bmapl c̃s c̃v a0 �1; bmapl c̃v c̃t b0 �2 = bmapl c̃s c̃t a0 (�1; ; �2) BMAPL FUSION

where (; ; ) is the composition of parameterized lenses whose types are of form S ⇒ (S ↔
V ). It is defined as follows:

(; ; ) : (�1 : (a : S) ⇒ ({λ a′ → c̃s a a′} S ↔ V {λ b′ → c̃v (get�1 a a) b′}))
→ (�2 : (b : V ) ⇒ ({λ b′ → c̃v b b′} V ↔ T {λ c′ → c̃t (get�2 b b) c′}))
→ S ⇒ (S ↔ T)

�1; ; �2 = λa → �1 a; �2 (get�1 a a)

The definition of �1; ; �2 is quite intuitive. We just pass the parameter a to �1, and the
result of a after the forward transformation of �1 to �2. Notice that we still use the syntactic
sugar S ⇒ (S ↔ T) for the type of the result parameterized lenses, which means the get
component is the same for any parameter. This makes natural sense because both �1 and �2
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have fixed get components. It is also easy to check that the composition �1 a; �2 (get�1 a a)
is well defined (i.e., satisfies the condition in Definition 2).

6.3 Bidirectional fold-map fusion

We give a bidirectional fold-map fusion law for bfoldr′ and bmap′, both of which preserve
the length of the source list.

First, we bidirectionalize Fm defined in Section 2.2 with conditions required by bfoldr′:

bmapF : (T → T → Set) → (S ↔ V )
→ (Either () (S, T) ↔ Either () (V , T))

bmapF ĉt � = CLens g p (lift ĉs ĉt) (lift ĉv ĉt)
where g (Left ()) = Left ()

g (Right (a, c)) = Right (get� a, c)
p (Left ()) (Left ()) = Left ()
p (Right (a, c)) (Right (b′, c′)) = Right (put� a b′, c′)
ĉs = cs�

ĉv = cv�

The result of bmapF has the same source condition as the lens bfoldr′ takes. Now we can
give the bidirectional fold-map fusion law for bfoldr′:

bmap′ �1; bfoldr′ ĉv ĉt �2 = bfoldr′ ĉs ĉt (bmapF ĉt �1; �2) BFOLDR’-BMAP FUSION

6.4 Bidirectional scan lemma

In the unidirectional world, the SCAN LEMMA is a special version of the FOLD FUSION

law. Note that replacing inits with inits′ and scanl with scanl′, the scan lemma still
holds. The major challenge for developing a similar bidirectional calculation law on con-
tract lenses is that the inits′ introduces a constraint on adjacent elements of the view
list. Fortunately, the contract-lens combinator bmapl can handle constraints on adjacent
elements. With bmapl, bfoldlinit, and bscanl, we can successfully obtain a bidirectional
version of scan lemma:

binits; bmapl (λa a′ → init a′ = a) c̃v [ ] (bfoldlinit c̃v b0 �) = bscanl c̃v b0 �

BIDIRECTIONAL SCAN LEMMA

The form of the bidirectional scan lemma is quite similar to its unidirectional ver-
sion modulo some administrative parameters for contracts. We give an example of
BIDIRECTIONAL SCAN LEMMA in Appendix C.6.

7 Examples

In this section, we will demonstrate further through three examples that with contract
lenses, combinators, and associated calculation laws, we are able to flexibly construct and
optimize bidirectional programs. The first example is a projection problem from geom-
etry, where the conditions afforded by contract lenses are essential for its construction.
The second example concerns bidirectional data conversion, specifically, string processing
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and formatting. It showcases that within our framework, such computation tasks can be
constructed in a point-free style, of which efficiency is guaranteed by calculational laws.
The third example stems from a classic scenario of program calculation, and it demon-
strates the ability to reason about and optimize complicated bidirectional programs through
semantics-preserving transformation based on calculational laws, in a way that one would
have done for unidirectional programs.

7.1 Projection onto a hyperplane

Let us look at an example to see the expressive power of contract lenses, especially how
we can use contracts to constrain the changes of source and view. One basic computa-
tion in the area of geometry is to calculate the projection of a point onto a hyperplane
in a higher-dimensional Euclidean space. In this example, we want to synchronize a
point xs = [x1, x2, . . . , xn]11 in a n-dimensional Euclidean space with the projection of
it onto the hyperplane H :

∑n
i=1 xi = 0. The projection of X onto H is the point ys =

[x1 − m, x2 − m, . . . , xn − m] where m = 1
n

∑n
i=1 xi. What’s more, there is a unique hyper-

plane H ′ parallel to H and through the point xs. We want an extra property that the new
point obtained from backward transformation is on the hyperplane H ′. In other words, the
task is to synchronize a list of numbers with the differences between each number and the
mean of all numbers; meanwhile, the mean of the source list is unchanged after changes
on the view list.

One way to implement this synchronization using lenses is to compose two lenses, where
one lens synchronizes a list with a pair of the list itself and its mean, and the other lens
synchronizes this pair with the list of differences. The constraints that the dimension n and
the hyperplane H ′ should not be changed can be easily expressed with contracts. The full
implementation is as follows:

bproj : [Float ] ↔ [Float ]
bproj = bmean; bdiff

bmean : [Float ] ↔ (Float, [Float ])
bmean = CLens g p cs′ cv′

where g xs = (mean xs, xs)
p (m, xs′) = xs′

cs′ xs xs′ = mean xs = mean xs′ ∧ eqlength xs xs′

cv′ (m, xs) (m′, xs′) = m = m′ = mean xs = mean xs′ ∧ eqlength xs xs′

bdiff : (Float, [Float ]) ↔ [Float ]
bdiff = CLens g p cs′ cv′

where g (m, xs) = map (+(−m)) xs
p (m, ) xs′ = (m, map (+m) xs′)
cs′ (m, xs) (m′, xs′) = m = m′ = mean xs = mean xs′ ∧ eqlength xs xs′

cv′ xs xs′ = sum xs′ = 0 ∧ eqlength xs xs′

mean : [Float ] → Float
mean = λxs → sum xs / fromIntegral (length xs)

11 Here, we use a list of length n to represent a point in n-dimensional space.
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The specifications of synchronization behavior on each lenses are clearly expressed by
contracts, which enables the compositions as we see in the definition of bproj.

7.2 String formatting and processing

Specifying programs that manipulate texts/strings bidirectionally is not new and has been
extensively studied in Bohannon et al. (2008) and Matsuda & Wang (2015b). The novelty
of our framework is that it supports a point-free style of specifications and calculational
reasonings for such computational tasks.

7.2.1 String formatting

Let us look at the following string formatting task: given an input string, we want to filter
out all digits and convert all remaining characters to upper case. With contract-lens com-
binators, we readily specify it in point-free style (for simplicity, we assume that characters
in strings are either numbers or letters):

bformatting : String ↔ String
bformatting = bfilter (not ◦ isDigit); bmap′ btoUpper

where
btoUpper :: Char ↔ Char
btoUpper = CLens toUpper putToLower cs cv
cs = λ c → not (isDigit c)
cv = λ c → isUpper c

putToLower x y = if isUpper x then y else toLower y

The composition is valid, since one can check that fcond (not ◦ isDigit) and licond (λ c →
not (isDigit c)) are by definition equivalent.

In this naive specification, intermediate structures are created after one lens and are
immediately consumed by another, in both directions. Recall that bfilter is an instance of
bfoldr′, using BFOLDR’ FUSION, we reason as follows:

bformatting
= { definition }

bfilter (not ◦ isDigit); bmap′ btoUpper
= { expressing bfilter as bfoldr′ }

bfoldr′ ctrue (fcond (not ◦ isDigit)) (bfilterAlg (not ◦ isDigit)); bmap′ btoUpper
= { BFOLDR’ FUSION }

bfoldr′ ctrue (licond (λ c → isUpper c)) balg

where

balg :: (Either () (Char, [Char])) ↔ [Char]
balg = CLens g p cs cv

where g (Left ()) = [ ]
g (Right (x, xs)) = if not (isDigit x) then toUpper x : xs else xs
p (Left ()) = Left ()
p (Right (x, xs)) (x′ : xs′) = if not (isDigit x)
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then Right (putToLower x x′, xs′)
else Right (x, x′ : xs′)

p (Right (x, [ ])) [ ] = if not (isDigit x) then Left () else Right (x, [ ])
cs = lift ctrue (licond (λ c → isUpper c))
cv = licond (λ c → isUpper c)

The definition of balg is not as complicated as it seems: it is essentially the combination of
bfilterAlg (not ◦ isDigit) and btoUpper.

It is easy to verify the condition of the BFOLDR’ FUSION law, which is the lens
equivalence relation:

bfilterAlg (not ◦ isDigit); bmap′ btoUpper = blistF′ ctrue
(bmap′ btoUpper); balg

The calculated version creates no intermediate structure and hence is more efficient in
practice.

7.2.2 String encoding and decoding

Another useful string processing algorithm is the encoding and decoding, which is usually
used in compressing a string. It is very appropriate to write them as a single bidirectional
program in order to make it easier to maintain and optimize the encoding and decoding
algorithms at the same time (Matsuda & Wang, 2020). Let us consider the following simple
string encoding algorithm which illustrates the idea of Run Length Encoding:

compression : [String ] → [Int ]
compression = foldr′ cat ◦ map ascii ◦ map encode

where encode = (head ws, length ws)
ascii (x, y) = (ord x, y)
cat (Left ()) = [ ]
cat (Right ((x, y), b)) = x : y : b

For simplicity, the input string has already been splitted into a list of strings, where each
string consists of consecutive identical characters. The compression compresses consecu-
tive identical characters into its ASCII value and number of consecutive occurrences. The
map encode maps the consecutive identical characters to the pair of the character and the
length. Then the map ascii transforms the characters to their ASCII values. Finally, the
foldr′ cat concatenates the pairs to a single list. For example,12

compression ["aaaaa", "bbbb", "ccccccccc"] = [97, 5, 98, 4, 99, 9]

Using the contract-lens combinators we defined in Section 5, it is easy to derive a bidirec-
tional version of the function compression. The length of the results should not be changed;
meanwhile, the ASCII values in the results should all be greater than or equal to 0 and
less than 128. Thus, the view condition is defined as cvcomp v as = (|v| = |as|) ∧ (∀ 1 ≤
i ≤ |as|, odd i ∨ (0 ≤ asi < 128)):

12 The ASCII value of “a” is 97, “b” is 98, and “c” is 99. We assume that the Char type only includes the
standard 128 ASCII values for simplicity.
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bcompression : [String ] ↔ [Int ]
bcompression = bmap′ bencode

; bmap′ bascii
; bfoldr′ (λ (x, ) → 0 ≤ x < 128) cvcomp bcat

where the following contract lenses are used:

bencode : String ↔ (Char, Int)
bencode = CLens (λws → (head ws, length ws)) (λ (a, n) → replicate n a)

(λ as → allsame as) ctrue
where allsame xs = (xs = "") ∨ (and $ map (= head xs) (tail xs))

bascii : (Char, b) ↔ (Int, b)
bascii = CLens (λ(x, y) → (ord x, y)) (λ (x, y) → (chr x, y))

ctrue (λ (x, ) → 0 ≤ x < 128)

bcat : Either () ((Int, Int), [Int ]) ↔ [Int ]
bcat = CLens g p cs cv

where g (Left ()) = [ ]
g (Right ((x, y), b)) = x : y : b
p (Left ()) [ ] = Left ()
p (Right ) (x : y : b) = Right ((x, y), b)
cs = lift (λ (x, ) → 0 ≤ x < 128) cvcomp

cv = cvcomp

It is easy to check the contract lens bcompression is well defined. However, this version
of bcompress is not so efficient because it traverses the string three times. We can use
the bidirectional calculation laws in Section 6 to reduce both the compression and the
decompression algorithms to only one traversal simultaneously:

bcompression
= { definition }

bmap′ bencode
; bmap′ bascii
; bfoldr′ (λ (x, ) → 0 ≤ x < 128) cvcomp bcat

= { BMAP’ FUSION }
bmap′ (bencode; bascii)

; bfoldr′ (λ (x, ) → 0 ≤ x < 128) cvcomp bcat
= { BFOLDR’-BMAP FUSION }

bfoldr′ (λ as → allsame as) cvcomp (bmapF (bencode; bascii); bcat)

7.3 Bidirectional maximum segment sum

Now let us turn to another example involving more advanced program calculation. The
maximum segment sum is a classic problem in the area of program calculation. To demon-
strate the ability of our calculation framework, we change the specification of mss in
Section 2.3 into a bidirectional version directly using contract-lens combinators and opti-
mize it to a more efficient version which has time complexity O(n) in both get and put
directions; meanwhile, the semantics is preserved.
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To see this concretely, let us first get a bidirectional version of mss without considering
efficiency. To achieve this, we introduce a refinement type TailsList a = {as : [[a]] | (∀ 1 ≤
i < n, tail asi = asi+1) ∧ (tail asn = [ ])}. It is a modified version of the type [[a]], where
each element of the list is the tail of the previous element, and the tail of the last element
is the empty list. The specification of the bidirectional version of mss is

bmss : [Int ] ↔ Int
bmss = binits

; bmapl c̃v1 c̃v2 [ ] btailsinit

; bmapl c̃v2 c̃v3 [ ] bmapSum
; bmapl c̃v3 ctrue [ ] bmaximum2
; bmaximum′

where the definitions of the contracts and contract lenses appeared are

c̃v1 = λa a′ → init a′ = a
c̃v2 = λb b′ → map init (init b′) = b
c̃v3 = λb b′ → map (+(−last b′)) (init b′) = b

btailsinit : [Int ] ⇒ [Int ] ↔ TailsList Int
btailsinit a = CLens tails′ (λ v → head v) cs cv

where cs = λ a′ → c̃v1 a a′

cv = λ b′ → c̃v2 (tails′ a) b′

bmapSum : TailsList Int ⇒ TailsList Int ↔ [Int ]
bmapSum a = CLens (map sum) p cs cv

where p xs = map (λt → t ++ [ last xs]) a ++ [[ last xs]]
cs = λ a′ → c̃v2 a a′

cv = λ b′ → c̃v3 (map sum a) b′

bmaximum2 : [Int ] ⇒ [Int ] ↔ Int
bmaximum2 a = CLens maximum p cs ctrue

where p x = let t = a ++ [0] in map (+(x − maximum t)) t
cs = λ a′ → c̃v3 a a′

The binits and bmaximum′ have been already defined in the previous sections. It is easy
to check that bmss is well defined, that is, it satisfies round-tripping properties and the
condition of lens composition.

Next, we make use of the bidirectional calculation rules we developed in Section 6 to
optimize the bmss. The calculation goes as follows:

bmss
= { definition }

binits
; bmapl c̃v1 c̃v2 [ ] btailsinit

; bmapl c̃v2 c̃v3 [ ] bmapSum
; bmapl c̃v3 ctrue [ ] bmaximum2
; bmaximum′
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= { BMAPL FUSION }
binits

; bmapl c̃v1 ctrue [ ] (btailsinit; ; bmapSum; ; bmaximum2)
; bmaximum′

= { a specific bidirectional Horner’s rule (to be discussed below) }
binits

; bmapl c̃v1 ctrue [ ] (bfoldlinit ctrue (−∞) �)
; bmaximum′

= { BIDIRECTIONAL SCAN LEMMA }
bscanl ctrue (−∞) �

; bmaximum′

One thing worth noting is that in the third step of calculation, we use a specific
bidirectional Horner’s rule:

btailsinit; ; bmapSum; ; bmaximum2 = bfoldlinit ctrue (−∞) �

where
� : Int ⇒ Either Int (Int, Int) ↔ Int
� b = CLens g p cs ctrue

where g (Left ()) = −∞
g (Right (x, y)) = max (x + y) x
p t = Right (t − max b 0, b)
cs = λ t′ → t′ = Right ( , b)

The get direction of (btailsinit; ; bmapSum; ; bmaximum2) a for any a : [Int ] is similar to the
original Horner’s rule with ⊗ = + and ⊕ = max. It would take space to develop a general
bidirectional Horner’s rule for any ⊕ and ⊗, because we require that ⊕ and ⊗ form a ring
structure and keep it in the bidirectional setting. However, it is useful to define and prove
some specific bidirectional versions of the Horner’s rule like this.

By now, we have successfully derived a correct and linear-time efficient bidirectional
program that can synchronize a list with its maximum segment sum.

Let us look at an example to get a better understanding of our final
result bscanl (−∞) �; bmaximum′ that is visualized in Figure 3. Given the input
list xs = [3, −1, 4, −1, 5, −9], getbscanl ctrue (−∞) � xs yields [3, 2, 6, 5, 10, 1], whose
each element refers to the maximum segment sum ending at this position.
Then, getbmaximum′ [3, 2, 6, 5, 10, 1] yields 10, which is the maximum segment
sum of the whole list. Now we change the result from 10 to 6. For the
backward direction, putbmaximum′ [3, 2, 6, 5, 10, 1] 6 yields [3, 2, 6, 5, 6, 1]. Finally,
putbscanl ctrue (−∞) � [3, −1, 4, −1, 5, −9] [3, 2, 6, 5, 6, 1] yields [3, −1, 4, −1, 1, −5].

8 Related work

In this section, we discuss related work on partiality in the lens framework, Hoare-style
reasoning of BX, automatic bidirectionalization, and some attempts on calculating with
lenses.
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Fig. 3. Visualization of an example calculation of bmss.

8.1 Lens family and partiality of put

The most prominent approach to BX is the lens framework formally introduced by Foster
et al. (2007). It is highly influential and directly inspired a number of follow-on works
including Boomerang (Bohannon et al., 2008), quotient lenses (Foster et al., 2008),
matching lenses (Barbosa et al., 2010), symmetric lenses (Hofmann et al., 2011), edit
lenses (Hofmann et al., 2012), BiGUL (Ko et al., 2016), applicative lenses (Matsuda &
Wang, 2015a), HOBiT (Matsuda & Wang, 2018), and so on. The present paper on con-
tract lenses is no exception. On the issue of partiality, different approaches were taken by
the various works, which can be broadly categorized into the following.

8.1.1 Formulation of contracts and relation to type systems

As argued in Section 1.1, giving total definitions to get and put components is not always
desirable, as the effort in achieving it necessarily complicates program design and reason-
ing. Some previous work on lenses ensures the totality of them by advanced type systems,
with enriched type constraints over the type variables S, V in the lens type S ↔ V . For
example, in Foster et al. (2007), partial lenses are ruled out by set-based type constraints
that precisely characterize the domain/range of get and put, and in Boomerang (Bohannon
et al., 2008), the underlying String type is enriched with regular languages to serve as types
for dictionary lenses.

As far as we know, lens formulations with enriched type systems like the above are
not readily used to flexibly express the bidirectional behaviors we see in this paper. Take
bmap : (S ↔ V ) → [S ] ↔ [V ] as an example. With contracts, we can easily ensure that
the changes on view do not modify the length of lists by setting the view condition to
eqlength. However, it is nontrivial to express the “equal length" view condition by only
constraining the types S and V themselves, instead of specifying constraints on the changes
of values of types S and V . By adding an additional parameter to bmap specifying the
length of the source and view list, one could encode bmap indirectly with a notion of
dependent/refinement types into something like the following:

bmap : (n : N) → (S ↔ V ) → ({xs : [S ] | |xs| = n} ↔ {ys : [V ] | |ys| = n})
This version of bmap fixes the length of lists, which is obviously less general than the
versions using eqlength like the bmap in Section 5.2.1 and bmap′ in Section 5.2.2.

The “equal length" view condition is essentially a constraint on the dynamic changes
of inputs to a lens, which can be nicely handled by our view contract. In our framework,
contracts specifies the ranges that lens components behave well, the dynamic changes that
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a lens can reasonably accept, and the conditions that different components can compose
together.

It is worth noting that different from the previous work on constraining the source and
view types (Foster et al., 2007; Bohannon et al., 2008), contracts are not part of types, but
rather additional specifications that parallel get and put. Moreover, users have full control
of these specifications, just as how they specify the component get and put in the first
place. In this sense, user have the flexibility to choose different contracts based on the
same underlying get and put. For instance, the “equal length" condition for bmap may be
strengthened so that additionally the first element of the list is preserved. These choices are
completely up to the users.

An alternative design choice of contract lenses is to encode the BACKWARDVALIDITY

and FORWARDVALIDITY laws as well as the extra conditions of the
CONDITIONEDPUTGET and CONDITIONEDGETPUT laws directly into the types of
get and put with refinement types:

get : {s : S | cs s s} → {v : V | cv v v}
put : (s : S) → {v : V | cv (get s) v} → {s′ : S | cs s s′}

With the above refinement type signatures, we can use the original PUTGET and GETPUT

laws of lenses. Note that the definition of contract lenses is still a four-tuple of get,
put, cs, and cv in this case. There is no clear advantage or disadvantage between these
two approaches. We choose to characterize the properties of contracts with explicit laws
like BACKWARDVALIDITY and FORWARDVALIDITY to avoid the complication of type
signatures and emphasize the differences between traditional lenses and contract lenses.

In this work, we do not impose any restriction on the constraints used in contracts. It
is the users’ work to prove the round-tripping properties of contract lenses and the well-
definedness of lens composition by either handwritten proofs or formalization in theorem
provers like Agda. As a result, the designer of a practical system that implements contract
lenses has to strike a balance between expressiveness of contracts and checkability of con-
tracts implications. Nonetheless, we believe such systems are implementable, by restricting
the set of contracts available to users to a small set of efficiently solvable constraints. As
shown in our examples, simple predicates like eqlength can already help with constructing
powerful combinators like generic mapping over lists.

8.1.2 Edit lenses

Edit lenses (Hofmann et al., 2012) model changes to view/source as operations (edits)
in contrast to states in the traditional lenses. The edits are represented as monoids, and
monoid actions on set become the actions of applying an edit to a state. As a result, only
the edits in the monoid are allowed to be applied to the states, which in a way restricts
changes to the source and view. But unlike contract lenses, these restrictions are not used
to address partiality; in fact, edit lenses have the same problem of partiality as state-based
ones because the monoid actions are allowed to be partial. For example, the edit del which
deletes the last element of a list is partial as we cannot apply it to an empty list. Extra
dynamic checks are needed to ensure that the computation of edit lenses will not fail. For
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contract lenses, the get and put will not fail as long as the source conditions and view
conditions are satisfied.

8.1.3 Totality with Maybe monad

Another approach is to wrap the return type of get and put in the Maybe monad to remove
partiality (Matsuda & Wang, 2015a; Ko et al., 2016; Xia et al., 2019). The put direction
is a total function of type s → v → Maybe s, and it returns Nothing at run-time when an
invalid input is passed to it. This approach is unsuitable for program calculation as it lacks
the ability to reason about partiality statically. We want to know the static specification
of a program and get meaning results instead of just getting a Nothing when the program
fails. Moreover, the specification can guide the design of program calculation laws.

8.1.4 Other discussions

The properties of partial BX and the relations between them are discussed extensively in
Stevens (2014). Different from our goal, the discussion there does not concern practical
program construction nor mentions composition of transformations. In contrast, we focus
on lenses that satisfy the round-tripping property on possibly partial domains. We make
partiality explicit as a component of lenses and use it to explore composition behavior of
partial lenses.

8.2 Hoare-style reasoning of bidirectional transformation

In Ko & Hu (2018), a reasoning framework for BiGUL programs based on Hoare logic is
proposed, which is able to precisely characterize the bidirectional behaviors by reasoning
in the put direction. The main concept is the put triplet in the form of {R}b{R′}, which
includes a set of pre- and post-conditions that are used to reason about the behavior of
put in a way similar to the Hoare logic: if the original source s and the updated view
v satisfy the precondition R, then putb s v will produce an updated source satisfying the
post-condition R′.

To some extent, their pre- and post-conditions serve a similar purpose to our
BACKWARDVALIDITY law: if the original source s and the updated view v satisfy the view
condition cv (get s) v, then put s v will successfully produce an updated source satisfying
the source condition cs s (put s v). However, the novelty of contract lenses does not solely
rely on the BACKWARDVALIDITY law but also the combination with other three laws of
the round-tripping properties which give a clear specification of lenses to resolve the par-
tiality problem and make the composition of contract lenses easy and well-behaved. It is
worth mentioning that in their framework, reasoning about lens composition is difficult and
involves several complicated proof rules. In contrast, contract lenses make such reasoning
easy: two lenses �1 : {cs�1} S ↔ V {cv�1} and �2 : {cs�2} V ↔ T {cv�2} can be composed into
a lens �1; �2 : {cs�1} S ↔ T {cv�2} given the condition proposed in Definition 2.

Furthermore, the purpose of pre- and post-conditions differs from that of source and
view conditions. While pre- and post-conditions mainly focus on specifying the behaviors
of the put components, our primary objective is to address the partiality problem of lenses,
which allows for straightforward design of lenses and calculation laws.
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8.3 Bidirectionalization

Bidirectionalization is an approach to bidirectional programming that is different from the
lens framework. Instead of writing bidirectional programs directly in a specialized lan-
guage, it aims to mechanically convert existing unidirectional programs into bidirectional
ones. Voigtländer (2009) gives a high-order function bff that receives a polymorphic get
function and returns its put counterpart. The technique is extended (Voigtländer et al.,
2010) by combining it with syntactic bidirectionalization (Matsuda et al., 2007), which
separates view changes in shape and in content. However, bidirectionalization is done
for whole programs which lacks modular reasoning of compositions and therefore is not
suitable for program calculation.

8.4 Calculating with lenses

The goal of generic point-free lenses (Pacheco & Cunha, 2010) is the most similar to
ours. In that work, lens combinators are designed for many traditional high-order functions
including fold and map. Subsequently, the point-free lenses are used for a limited form
of calculation where the universal property (uniqueness) of the lens version of fold was
proved and used to establish some program calculation laws for lenses such as the fold-map
fusion (Pacheco & Cunha, 2011).

But very different from ours, their work is based on the traditional lenses without con-
tracts, which means that the problem of partiality seriously limits the composition of lenses.
As a result, many crucial calculation laws such as the SCAN LEMMA are not expressible in
their framework.

9 Formalization with Agda

In this section, we briefly discuss one possible formalization of contract lenses in Agda.
We use this formalisation to prove the correctness of lens composition, all lens combina-
tors, all calculation laws, and most of the examples (except the string processing example
in Section 7.2) in this paper. As mentioned in Section 1.2, our intention is not to restrict
potential users of contract lenses within this formalization but rather to provide a calcu-
lation framework which allows any method of reasoning. This Agda formalization shows
one potential way to mechanize our framework.

The formalization of the whole contract lens calculation framework is rather straight-
forward. A contract lens is a (possibly mutually defined) four-tuple get, put, cs, and cv,
with a set of laws on them. This construction is formalized faithfully in the Agda code,
where we define the lens type as a record type:

record Lens (S : Set) (V : Set) where
field
-- four-tuple
get : S → V
put : S → V → S
cs : S → S → Set
cv : V → V → Set
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-- laws
BackwardValidity : ∀ (a : S) (b : V ) → cv (get a) b → cs a (put a b)
ForwardValidity : ∀ (a : S) → cs a a → cv (get a) (get a)
PutGet : ∀ (a : S) (b : V ) → cv (get a) b → get (put a b) = b
GetPut : ∀ (a : S) → cs a a → cv put a (get a) = a

Typically, to construct an instance of this type, one will first define the four-tuple and then
give proof of the four laws.

The formalization of lens combinators also follows from what we have in the paper. For
instance, the bmap combinator with type

bmap : ({ctrue} S ↔ V {ctrue}) → ([S ] ↔ [V ])

is formalized in Agda using existential types as:

bmap : ∀ {S V : Set} → (∃ (S ↔ V )λ� → cv� ⇔ ctrue ∧ cs� ⇔ ctrue) → ([S ] ↔ [V ])

One difference between our Agda formalization and what we have in the paper is
that the Agda formalization does not use the syntactic sugar � : S ⇒ (S ↔ V ) defined in
Section 5.2.3 to restrict the parameterized lens � to have a fixed get component. Instead,
it defines � as a lens of type (S, S) ↔ (V , V ), where the parameter is embedded into the
first component of the source pair. The former form is more clear and suitable for human
reading, while the latter form is easier to formalize. We provided a translation between
these two kinds of lenses and proved its correctness in the Agda formalization.

For the calculation part of this framework, we defined an equivalence relation between
lenses of the above type as described in Definition 3. We also prove the congruence
theorem for high-order lenses. Take bmap, for example, we prove that if �1 ∼ �2, then
bmap �1 ∼ bmap �2. Our calculation laws are defined as theorems stating equivalences of
lenses.

10 Conclusion

In this work, we propose a framework based on program calculation to enable the develop-
ment of complex but efficient BX programs that are correct by construction. As part of the
framework, we design a novel extension to lenses, contract lenses, for handling partiality
and use it to justify general composition of lenses. Based on this, we extend the theories for
program calculation to BX programming by designing combinators to capture bidirectional
recursive computation patterns and proving their properties. We look at the list datatype
and give proofs for fundamental calculation laws including various fusion laws for bidi-
rectional fold and map and the bidirectional scan lemma. We showcase the construction
of a realistic projection program, the derivation of efficient bidirectional string processing
programs, and the maximum segment sum program to demonstrate the effectiveness of our
framework.

This work focuses on the calculation for BXs on lists, which mirrors the classic work on
the theory of list (Bird, 1989a, 1987) in the literature of program calculation. Generalizing
this bidirectional program calculation framework to algebraic datatypes generated by poly-
nomial functors is a natural next step. Another possible future work is to design practical
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systems based on contract lenses to reason about and optimize BXs, automating the ver-
ification of round-tripping properties and lens composition using Satisfiability Modulo
Theories (SMT) solvers.

Conflict of Interest

None.

References

Abou-Saleh, F., Cheney, J., Gibbons, J., McKinna, J. & Stevens, P. (2018) Introduction to bidirec-
tional transformations. In Bidirectional Transformations: International Summer School, Oxford,
UK, July 25–29, 2016, Tutorial Lectures. Cham: Springer International Publishing. Chapter 1, pp.
1–28. Available at: https://doi.org/10.1007/978-3-319-79108-1_1.

Bancilhon, F. & Spyratos, N. (1981) Update semantics of relational views. ACM Trans. Database
Syst. 6(4), 557–575.

Barbosa, D. M., Cretin, J., Foster, N., Greenberg, M. & Pierce, B. C. (2010) Matching lenses:
Alignment and view update. In Proceedings of the 15th ACM SIGPLAN International Conference
on Functional Programming. New York, NY, USA: Association for Computing Machinery, pp.
193–204.

Bird, R. S. (1987) An introduction to the theory of lists. In Logic of Programming and Calculi of
Discrete Design. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 5–42.

Bird, R. S. (1989a) Algebraic identities for program calculation. Comput. J. 32(2), 122–126.
Bird, R. S. (1989b) Lectures on constructive functional programming. In Constructive Methods in

Computing Science. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 151–217.
Bohannon, A., Foster, J. N., Pierce, B. C., Pilkiewicz, A. & Schmitt, A. (2008) Boomerang:

Resourceful lenses for string data. In Proceedings of the 35th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. New York, NY, USA: Association for
Computing Machinery, pp. 407–419.

Bohannon, A., Pierce, B. C. & Vaughan, J. A. (2006) Relational lenses: A language for updatable
views. In Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems. New York, NY, USA: Association for Computing Machinery,
pp. 338–347.

Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C. & Schmitt, A. (2007) Combinators for
bidirectional tree transformations: A linguistic approach to the view-update problem. ACM Trans.
Program. Lang. Syst. 29(3), 17–es.

Foster, J. N., Pilkiewicz, A. & Pierce, B. C. (2008) Quotient lenses. In Proceedings of the 13th
ACM SIGPLAN International Conference on Functional Programming. New York, NY, USA:
Association for Computing Machinery, pp. 383–396.

Gibbons, J. (2002) Calculating functional programs. In Algebraic and Coalgebraic Methods in the
Mathematics of Program Construction. Springer-Verlag, pp. 148–203.

Gibbons, J. (2011) Maximum segment sum, monadically (distilled tutorial). Electron. Proc. Theoret.
Comput. Sci. 66, 181–194.

Gill, A., Launchbury, J. & Peyton Jones, S. L. (1993) A short cut to deforestation. In Proceedings of
the Conference on Functional Programming Languages and Computer Architecture. New York,
NY, USA: Association for Computing Machinery, pp. 223–232.

He, X. & Hu, Z. (2018) Putback-based bidirectional model transformations. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. New York, NY, USA: Association for Computing
Machinery, pp. 434–444.

https://doi.org/10.1017/S0956796823000059 Published online by Cambridge University Press

https://doi.org/10.1007/978-3-319-79108-1_1
https://doi.org/10.1017/S0956796823000059


36 H. Zhang et al.

Hidaka, S., Hu, Z., Inaba, K., Kato, H., Matsuda, K. & Nakano, K. (2010) Bidirectionalizing
graph transformations. In Proceedings of the 15th ACM SIGPLAN International Conference
on Functional Programming. New York, NY, USA: Association for Computing Machinery, pp.
205–216.

Hofmann, M., Pierce, B. & Wagner, D. (2011) Symmetric lenses. In Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New York, NY,
USA: Association for Computing Machinery, pp. 371–384.

Hofmann, M., Pierce, B. & Wagner, D. (2012) Edit lenses. In Proceedings of the 39th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New York, NY, USA:
Association for Computing Machinery, pp. 495–508.

Hu, Z., Iwasaki, H. & Takeichi, M. (1996) Deriving structural hylomorphisms from recursive def-
initions. In Proceedings of the First ACM SIGPLAN International Conference on Functional
Programming. New York, NY, USA: Association for Computing Machinery, pp. 73–82.

Ko, H.-S. & Hu, Z. (2018) An axiomatic basis for bidirectional programming. In Proceedings of the
45th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
New York, NY, USA: Association for Computing Machinery.

Ko, H.-S., Zan, T. & Hu, Z. (2016) Bigul: A formally verified core language for putback-
based bidirectional programming. In Proceedings of the 2016 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation. New York, NY, USA: Association for Computing
Machinery, pp. 61–72.

Matsuda, K., Hu, Z., Nakano, K., Hamana, M. & Takeichi, M. (2007) Bidirectionalization transfor-
mation based on automatic derivation of view complement functions. In Proceedings of the 12th
ACM SIGPLAN International Conference on Functional Programming. New York, NY, USA:
Association for Computing Machinery, pp. 47–58.

Matsuda, K. & Wang, M. (2015a) Applicative bidirectional programming with lenses. In Proceedings
of the 20th ACM SIGPLAN International Conference on Functional Programming. New York,
NY, USA: Association for Computing Machinery, pp. 62–74.

Matsuda, K. & Wang, M. (2015b) “bidirectionalization for free" for monomorphic transformations.
Sci. Comput. Program. 111(P1), 79–109.

Matsuda, K. & Wang, M. (2018) Hobit: Programming lenses without using lens combinators. In
European Symposium on Programming. Springer, pp. 31–59.

Matsuda, K. & Wang, M. (2020) Sparcl: A language for partially-invertible computation. Proc. ACM
Program. Lang. 4(ICFP), 118.1–118.31.

Pacheco, H. & Cunha, A. (2010) Generic point-free lenses. In Proceedings of the 10th International
Conference on Mathematics of Program Construction. Berlin, Heidelberg: Springer-Verlag, pp.
331–352.

Pacheco, H. & Cunha, A. (2011) Calculating with lenses: Optimising bidirectional transforma-
tions. In Proceedings of the 20th ACM SIGPLAN Workshop on Partial Evaluation and Program
Manipulation. New York, NY, USA: Association for Computing Machinery, pp. 91–100.

Stevens, P. (2008) A landscape of bidirectional model transformations. In Generative and
Transformational Techniques in Software Engineering II: International Summer School, GTTSE
2007, Braga, Portugal, July 2–7, 2007. Revised Papers. Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 408–424.

Stevens, P. (2014) Bidirectionally tolerating inconsistency: Partial transformations. In Fundamental
Approaches to Software Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 32–46.

Stevens, P. (2020) Maintaining consistency in networks of models: Bidirectional transformations in
the large. Software Syst. Model. 19(1), 39–65.

Tran, V.-D., Kato, H. & Hu, Z. (2020) Birds: Programming view update strategies in datalog. In 46th
International Conference on Very Large Data Bases. VLDB Endowment, pp. 2897–2900.

Tsigkanos, C., Li, N., Jin, Z., Hu, Z. & Ghezzi, C. (2020) Scalable multiple-view analysis of reac-
tive systems via bidirectional model transformations. In Proceedings of the 35th IEEE/ACM
International Conference on Automated Software Engineering. New York, NY, USA: Association
for Computing Machinery, pp. 993–1003.

https://doi.org/10.1017/S0956796823000059 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796823000059


Contract lenses: Reasoning about bidirectional programs via calculation 37

Voigtländer, J. (2009) Bidirectionalization for free! (pearl). In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. New York, NY, USA:
Association for Computing Machinery, pp. 165–176.

Voigtländer, J., Hu, Z., Matsuda, K. & Wang, M. (2010) Combining syntactic and semantic bidirec-
tionalization. In Proceedings of the 15th ACM SIGPLAN International Conference on Functional
Programming. New York, NY, USA: Association for Computing Machinery, pp. 181–192.

Xia, L.-y., Orchard, D. & Wang, M. (2019) Composing bidirectional programs monadically. In
European Symposium on Programming. Springer, pp. 147–175.

A Calculating with total lenses

It is possible to make bmap total:

bmaptotal : A → (A ↔ B) → ([A] ↔ [B])
bmaptotal a0 � = Lens (map get�) p

where p [ ] = [ ]
p (x : xs) (y : ys) = put� x y : p xs ys
p [ ] (y : ys) = put� a0 y : p [ ] ys

The additional parameter a0 is used as a default source value.
One can develop an associated map fusion law for it:

get�1
a0 = b0

bmaptotal a0 �1; bmaptotal b0 �2 = bmaptotal a0 (�1; �2)
BMAPTOTAL FUSION

However, this law requires get�1
a0 = b0, a semantic condition on default values, which is

an unwanted proof obligation to program calculators and optimizers.

B Equivalent implementation of combinators

This appendix shows the code for equivalent implementations of some contract-lens
combinators in Section 5.

B.1 Efficient bfoldr

This section shows an efficient implementation of bfoldr:

bfoldr � = CLens (foldr′ get�) p ctrue ctrue
where p as b′ = let bs = tail (scanr (λa b → get� (Right (a, b))) (get� (Left ())) as)

in go as bs b′

go [ ] [ ] b′ = case put� (Left ()) b′ of
Left () → [ ]
Right (a′, bim′) → a′ : go [ ] [ ] bim′

go (a : as) (bim : bs) b′ = case put� (Right (a, bim)) b′ of
Left () → [ ]
Right (a′, bim′) → a′ : go as bs bim′
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B.2 Implementation of bmap and bmap′ with bfoldr′

This section shows how to use bfoldr′ to implement bmap and bmap′:

bmap : ({ctrue} S ↔ V {ctrue}) → ([S ] ↔ [V ])
bmap � = bfoldr′ ctrue eqlength �′

where
�′ :: Either () (S, [V ]) ↔ [V ]
�′ = CLens g p (lift ctrue eqlength) eqlength
g (Left ()) = [ ]
g (Right (a, bs)) = get� a : bs
p (Left ()) [ ] = Left ()
p (Right (a, )) (a′ : bs′) = Right (put� a a′, bs′)

bmap′ : (S ↔ V ) → ([S ] ↔ [V ])
bmap′ � = bfoldr′ cs� (licond cv�) �′

where
�′ :: Either () (S, [V ]) ↔ [V ]
�′ = CLens g p (lift cs� (licond cv�)) (licond cv�)
g (Left ()) = [ ]
g (Right (a, bs)) = get� a : bs
p (Left ()) [ ] = Left ()
p (Right (a, )) (a′ : bs′) = Right (put� a a′, bs′)

C Examples for combinators

This appendix shows examples for some contract-lens combinators and calculation laws
in Sections 5 and 6.

C.1 Computation instances of bmaximum

This section shows two calculation instances of the bmaximum example in Section 5.1.
Let us assume that getbmaximum [9, 2, 5] yields 9, and suppose that the output 9 is changed
to 4. Now the following calculation shows how this change is reflected back to the input
[9, 2, 5] and get [4, 2, 4]:

putbmaximum [9, 2, 5] 4

= { since putbmax (Right (9, getbmaximum [2, 5])) 4 = Right (4, 4) }

4 : putbmaximum [2, 5] 4

= { since putbmax (Right (2, getbmaximum [5])) 4 = Right (2, 4) }

4 : 2 : putbmaximum [5] 4

= { since putbmax (Right (5, getbmaximum [ ])) 4 = Right (4, −∞) }

4 : 2 : 4 : putbmaximum [ ] (−∞)

= { since putbmax (Left ()) (−∞) = Left () }

4 : 2 : 4 : [ ]
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Also, we can change the output 9 to a bigger value such as 10 and put it back to the input
[9, 2, 5], which is shown in the following calculation:

putbmaximum [9, 2, 5] 10

= { since putbmax (Right (9, getbmaximum [2, 5])) 10 = Right (10, 5) }

10 : putbmaximum [2, 5] 5

= { since putbmax (Right (2, getbmaximum [5])) 5 = Right (2, 5) }

10 : 2 : putbmaximum [5] 5

= { since putbmax (Right (5, getbmaximum [ ])) 5 = Right (5, −∞) }

10 : 2 : 5 : putbmaximum [ ] (−∞)

= { since putbmax (Left ()) (−∞) = Left () }

10 : 2 : 5 : [ ]

C.2 Example of bmap′

The following defines a bidirectional version for map (∗2) : [Int ] → [Int ] where the result
list only contains even numbers:

bdoubles : [Int ] ↔ [Int ]
bdoubles = bmap′ bdouble

where bdouble : Int ↔ Int
bdouble = CLens (∗2) (λ v′ → div v′ 2) ctrue (λ b → mod b 2 = 0)

C.3 Example of bmapl

With the help of bmapl, we are able to handle any constraint on adjacent elements of
a list, such as partial order relations. Consider a unidirectional computation map (λx →
mod x 10) ◦ sort : [Int ] → [Int ], which sorts the list first and then applies the modulo
10 operation on each element. The sort can be bidirectionalized as follows using some
auxiliary functions from the Data.List module of Haskell:

bsort : [Int ] ↔ [Int ]
bsort = CLens sort p ctrue (λt as → (∀ 1 < i ≤ |as|. asi−1 ≤ asi) ∧ eqlength t as)

where
p s v = let positions = map fst $ sortOn snd (zip [0 . .] s) in

map snd $ sortOn fst (zip positions v)

Thus, the backward transformation of map (λx → mod x 10) should produce a sorted list.
With the help of bmapl, we can write a bidirectional version for map (λx → mod x 10) as
follows:

bmapl (≤) ctrue (−∞) bmod10 : [S ] ↔ [V ]
where

bmod10 : (a : S) ⇒ (S ↔ V )
bmod10 a = CLens (λx → mod x 10) p (λ a′ → a ≤ a′) ctrue
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where p x y = if mod x 10 = y then go x else go y
go x = if x > a then x else go (x + 10)

Now we have bsort; bmapl (−∞) bmod10 : [Int ] ↔ [Int ] which synchronizes a list with
the result list of each element modulo 10 after it is sorted.

C.4 Example of bfoldlinit

In this example, we give a bidirectional version of the computation of prefix sums. An
intuitive implementation of prefix sums is map (foldl (+) 0) ◦ inits. With the help of bmapl
and bfoldlinit, we can easily bidirectionalize it as:

bprefixSum =
binits; bmapl (λs s′ → init s′ = s) ctrue [ ] (bfoldlinit ctrue 0 badd) : [Int ] ↔ [Int ]

where the badd is defined as:

badd : (b : Int) ⇒ (Either () (Int, Int) ↔ Int)
badd b = CLens g p (λ t′ → t′ = Right ( , b)) ctrue

where g (Left ()) = 0
g (Right (x, y)) = x + y
p s = Right (s − b, b)

This implementation of bidirectional prefix sum fits our intuition that a list of integers
is isomorphic to its prefix sums. For example, getbprefixSum [1, 2, 3] yields [1, 3, 6], and
putbprefixSum [1, 2, 3] [4, 6, 8] yields [4, 2, 2] regardless of what the original list is.

This is a good example showing the expressive power of contract lenses in writing
specifications solving bidirectional programming problems: we can decompose a complex
bidirectional problem into subproblems and solve them independently. With the help of
contracts (source and view conditions), they can be composed safely to solve the original
problem.

C.5 Example of bscanl

Consider that we want to synchronize a list of integers with its prefix products. The forward
transformation is characterized by prefixProd = scanl′ (∗) 1 : [Int ] → [Int ]. Note that there
is a constraint on the adjacent elements of the view list: the preceding element divides the
following element. This constraint can be expressed with the help of bscanl:

bprefixProd : ([Int ] ↔ [Int ])
bprefixProd = bscanl (λb b′ → mod b′ b = 0) 1 bmul

where
bmul : (b : Int) ⇒ (Either () (Int, Int) ↔ Int)
bmul b = CLens g p (λ t′ → t′ = Right ( , b)) (λ b′ → mod b′ b = 0)

where g (Left ()) = 1
g (Right (x, y)) = x ∗ y
p b′ = Right (div b′ b, b)
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C.6 Example of bidirectional scan lemma

We give a simple example which makes use of the BIDIRECTIONAL SCAN LEMMA to
derive an efficient bidirectional program from an inefficient one. Recall the bprefixSum
defined in Appendix C.4 for calculating the prefix sums of a list. It has time com-
plexity O(n2). Applying the BIDIRECTIONAL SCAN LEMMA to it, we can derive
bscanl ctrue 0 badd, which has time complexity O(n) in both forward and backward
transformations.
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