
254

Language and Cognition 9 (2017), 254–292. doi:10.1017/langcog.2016.7
© UK Cognitive Linguistics Association, 2016

Computational learning of construction grammars*

JONATHAN DUNN

Illinois Institute of Technology, Department of Computer Science

(Received 12 January 2016 – Revised 04 February 2016 – Accepted 10 February 2016 –
First published online 28 March 2016)

abstract

This paper presents an algorithm for learning the construction grammar
of a language from a large corpus. This grammar induction algorithm has
two goals: first, to show that construction grammars are learnable without
highly specified innate structure; second, to develop a model of which
units do or do not constitute constructions in a given dataset. The basic
task of construction grammar induction is to identify the minimum set of
constructions that represents the language in question with maximum
descriptive adequacy. These constructions must (1) generalize across
an unspecified number of units while (2) containing mixed levels of
representation internally (e.g., both item-specific and schematized
representations), and (3) allowing for unfilled and partially filled slots.
Additionally, these constructions may (4) contain recursive structure
within a given slot that needs to be reduced in order to produce a
sufficiently schematic representation. In other words, these constructions
are multi-length, multi-level, possibly discontinuous co-occurrences which
generalize across internal recursive structures. These co-occurrences are
modeled using frequency and the ΔP measure of association, expanded in
novel ways to cover multi-unit sequences. This work provides important
new evidence for the learnability of construction grammars as well as a
tool for the automated corpus analysis of constructions.

keywords : construction grammar, grammar induction, multi-unit
association measures, poverty of the stimulus.

1. Learning construction grammars
The Cognitive Linguistics paradigm holds that language is not strictly separated
from other cognitive faculties (e.g., Langacker, 1987; Hilpert, 2008) and, to some

[*] The author would like to thank Shlomo Argamon and Joshua Trampier for their support
and engagement throughout this project. This work was funded in part by the Oak Ridge
Institute for Science and Education. Address for correspondence: 3300 South Federal Street,
Chicago, IL 60616; web: www.jdunn.name; e-mail: jonathan.edwin.dunn@gmail.com

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

mailto:jonathan.edwin.dunn@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1017/langcog.2016.7&domain=pdf
https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

255

degree following from this, that languages are learnable without highly specified
innate structure (e.g., Hopper, 1987). That is, languages are learnable from the
statistical properties of observed linguistic expressions without positing innate
structures present in the learner (e.g., Goldberg, Casenhiser, & Sethuraman,
2004; Bybee, 2006; Goldberg, 2009). A ‘Grammar’ within Cognitive Linguistics,
then, is a data-driven and ultimately domain-independent model able to learn
grammatical generalizations from linguistic input. More precisely, any innate
constraints on the Grammar in this paradigm are not specific to language
but rather are general cognitive constraints (e.g., limits on working memory,
ability to recognize and categorize differences, etc.) that, when applied to
language learning, result in cross-linguistic patterns. One argument advanced
for innate structure is that language learners are exposed to different instances of
observed language but reach relatively similar grammatical representations.
The question, then, is whether this stability results from learners sharing
a partially defined initial state (e.g., innate structure) or from learners sharing
a single domain-independent ability to generalize from observations.

A lower-case grammar is the representation of a specific language while an
upper-case Grammar is the ability to learn such a grammar from linguistic
input alone with minimal innate structure. Thus, language-specific construction
grammars (e.g., analyses in Fillmore, 1988, and Kay & Fillmore, 1999) can be
seen as part of a more general Construction Grammar (e.g., Goldberg, 2006;
Langacker, 2008). This differs from Chomsky’s various divisions of competence/
performance and universal/specific grammar (1965, 1975), however, in that the
Grammar does not consist of predefined structures/rules/constraints but rather
of mechanisms for deriving or learning such structures/rules/constraints from
observed language data. This data-driven view can be visualized as in Figure 1,
where the Grammar is a link between language observations and generalized
language representations (grammars).

This illustration of the data-driven view of Grammar should not be mistaken
for an innate Language Acquisition Device (e.g., Briscoe, 2000). The view
here is that the Grammar consists largely or entirely of domain-independent
principles for deriving generalizations from a series of observations, and that
the form of produced grammars is a result of (i) the observed language data
itself and (ii) the domain-independent principles for forming generalizations.
In other words, from this perspective Grammar “is not an overarching set of
abstract principles, but more a question of a spreading of systematicity from
individual words, phrases, and small sets” (Hopper, 1987, p. 142). This implies,
for example, that a speaker’s grammar is not fixed but rather continues to be
modified as more language use is observed. The essential difference between
these views is whether systematicity in language is seen as a top-down
phenomenon (defined by innate structure) or a bottom-up phenomenon
(defined by spreading systematicity from observed language use).

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

256

The debate over an innate or a data-driven language faculty comes down
in part to a simple empirical question: Is it possible to learn the grammar of
a language without innate structure? In other words, is Grammar a set of
structures or a set of mechanisms for learning such structures? This question
has been approached with a variety of evidence; the point of this paper is to
provide computational corpus-based evidence by simulating the language-
learning process with computational models (e.g., Goldsmith, 2001, 2006;
Solan, Horn, Ruppin, & Edelman, 2005; as opposed to the approach taken in
Briscoe, 2000). If a grammar-induction algorithm is capable of learning the
grammar of a language without innate structure and using purely statistical
properties of observed language data, then it follows that such grammar
learning is possible in principle given only linguistic input. This is the case
even though the model is provided written language while human learners are
provided spoken language, and even though human and computational learners
do not employ the same mechanisms. In other words, the question is whether
the regularities of language can be adequately generalized into a productive
model of grammar given only observed ‘surface’ linguistic expressions.

Katzir (2014) observes that such computational simulations can be a counter-
argument to the poverty-of-the-stimulus line of reasoning for Universal
Grammar. However, this does not address either the richness-of-the-stimulus
or typological lines of reasoning for Universal Grammar. Thus, this is one
piece among many for the view of language as a learned phenomenon. It is,
further, only one piece of converging evidence against the poverty-of-the-
stimulus line of reasoning. For example, there are two main weaknesses to
this source of evidence: (i) that the algorithm requires access to much more
data than do human learners, and (ii) that that data is presented all at once
rather than being observed sequentially across many occasions. We can
perhaps divide the poverty-of-the-stimulus argument into two parts: first,
that language cannot be learned without innate structure as a matter of quality
of observations, in part because only positive examples can be observed;
second, that language cannot be learned without innate structure as a matter
of quantity of observations, in that language learners have access to different
amounts of linguistic input but reach similar grammatical representations.
This source of evidence, then, deals only with poverty-of-the-stimulus in
terms of quality of observed language and not in terms of quantity.

Fig. 1. Grammar and grammars.

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

257

This work can also be seen as a response to criticisms (e.g., Bod, 2006) that
construction grammar makes imprecise and thus untestable predictions. In other
words, it provides a reproducible model of which possible constructions qualify
as actual constructions in reference to a given dataset, a question that is not
adequately addressed in the literature. Section 1 of this paper examines the
nature of a construction grammar, the definition of a construction, and the
properties of constructions which the model must capture. Section 2 describes
the grammar induction algorithm in detail. Section 3 presents several
introspective and quantitative evaluations of the output grammar for subsets
of the ukWac corpus of web-crawled English (Baroni, Bernardini, Ferraresi, &
Zanchetta, 2009).

1.1. grammar as meaningful symbol ic units

The basic idea of construction grammar is that grammar is more than simply
a formal system consisting of stable but arbitrary rules for defining well-formed
sequences. Grammar, instead, consists of meaningful and symbolic form–
meaning mappings, called constructions (Goldberg, 2006). In this sense,
a grammar consists of meaningful constructions in the same way that a lexicon
consists of meaningful words (Langacker, 2008). The task of learning the
grammar of a language, in this paradigm, is the task of learning the vocabulary
of meaningful symbolic units which makes up that grammar. This allows us
to bring together two important premises: first, that grammar consists of
meaningful symbolic units (e.g., Langacker’s Cognitive Grammar); second, that
co-occurrence and distribution are indicators of meaning (e.g., Firth, 1957).

Taken together, these premises suggest that constructions, like words, can
be studied and defined as a set of co-occurring elements in a corpus. In this
case, however, the elements are in fact abstract and productive schemas
representing a large number of linguistic forms. If grammars consist of
symbolic form–meaning mappings, and if the distribution of elements in a
corpus reveals their meaning, then the problem of grammar induction can be
viewed as the problem of distinguishing those potential constructions which
significantly co-occur from those potential constructions which do not
significantly co-occur. It should be noted that the constructions discussed
here are not simple idioms or phrases (although such may be constructions)
but rather range from fully schematic and productive to fully item-specific
representations.

Given that constructions are productive and co-occurring schemas, such
co-occurrences can be disguised in observed language data by two sorts of
phenomena: (1) by recursive structure within a particular element of the
construction; or (2) by unfilled or partially filled elements in the construction.
This means that the language represented by these constructions can appear

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

258

to be discontinuous. The problem is that this greatly increases the hypothesis
space and raises the question of learnability: With such a large hypothesis
space, unconstrained by innate structure, is it feasible for the learner to
distinguish valid constructions from the much larger number of potential
constructions? Lidz and Williams (2009), for example, argue that the great
number of possible grammatical representations, taken together with similar
learned output grammars across language learners, requires the constraining
power of innate structures/rules/constraints. This objection is countered in
the evaluation section of this paper by comparing the agreement of output
grammars learned from different subsets of the corpus. In this case, the subsets
represent multiple learners with the same Grammar learning the language from
different inputs.

1.2. prec i se def in it ions for what c onst itutes a
c onstr uct ion

What is a construction? Or, asked another way, which units count as grammatical
entities (i.e., constructions) for a given speaker and a given language? The
discussion above contrasts potential constructions and actual constructions,
framing the language-learning task as one of distinguishing between these
two categories. A Construction Grammar in the sense discussed here provides
a mathematical definition of co-occurrence such that the theory can distinguish
between potential and actual constructions and thus produce a set of constructions
(i.e., a grammar) representing a given language. This sort of grammar is
updateable in the sense that the units which qualify as constructions change
over time as new language use is observed. The model is based on form (e.g.,
multi-length and multi-level non-continuous sequences with possible internal
recursive structure) and distribution (e.g., frequency and multi-unit association
measures). The implicit hypothesis, then, is that constructions can be identified
using these measures on surface linguistic expressions.

A counter-argument to this program of precisely defining constructions
is that it is based on the classical theory of categorization’s strict category
boundaries rather than on the fuzzy and gradient membership posited by
proto-type categorization theory. This is a false dichotomy, however, because
the model ranks constructions using scalar measures. The classical, strict
categorization approach can be simulated by setting a strict boundary
threshold. The proto-type, fuzzy categorization, approach can be achieved
by retaining the order of constructions posited by the model. In short, the
container metaphor for language (e.g., that a grammar and a lexicon contain
certain elements and not others) is a conventional way of discussing linguistic
theory, even when we are aware that parts of this metaphor are not accurate
(e.g., Langacker, 2006). In other words, the idea of an optimum grammar

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

259

to describe a language is a metaphoric idea, subject in practice to variations
within speakers (e.g., across genres) and between speakers (e.g., across speech
communities). Although not explored further here, such variations in learned
construction grammars occur at two levels: types of constructions (presence or
absence of a given construction) and usage of constructions (relative frequency
of a given construction).

The grammatical generalizations learned by the algorithm are abstracted
away from individual speakers by definition, in that they are learned from a
corpus of data produced by many speakers. Thus, the argument presented
here participates in the abstraction by which language-use is generalized
away from individuals and discussed as a single entity such as ‘English’ or
‘German’. This abstraction means that the elements of a grammar are not
necessarily a psycholinguistic reality for any single speaker, a limitation that
also applies to the work presented here.

1.3. pr opert ies of c onstr uct ions to be modeled

Constructions are form–meaning mappings that differ in their size, internal
complexity, and level of schematicity. This paper is concerned only with
constructions above the level of individual words. The constructions that
need to be identified are idioms like the partially filled idiom in (1), argument
constructions like the ditransitive in (2), and sentence-level constructions like
the covariational conditional in (3) (c.f. Goldberg, 2006).
 (1) jog [someone’s] memory
 (2) NP + <transfer> + NP + NP
 (3) the [X’er], the [Y’er]

These examples represent three of the essential properties of constructions
that need to be captured: (i) varying length, (ii) varying levels of representation
in each slot, and (iii) filled, partially filled, or unfilled slots. A fourth essential
property of constructions (iv) is the ability to contain recursive material
within a given slot (e.g., a nominal construction nested within a verbal
construction) as well as constituents with varied internal structure.

The first challenge is that constructions vary in length and that word-based
measures of length do not account for constituent-internal structure.
For example, the idiom in (1) contains three units, while the ditransitive in
(2) contains four units. Further, and creating a greater difficulty, constructions
can have recursively filled slots. For example, (4a) through (4c) contain
instances of the same ditransitive construction but contain different numbers
of lexical units, ranging from five to eight. The algorithm must be able to
generalize over these different lengths and recursively filled slots to identify
the underlying construction: NP + <transfer> + NP + NP. In other words,

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

260

co-location can occur at the word-level but also at the phrase-level, so that in
(4c), for example, Bill’s uncle and two Canadian dollars can be seen as being
separated by six units (at the word-level) or by two units (at the phrase-level).
The algorithm must be sufficiently flexible to allow item-specific representations
(e.g., (4e)) to be identified alongside fully schematized representations as in (2).
In other words, the problem is how to measure multi-level co-occurrence.
 (4) a. Bill gave Wendy two dollars.
 b. Bill gave Wendy’s sister two dollars.
 c. Bill’s uncle gave Wendy’s older half-sister from Paris two Canadian

dollars.
 d. Bill’s uncle gave Wendy a hand.
 e. gave X a hand

The second challenge is that constructions vary in the level of representation
used and may contain mixed levels of representation. For example, the
ditransitive construction in (2) must be represented using parts-of-speech
and semantic categories. The idiom in (1), on the other hand, has to be
represented at multiple levels: the fixed part of the idiom requires simple
lexical representation but the unfilled slot has semantic restrictions (e.g., an
animate object). This multi-level requirement makes the task more difficult
than collocation identification and, more importantly, again multiplies the
space within which the learner must search for potential constructions.

The grammar induction algorithm operates on three levels: first, on
lemmatized word-forms representing the lexical level of language; second, on
part-of-speech forms representing lexical units grouped according to their
syntactic distribution; third, on semantic or conceptual forms representing
lexical units grouped according to their meaning. In addition, the algorithm
allows for the reduction of internal structure within prepositional phrases,
noun phrases, multi-word named entities, and adjunct units in order to measure
distance at both the fully schematized and the item-specific levels for purposes
of measuring co-occurrence. These phrasal representations are similar to
Fillmore’s (1988) ‘maximal’ categories, whereas the lemma and part-of-speech
representations are similar to ‘minimal’ categories.

The third challenge is that constructions contain filled, partially filled,
and unfilled slots. In other words, a particular slot of the construction can be
filled by a lexical item, can be constrained to a unit of a particular semantic
category, or can be left entirely unfilled. This means that a construction can
be non-continuous in the surface linguistic expression. For example, the
idiom in (5) has an unspecified slot which, however, must be filled by a human
or some entity which takes on the properties of a human via metonymy or
personification. The idiom in (6a), however, can be filled by any material

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

261

whatsoever, as shown by the examples in (6b–d). The algorithm deals with
this requirement by using multiple levels of representation: partially filled
slots can be defined by their semantic requirements (e.g., any animate object),
and unfilled slots can be defined by their syntactic requirements (e.g., any noun
phrase). This again multiplies the search space for potential constructions.
 (5) send [someone] to the cleaners
 (6) a. They didn’t pay [NP] any heed.
 b. They didn’t pay [me] any heed.
 c. They didn’t pay [the warning signs] any heed.
 d. They didn’t pay [the smoke on the horizon] any heed.

The fourth challenge is that constructions can have recursively filled internal
structure. This takes two forms: (i) a syntactically defined slot can be filled with
a wide range of complex constituents of the same type (e.g., NPs take many
different forms), and (ii) constructions can be nested within other constructions.
As an example of the first case, if we take the ditransitive construction in (2)
above, repeated in (7a), any of the components can contain constituents with
varied internal structure, so that (7b) through (7d) are all instantiations of the
same construction. As an example of the second case, (7e) contains the same
ditransitive construction nested within a different instance of the construction,
so that ball is part of the main ditransitive as well as the relative clause version
of the ditransitive. The first sort of recursion, of interchangeable constituents
in a single more general slot, although a challenge to model, is a relatively simple
phenomenon for construction grammar in general. The second sort, however,
is more difficult on both levels.
 (7) a. NP + <transfer> + NP + NP
 b. He gave her the ball.
 c. The short man quickly gave her the blue ball.
 d. The two short men quickly refused to give her any of the balls.
 e. He gave her the ball Bob had just given him two days before.

The constructions output by the algorithm have a linear form such as in
(8a–d). In this formula, units of a given level of representation occur in the
specified order. Four levels of representation are used in the final output:
first, specific word-forms and lemmas, as in (8a) with “be”; second, part-of-
speech tags for individual units, as also in (8a) with the units in brackets;
third, semantic or conceptual categories which constrain the fillers of the slot
in question, as in (8c) in small caps; fourth, syntactic phrases with reduced
internal structure, such as NP and PP in (8d).
 (8) a. [Wh-Determiner] + [Modal] + “be” + [Past-Participle]
 b. “to” + [Verb] + [Determiner] + [Noun]

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

262

 c. [Noun] + [Preposition] + [Determiner] + <planning>
 d. “be” + [Past-Participle] + PP+ NP

The use of multiple levels of generality shows the influence of corpus
linguistics on the algorithm in addition to Cognitive Grammar: the goal is
to find the inventory of symbolic grammatical units attested in the corpus,
even if those units are not abstract or schematic but rather fully item-specific.
This is an important part of grammar induction because observed patterns in
usage show that speakers have clear preferences both for schematic structures
and for specific instances of such structures.

Finally, an essential property of constructions more generally is that they
are form–meaning mappings rather than purely syntactically defined sequences.
This is modeled here both directly and indirectly. Directly, it is captured
using semantic or conceptual representations of words; in effect, this means
that the filler of a slot can be defined in terms of a specific meaning, rather
than in terms of a specific lexical or syntactic item. Indirectly, this is captured
using overlapping constructions with different levels of schematicity. More
item-specific constructions represent different instances of a more general or
schematized construction and have different meanings from generic instances
of that construction (e.g., give me two pieces of cheese vs. give me a hand).

2. The construction induction algorithm
This section looks at the construction induction algorithm1 in detail, starting
in Section 2.1 with a discussion of the underlying problem and how it is
distributed across the algorithm. Section 2.2 looks at the different levels of
representation used in the algorithm. The core functions of the algorithm are
then examined: the generation of potential constructions (2.3), formulating
association measures to evaluate candidates (2.4), and then using association
measures to select the best candidates. The algorithm is then situated relative to
other computational work on constructions, relative to collostructional analysis,
and relative to other work on grammar induction (2.5).

2.1. a spects of the pr oblem

The goal of the construction grammar induction algorithm is to search through
the many linguistic expressions present in a large corpus in order to find the
relatively small number of underlying generalizable grammatical units which
produce or represent those linguistic expressions. In other words, the problem

[1] Code and related data for the Construction Induction algorithm is available at www.jdunn.
name.

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

http://www.jdunn.name
http://www.jdunn.name
https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

263

is to cut through the noise in the textual data and return only those units
which can be considered part of the grammar represented in the corpus. The
linguistic expressions in the corpus have a very large number of possible
representations (i.e., potential constructions); the problem is to find the
optimum set of representations.

The construction grammar induction algorithm identifies multi-length,
multi-level, non-continuous co-occurrences while abstracting over internal
recursive structure. In other words, the algorithm builds frequency and
association measures of co-occurrence but does so at multiple levels of analysis.
This task is divided across three stages in the algorithm: first, the candidate
generation stage deals with recursive structures and non-continuous
representations. Second, the construction identification stage forms templates
for construction types and identifies the presence of these construction
templates in linguistic expressions in order to extract and inventory potential
constructions. Third, the candidate evaluation stage searches through the
very large number of potential grammatical representations (i.e., candidate
constructions) to determine the set which best represents the linguistic
expressions in the input corpus using frequency and multi-unit association
measures. The pseudo-code for the algorithm is shown in Table 1; this
pseudo-code can be considered a diagram of the essential workings of the
algorithm and also a guide to a specific Python implementation.

2.2. l e vels of representat ion

Level of representation refers to the type of linguistic analysis used to label
a particular element in the construction: part-of-speech (e.g., noun), phrase
type (e.g., prepositional phrase), semantic-category (e.g., animate), and lemma
(e.g., “candle”). The idea behind varying levels of representation within a
construction is (1) that language is composed of layered and interacting levels
of structure and (2) that grammatical units can be fossilized at each level.
In other words, some constructions may be completely schematic and others
may be completely item-specific. The algorithm, therefore, must operate on
multiple levels of representation because we cannot know a priori for a given
linguistic expression the specificity or type of representation present in the
construction that produced it.

The algorithm has a few dependencies. First, it relies on part-of-speech
tagging (in this case, TreeTagger: Schmid, 1994), which labels lexical units
according to their syntactic distribution and function. Second, it relies on
semantic or conceptual tagging (in this case, the UCREL Semantic Analysis
System: Piao, Bianchi, Dayrell, D’Egidio, & Rayson, 2015), which labels
lexical units according to their ontological meaning. Third, it relies on a
dependency parser (in this case, MaltParser: Nivre et al., 2007), which aids

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

264

table 1. The construction-grammar induction algorithm

1 Create unit inventories for each level of representation
 a. Create list of all unit values at each level of representation
 b. Discard unit values below frequency threshold
 c. Assign each unit value a numeric index

2 Ingest input files
 a. Divide into units divided by sentence boundaries and/or punctuation (by parameter)
 i. Represent each unit as vector of unit value indexes
 ii. Represent each clause/sentence as a collection of unit vectors

3 Search for recursive structures and non-continuous units
 a. For each clause:
 i. Look for adjunct units (e.g., adverbs)
 ii. Look for PPs (e.g., “into the house”)
 iii. Look for NPs (e.g., “the house”)
 iv. Look for Multi-Word Named Entities (e.g., “Norman Rockwell”)
 b. For each reduction in each clause:
 i. Create alternate clause with unit either reduced (e.g., to “NP”) or removed
 ii. Create alternate clauses with all combinations of reductions applied

4 Create construction templates
 a. For all lengths from 2 through N (Max construction length):
 i. All possible combinations of levels of representation

5 Extract candidate constructions using templates and units of text
 a. For each template:
 i. Search through original and alternate linguistic expressions
 ii. Extract and count all matches
 iii. Disregard any matches containing discarded labels
 iv. Remove all candidates below the frequency threshold

6 Evaluate candidates:
 a. Frequency
 b. Summed ΔP, Left-to-Right
 c. Summed ΔP, Right-to-Left
 d. Mean ΔP, Left-to-Right
 e. Mean ΔP, Right-to-Left
 f. Beginning-Reduced ΔP, Left-to-Right
 g. Beginning-Reduced ΔP, Right-to-Left
 h. End-Reduced ΔP, Left-to-Right
 i. End-Reduced ΔP, Right-to-Left
 j. Beginning-Divided ΔP, Left-to-Right
 k. Beginning-Divided ΔP, Right-to-Left
 l. End-Divided ΔP, Left-to-Right
 m. End-Divided ΔP, Right-to-Left
 n. Direction Scalar ΔP
 o. Direction Categorical ΔP

7 Prune candidates:
 i. By Association Strength
 ii. Horizontally (prefer longest candidates)
 iii. Vertically (remove alternate representations)

in the reduction of prepositional phrases and noun phrases. There is no
theoretical reason why these functions could not be incorporated into a single
framework, only the practical consideration of avoiding the duplication of
existing work. These dependencies do not invalidate the argument against

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

265

innate structure because each could itself be performed in an unsupervised
and data-driven fashion.2

2.3. generat ing potential c onstr uct ions

The candidate generation step carries the weight of deriving possible
generalizations from each linguistic expression. There are two separate stages
here: first, producing alternate representations of a linguistic expression to
reduce recursive units; second, extracting construction templates of varying
length and level of representation from those alternate representations of the
linguistic expressions (i.e., steps 3–5 in the pseudo-code).

For example, the sentences in (9a–c) all depend on the ditransitive construction,
with increasing substructures within the slots of the construction that create
noise for the language-learning algorithm. In other words, finding the
construction “NP + <transfer> + NP + NP” from the sentence in (9c)
requires looking at each constituent as a whole, as shown with brackets in (9d).
The algorithm approaches this problem by generating alternate forms for
each linguistic expression and then including these alternate forms in the
search for co-occurrences.
 (9) a. “The coffee gave her a headache.”
 b. “The dark unfiltered coffee soon gave her a splitting headache.”
 c. “The dark unfiltered coffee from South America soon gave her a

splitting headache and a feeling of nausea.”
 d. “[The dark unfiltered coffee from South America] [soon gave] [her]

[a splitting headache and a feeling of nausea].”
Given an expanded set of linguistic expressions, the algorithm handles varying

length and varying levels of representation by creating templates for all possible
combinations of representations within the defined length parameter. Each
template, therefore, represents the most abstract properties of a construction:
How many units and what representations does it contain? The algorithm then
extracts all potential constructions, which are simply instantiations of each
template in a linguistic expression.

2.4. e valuat ing potential c onstr uct ions

The evaluation of potential constructions involves mathematically modeling
the properties which separate constructions and non-constructions, either

[2] More recent versions of the algorithm incorporate a distributional method of creating
semantic dictionaries as well as the unsupervised learning of phrase structure rules which
supports the further reduction of complex constituents, thus removing two of the three
dependencies.

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

266

with a sharp delineation of the two categories or with a scalar ordering by
degrees of entrenchment. In this case, the model is observational in that it
operates on a corpus of attested linguistic expressions. Thus, the question is
what quantitative distributional measures are required to develop a model of
constructions. Two standard measures are used: frequency and association
strength. The implementation of these standard measures, however, must
allow for the evaluation of multi-unit candidates, which requires developing
multi-unit association measures.

The first measure is frequency, a simple representation of how often
something appears in the dataset. This measure is relative frequency, in that
all candidates are evaluated on the same dataset. In addition to providing
a constraint on the overall search space, frequency remains an important
measure of a candidate’s status as a construction, in order to prefer some
possible representations over others. The frequency threshold is enforced by
creating an index of unit frequencies on the entire corpus or on a significant
subset of the corpus (i.e., a million word subset) and ignoring those units
which do not pass this indexing threshold. While this reduces the search
space for the algorithm, it is not psychologically plausible in the sense that
human learners do not have this sort of large existing dataset to query in
advance of learning. As noted in more detail below, one critical assumption
behind this approach is that human learners have the ability to store and
update the frequencies of units and sequences of units largely without limit.
The present algorithm, because it has access to the entire corpus all at once,
can use frequency indexing as a means of reducing the hypothesis space in a
way that human learners cannot.

Association strength is measured using the bi-directional ΔP (Gries, 2013;
cf. Gries, 2008, 2012), calculated both left-to-right and right-to-left, as shown
in Table 2. To be more precise, the ΔP is not bi-directional but rather consists
of two direction-dependent measures; taken together, these two direction-
dependent measures allow us to model linguistic associations in all possible
directions. Both spoken and written language are one-dimensional in the sense
that Unit A can either come before or come after Unit B. The construction
induction algorithm is based on multi-directional (left-to-right or right-to-left),
multi-dimensional (across varying levels of representation), multi-length (across
two or more units) association strength, measured with and without complex
constituent-internal structure (i.e., distance is measured at different levels of
abstraction). The idea is that sequences which are constructions (e.g., are
cognitively entrenched to some degree) are more internally associated than
sequences which are not constructions (e.g., those which are chance co-occurrences
of units). The purpose of the association measures (and the frequency counts on
which such measures are ultimately based) is to learn an inventory of constructions
from the very large hypothesis space of all observed sequences.

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

267

table 2. Calculating ΔP

1 Let X be a unit of any representation
2 Let Y be any other unit of any representation
3 Let Xa indicate that unit X is absent
4 Let Xp indicate that unit X is present
5 ΔP(X|Y) = p(Xp |Yp) - p(Xp |Ya)
6 ΔP(Y|X) = p(Yp |Xp) - p(Yp |Xa)

Like most linguistic association strength measures, ΔP is usually employed
to measure the relationship between two individual words. Given the
variable length required by constructions, this is converted into a multi-
word measure in four different ways. Each calculation is given for a sequence
of elements listed in (10) for the sake of example. Association strength is
an important addition to frequency because it allows the model to capture
the constraint of degree of openness (Goldberg, 2006). The basic problem is
that very frequent units occur often in competing potential constructions
and association measures prevent the over-identification of false positive
constructions containing frequent units.
 (10) A B C D E F

First, the simplest multi-word measure is a sum of the total directional
association within a candidate, implemented with a minimum pairwise threshold.
In other words, so long as each pairwise ΔP is above the threshold, this measure
simply sums the total association strength. While this first measure tends to favor
longer candidates, it is left as-is in order to counteract the frequency thresholds
which tend to favor shorter candidates. An alternate version, the mean ΔP,
is normalized by the length of the candidate in number of units to produce
the mean pairwise association score across the entire sequence. Both measures
are shown in Table 3.

This multi-unit measure is similar to Daudaravičius and Marcinkevičienė’s
(2004) work on detecting the borders of collocations, except that it allows both
a minimum threshold and a final score (e.g., the summed association strength).
In other words, the gravity count measure is a different formulation for
association strength and a collocation is defined as a sequence of pairs whose
association falls above a given threshold. The summed ΔP is similar, except
that it also outputs a sum of pairwise associations for those sequences which
do exceed the threshold. This similarity is disguised by a difference in
implementation. For example, Jelinek (1990) also uses an iterative approach
that tests increasingly longer sequences for sufficient association strength; in the
current implementation, each candidate is considered independently, although
any longer sequence which passes the frequency threshold is by definition
made up of smaller sequences which have themselves passed that threshold.

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

268

Gries and Mukherjee (2010) also use mean pairwise association strength to test
multi-unit candidates. Finally, it should be noted that all measures discussed
below are implemented in both left-to-right and right-to-left directions, although
the discussion is streamlined by exemplifying each measure in a single direction.

The second multi-unit measure is the difference between the mean ΔP with
and without the candidate’s edge members. In other words, going from left-
to-right, this measures the difference between the association between A-B-
C-D and B-C-D: Do we gain or lose association by extending the unit? This
measures whether the longer version of the candidate increases or decreases
the overall association strength. Given that the evaluation is trying to discover
the optimum candidates, those candidates which reduce the mean association
strength can be viewed as less than optimum. This measure has two variants,
one looking at the front and the other at the end of the candidate (and each,
like the underlying ΔP, is calculated in both directions), as shown in Table 4.

The third multi-unit association measure is the ΔP of the first unit and the
rest of the candidate (A|BCDEFG) and the ΔP of the last unit and the rest
of the candidate (ABCDEF|G). This is an alternate measure of how much
the increased length raises or lowers the overall association strength. This is
calculated as in Table 5 (and, as before, in both directions).

The fourth multi-unit measure uses the dominant pairwise direction of
association. In other words, moving through the candidate, is the left-to-
right or right-to-left association stronger between the current pair of units?
The idea here is that the optimum candidate should have a single dominating
direction, and that the more disagreement there is in pairwise directional
associations the worse the candidate is. This sort of measure was suggested,
for example, by Gries (2013), although not implemented. The assumption
that a construction should have a single dominating direction of association
is not entirely transparent, and further work needs to be done on this issue.

There are two methods of calculating this measure, a scalar method and
a categorical method. First, the scalar method finds the difference between
both directions for each pairwise unit and sums these differences. Positive
numbers indicate the dominance of left-to-right association while negative
numbers indicate dominance of right-to-left association. This provides
both the direction and the degree of the dominance. One weakness, however,

table 3. Calculating the Summed ΔP

1 Calculate each ordered pairwise ΔP:
2 A|B, B|C, C|D, D|E, E|F
3 Fp = Pairwise Frequency Threshold
4 If any ordered pairwise ΔP < Fp, discard candidate construction
5 Summed ΔP = ()()Σ ∆ | ∆ | …P(A B) P(B C)

6 Mean ΔP = (()()Σ ∆ ∆| | …P(A B) P(B C)) / Nunits

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

269

table 4. Calculating the Reduced ΔP

1 Beginning-Reduced ΔP = Mean ΔP(ABCDEFG) – Mean ΔP(BCDEFG)
2 End-Reduced ΔP = Mean ΔP(ABCDEFG) – Mean ΔP(ABCDEF)

is that two large pairwise differences can cancel each other out. Thus, the
related categorical measure simply counts the number of pairs for which the
left-to-right or right-to-left measure dominates and returns the minimum of
these as a counter of how many times the dominating direction changed while
moving sequentially through the candidate. Thus, a candidate in which either
direction of association wholly predominates would receive a 0, a candidate
with one change in direction would receive a 1, and so on. These are calculated
as shown in Table 6.

This collection of association measures, together with frequency, is used
to create a vector representing each candidate. A summary of the measures
contained in this vector is given in Table 7. The selection and ordering of
possible candidates is performed using this vector representation. This is,
as all quantitative models are, a simplification of a construction grammar,
in this case focusing only on frequency and frequency-based co-occurrence
information to determine which potential constructions form the strongest or
most associated units. The question, however, is whether this simplification
(i.e., purely statistical generalization) is sufficient for learning a construction
grammar from a corpus.

Alternate methods for calculating multi-unit association strength include Wei
and Li (2013), who start with da Silva and Lopes’ (1999) notion of pseudo-
bigrams, in which all sequences longer than two units are reduced to all possible
pairwise combinations (e.g., A|BCD, AB|CD, ABC|D for the sequence
ABCD). This is similar to the divided ΔP measures described above. Starting
with these pseudo-bigrams, Wei and Li take the average pointwise mutual
information score for each pseudo-bigram in the sequence, but refine the average
by weighting each pseudo-bigram by its probability in the corpus. This gives
more weight in the final measure to the most probable subsequences.

The one assumption that these measures require is that the language
learner is able to store frequencies, both of units and of sequences. In other
words, a sizable amount of linguistic memory is required to store all the
units and sequences that make up possible candidates and to update the
frequencies of those units and sequences as new language is observed.
This could be done, in algorithmic terms, either with cumulative observed
frequencies or with a rolling time-based window. This approach, then, does
assume that learners are capable of this sort of frequency storage, a question
that is beyond the scope of the present paper (although see Tomasello, 2003,
and Bybee, 2010).

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

270

For the sake of example, sample calculations are shown for the sequence
did not know about it. Only lexical items are considered for simplicity.
First, this sequence consists of the pairs in (11). Each word is shown with
its frequency in the Corpus of Contemporary American English (COCA:
Davies, 2010) in brackets, with the total co-occurrences of each pair
following. The left-to-right (LR) and right-to-left (RL) ΔP are shown
for each (note that the total number of words in COCA is rounded to
520 million in these calculations). Given these measures, the summed ΔP
left-to-right is 0.0939 with a smallest pairwise value of 0.0108 (“know
about”) and the mean ΔP is 0.0234. Going from right-to-left, the summed
ΔP is 0.2052 with a smallest pairwise value of 0.0052 (“not know”) and a
mean ΔP of 0.0513.
 (11) a. “did” [895,094] + “not” [2,155,912] and their co-occurrence [128,432]
 a’. LR = 0.0581, RL = 0.1395
 b. “not” [2,155,912] + “know” [857,571] and their co-occurrence

[14,697]
 b’. LR = 0.0130, RL = 0.0052
 c. “know” [857,571] + “about” [1,444,147] and their co-occurrence

[17,933]
 c’. LR = 0.0108, RL = 0.0182
 d. “about” [1,444,147] + “it” [5,146,411] and their co-occurrence [75,164]
 d’. LR = 0.0120, RL = 0.0423

The reduced ΔP compares the mean values for subsequences; the formulation
for the beginning-reduced is shown in (12a) and the end-reduced in (12b).
For the end-reduced measures, in both directions, the mean association is
lower in the longer sequence than in the reduced sequence, although the
difference is quite small. The point, though, is to see if a smaller sequence has
a higher mean association. It is important to remember that these measures
are also calculated on other subsequences if those subsequences are themselves
candidates. In this case, for example, each pair is itself a candidate (although
not a multi-unit candidate), as are both reduced sequences. This results from
the fact that any longer sequence which passes the frequency threshold is
composed of subsequences which have also passed the frequency threshold.
In practical terms, then, it is the multi-unit measures taken together with
the different candidates that allow full coverage in the search for actual
constructions and makes iterative measures unnecessary.

table 5. Calculating the Divided ΔP

1 Beginning-Divided ΔP = ΔP(A|BCDEFG)
2 End-Divided ΔP = ΔP(ABCDEF|G)

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

271

 (12) a. Beginning-Reduced: Mean (“did not know about it”) – Mean
(“not know about it”)

 a’. LR = 0.0115, RL = 0.0291
 b. End-Reduced: Mean (“did not know about it”) – Mean (“did not

know about”)
 b’. LR = –0.0039, RL = –0.0030

The divided ΔP calculates multi-unit association with units instead of pairs.
This is shown in (13) with its beginning and end variants. The frequency of
each unit is shown (in this case, with larger sequences viewed as units), and
the frequency of the entire sequence is 16. Longer sequences like this can
result in high association: given the sequence not know about it, the preceding
elements are limited and thus the association is high even though frequency
is low. It is important to note, again, that other subsequences are compared in
other shorter and longer candidates.
 (13) a. Beginning-Divided: (“did” [895,094] | “not know about it” [33])
 a’. LR = 0.4831, RL = 0.0000
 b. End-Divided: (“did not know about” [197] | “it” [5,146,411])
 b’. LR = 0.0000, RL = 0.0714

The final two measures quantify the role of direction within the sequence:
Given a series of pairwise associations, how stable is the dominating direction
of association? The first measure subtracts the right-to-left association from
the left-to-right association in order to show accumulating effects of dominance.
In this case, the final measure is –0.1191, showing that, overall, the dominating
pairwise direction is right-to-left. The categorical measure looks at how many
times the direction changes. In this case, there is one left-to-right dominating
pair (“not know”), giving the measure a value of 1. The purpose of this
discussion has been to provide an example of how the measures are calculated,
rather than a complete analysis of their many permutations.

2.5. model ing c onstr uct ions

The final and essential step is to take this large number of possible constructions
and model the properties which separate possible and actual constructions in
order to predict the inventory of the dataset-specific construction grammar.
It will be useful, first, to look at some existing approaches to this problem.

table 6. Calculating the Direction ΔP

1 Direction-Scalar ΔP = [() () () ()]∆P A B ∆P B A ∆P A B ∆P B AΣ …(| − |), (| − |)
2 Direction-Categorical ΔP = min(Number LR dominant pairs, Number RL

dominant pairs)

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

272

Wible and Tsao (2010) present StringNet, which finds all sequences of
word-form, lemma, or part-of-speech (unigrams to 8-grams) which pass a
frequency threshold. StringNet uses a mutual information measure to rank
results; however, this measure is not expanded for multi-unit sequences but
rather normalized across the results of a particular query. Pruning of nested
or redundant sequences is used to reduce the number of candidates. Tsao
and Wible (2013) use co-occurrence vectors with these sequences to produce
distributional similarity scores. Forsberg et al. (2014) build on StringNet by
incorporating dependency parsing to identify phrases as parts of potential
constructions, similar to the how the present algorithm reduces complex
constituents in identifying potential constructions. Frequency is used to prune
potential constructions and the final evaluation is performed using a multivariate
generalization of pointwise mutual information (van de Cruys, 2011) scaled
by the number of unique word-form sequences instantiating each candidate.
Zuidema (2006) formulates the problem of identifying constructions as taking
parse trees and identifying those sub-trees which frequently re-occur and
which may contain syntactically defined (e.g., partially filled) slots at the end.
This approach uses a simpler definition of constructions, along the lines of
productive multi-word expressions.

Taken together, this previous work introduces elements present in the
current algorithm which are expanded and incorporated into an overall
model of a construction grammar in this paper. First, the current algorithm
has more robust approaches to dealing with recursive structure (e.g., reducing
noun phrases) and partially filled / unfilled slots. Further, it includes semantic
category as a level of representation, an important part of representing
constructions. These improvements involve the generation of possible
constructions. The primary contribution of this paper, however, consists of
developing and aggregating measures of association to model the gradient
distinction between possible and actual constructions. This component is the
essential central problem of construction grammar induction: reducing large

table 7. Summary of measures in vector representing the candidates

Measure Variations

Simple Frequency
Summed ΔP Left-to-Right, Right-to-Left
Mean ΔP, Left-to-Right, Right-to-Left
Beginning-Reduced ΔP Left-to-Right, Right-to-Left
End-Reduced ΔP Left-to-Right, Right-to-Left
Beginning-Divided ΔP Left-to-Right, Right-to-Left
End-Divided ΔP Left-to-Right, Right-to-Left
Direction-Scalar ΔP
Direction-Categorical ΔP

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

273

numbers of possible representations to a small number of actual and productive
constructions. Thus, the current work builds on existing work to produce a
coherent and efficient model for construction identification and extraction.

Given a large number of potential constructions with frequency and
association strength values, the model for determining which to include in
the grammar first removes clear false positives and then ranks the remaining
candidates by their degree of entrenchment. The pruning steps, shown in
Table 8, begin by removing those candidates which fall below the pairwise
threshold. In other words, multi-unit candidates such as ABCDEF have both
multi-unit association scores and pairwise scores; the idea here is to remove
those candidates which have weak links between at least one pair, indicating
that an alternative candidate with alternate boundaries is a better representation.

The second step is to remove those candidates whose mean association
strength as a whole is lower than the mean association strength of a subsequence
(e.g., ABCDEF vs. BCDEF or ABCDE). The idea here is that the representation
with the higher mean association strength is the best grammatical unit.

The third step is to prune those candidates in which the dominating pairwise
direction of association changes internally. For example, with the sequence
ABCDEF, if all dominating pairwise associations are left-to-right except for
CD, in which right-to-left dominates, this is an indicator that the candidate
provides a non-optimal boundary.

The final two reduction steps are the simplest: horizontal pruning takes the
remaining candidates and chooses the largest, while vertical pruning finds those
candidates of the same length which share the same association strengths, so that
they are alternate representations of the same underlying construction.

These reduction rules are applied in this order, with association strength given
the most weight because it removes the largest number of candidates and thus
eases the application of subsequent rules. The final step is to rank the remaining
constructions by their degree of entrenchment; in other words, the idea is to
order constructions by how highly associated they are. This is done using the
mean ΔP and the end-divided and beginning-divided ΔP. First, the highest
directional score for each of these three measures is taken, and then again the
highest of these scores. Thus, each candidate is represented by its highest
direction and type of association measure. In other words, because constructions
take many forms and association can be captured by any of these measures, each
candidate is represented by its highest association and ranked accordingly.

2.6. c onstr uct ion identif icat ion and c ollostr uct ional
analys i s

The measures of association used to model constructions complement existing
work on measuring properties of constructions from corpora. Collostructional

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

274

analysis (Stefanowitsch & Gries, 2003, 2005; Gries & Stefanowitsch, 2004a,
2004b) encapsulates the most relevant area of work, performing three related
tasks: (i) quantifying the relationship between individual words and a given
slot of a given construction; (ii) using the relationship between individual words
and a given slot of a given construction to quantify the relationship between
similar constructions; and (iii) quantifying the relationship between individual
words in two different slots in a given construction. This work differs from
the present in that it focuses on quantifying differences within and between
constructions while taking the existence of particular constructions as a given.
The current work, put in similar terms, focuses on quantifying and modeling
the differences between constructions and non-constructions. These non-
constructions, like other counter-factuals or ungrammatical forms in linguistic
analysis, represent possible alternate generalizations drawn from linguistic
expressions. Thus, collostructional analysis looks at variations in the use
of constructions, whereas this work looks at variations in inventories of
constructions across individuals and speech communities.

2.7. c omparison to ex i st ing algorithms

Knowledge-based approaches to computational linguistics manually build
machine-tractable representations of language. Such representations include
an ontology of atomic concepts with their properties and connections as well
as machine-tractable descriptions of the meaning of linguistic expressions
phrased in terms of these atomic concepts (see, for example, Nirenburg &
Raskin, 2004; Levison, Lessard, Thomas, & Donald, 2013, and the comparison
of these approaches to formal semantics in Dunn, 2015). Both Fluid
Construction Grammar (FCG) and Embodied Construction Grammar (ECG)
(e.g., Bryant, 2004; Steels, 2004, 2012; Chang, De Beule, & Micelli, 2012) can be
viewed as variants of this work, in which hand-crafted but machine-tractable
representations of constructions, frames, and concepts are collected and
manipulated computationally for various purposes (similar to but expanding
on Zadrozny, Szummer, Jarecki, Johnson, & Morhenstern, 1994). These
approaches do not interface with natural language (e.g., they do not operate

table 8. From potential to actual constructions

Order Operation

1 SΔP: Remove candidates which fall below pairwise ΔP threshold
2 RΔP: Remove candidates which lose association strength when reduced
3 Direction: Remove candidates which change directions of association
4 Horizontal Pruning: Keep longest sequence possible within remaining candidates
5 Vertical Pruning: Keep representation with highest association strength

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

275

on linguistic expressions). Rather, they should be seen as an extension of
introspective analysis of constructions into computational applications by
standardizing the units and methods of analysis. These approaches are unable
to learn constructions from linguistic expressions and cannot be used to
simulate language learning because the representations are themselves a sort
of innate representation provided to any algorithms which take them as input.

There are also previous computational treatments of constructions in actual
corpora. For example, O’Donnell and Ellis (2010) develop an algorithm for
searching a RASP-parsed version of the British National Corpus for instances
of two predefined verb–argument constructions. Vincze, Zsibrita, and Istvan
(2013) and Istvan and Vincze (2014) computationally distinguish between
verb–particle constructions and non-construction verb–particle co-occurrences
using a parser to identify candidates and then employing a supervised binary
classifier to distinguish those which are part of a construction from those which
are not, using lexical, syntactic, and semantic features.

The present algorithm is also an approach to unsupervised grammar
induction, the task of learning a generalized grammatical representation
from observed language (e.g., from text). Van Zaanen (2000) approaches this
task as a problem of finding constituents and their boundaries, so that the
task is to identify which units are mutually replaceable. The algorithm compares
every pair of sentences, using edit distance to determine which units, if any,
are shared by the sentences. Those units which occur with shared structures,
then, are constituents which can be mutually replaced. This generates candidate
constituents which are then evaluated using the probability that the candidate
is a constituent. Dennis (2005) takes a similar approach using part-of-speech
sequences rather than word-form sequences and adding a span-based edit
distance measure. Clark’s (2001) approach to finding clusters of constituent
types is to take an input text as a sequence of part-of-speech tags and to
cluster sequences of these tags using their distribution. Mutual information
(MI: i.e., association strength) is used to filter out redundant or nested candidates,
and the MI threshold is determined using minimum description length to
evaluate possible grammars (cf. Goldsmith, 2006). Klein and Manning (2002)
take yet another approach to finding constituents, starting with all possible
subsequences of part-of-speech tags within the same sentence as the candidate
set, considering only those candidates which produce binary trees. Given
observed sentences and unobserved constituents, Expectation Maximization
is used to cluster candidates as actual constituents or non-constituents.

While more current approaches to grammar induction have made a number of
improvements (Bod, 2006; Headden, Johnson, & McClosky, 2009; Blunsom &
Cohn, 2010; Mareček & Straka, 2013; Spitkovsky, Alshawi, & Jurafsky, 2013),
this work has focused on grammar as a tree of dependency relations and on
categories with phrase-structure rules, such as in combinatory categorical

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

276

grammar. The present algorithm, however, focuses on grammar as a set of
meaningful and symbolic form–meaning mappings. The output is not a parse
tree or a set of categorized dependencies, but rather a mapping between
linguistic expressions and schematic constructional representations of those
expressions at varying levels of abstraction. Thus, this work is not reviewed
in more detail here, although see Heinz, de la Higuera, and van Zaanen (2016)
for a general overview of the problem.

3. Evaluating learned grammars
This section presents a rigorous quantitative evaluation of learned grammars.
The first part (3.1) describes the general experimental design and provides a
qualitative analysis of the sorts of constructions formulated by the algorithm.
The next subsection (3.2) begins the quantitative analysis by looking at the
distributions of and correlations between the various multi-unit association
measures employed. The next part (3.3) examines the grammar’s coverage on
unseen test sets under different construction pruning conditions. The section
after this (3.4) quantifies stability in learned grammars across different sizes
of datasets and, after this (3.5), the stability in learned grammars across
mutually exclusive datasets, with each instance of the algorithm simulating a
single language learner.

3.1. exper imental des ign and qual itat ive analys i s of
results

For the purposes of this evaluation, the construction grammar induction
algorithm is run on 1 billion words (40 million sentences) from the ukWac
web-crawled corpus of UK domain sites (Baroni et al., 2009). The advantage
of using this corpus is, in part, its size. This is important for two reasons:
first, it showcases the feasibility of the algorithm in terms of efficiency; second,
it allows us to examine the stability of the learned grammar across different
subsets of the corpus. Given the grammar learned on this dataset, we start
with a qualitative analysis of the sorts of constructions which are included in
the grammar, looking at representative examples of constructions identified
in the ukWac corpus. Additional constructions and examples are given in the
‘Appendix’.

The first example of a learned construction is shown in (14a), with examples
in (14b–e). This construction is defined by part-of-speech information and
the lemma “be”, representing a relative clause with a passive verb. While this
generalization covers multiple complementizers and modal verbs, it does not allow
for multiple tenses within the verb phrase. It remains, however, a productive and
schematic representation that covers a large number of linguistic expressions.

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

277

 (14) a. [Wh-Determiner] + [Modal] + “be” + [Past-Participle]
 b. that will be provided
 c. that can be played
 d. which will be presented
 e. that should be made

The second example, in (15a), again consists of parts-of-speech with a
single high-frequency lemma, “to”. This represents an infinitive verb phrase
with an object, which, as shown in (15d), can be generalized to any NP. One
weakness with this representation, however, is that the determiner is often
part of a noun phrase, so that this representation could be made more general
by eliminating the [Determiner] from the construction. Of course, the whole
point of a data-driven model such as this is that it builds representations from
observed usage and not from intuitions about the most productive schema.
 (15) a. “to” + [Verb] + [Determiner] + [Noun]
 b. to bring an end
 c. to get an idea
 d. to use any NP
 e. to sell a product

A more item-specific example is shown in (16a), this time including a partially
filled slot that is defined only by its semantic category of rel ig ion. In this
case, the construction reflects the metaphor in which a religious organization
takes on the characteristics of a physical body. What separates this as a
construction, however, is that whereas literal statements about a body do
not require a specific form (strengthen your body, heal your body, etc.), the
interpretation here requires a prepositional phrase in which the type of body
is specified (strengthen the body of the church, heal the body of Christ, etc.).
An example of over-identification is shown in (16e), in which church is
actually referring to a physical object and used as a reference point. Thus, this
is not an example of this metaphoric construction, but rather is an over-
generalization from the learned representation.
 (16) a. [Noun] + [Preposition] + [Determiner] + <rel ig ion>
 b. body of the church
 c. member of the church
 d. need in the church
 e. west of the church

A simple prepositional phrase construction is shown in (17a), involving spatial
relations for a given location. This is a schematic construction that does not
differentiate between different spatial relations and different types of locations.
This does not, however, preclude the algorithm from learning more specific

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

278

spatial phrases, which in fact it does. For example, more specific identified
constructions include: “in” + NamedEntity; “in” + NP; “through” + NP. These
are cases where more item-specific and more schematic constructions overlap.
 (17) a. [Preposition] + “the” + <lo cat ion>
 b. on the site
 c. in the area
 d. into the city
 e. throughout the area

A specific verb phrase construction is shown in (18a), in which a movement
verb has an infinitive verb as an object. In this case, the infinitive object shows
the purpose of the movement, as in examples (18b–e). The object of the
infinitive is not included in this construction, and specifying specific objects
would result in a finer-grained analysis.
 (18) a. <move> + “to” + [Verb]
 b. go to buy
 c. come to learn
 d. travel to find
 e. walk to see

Finally, the example in (19a) shows an identified construction which
contains incorrect boundaries. We would expect, given introspective analysis,
that some semantic definition of the agent would follow “by”, but this is not
the case. This illustrates one of the major difficulties of construction grammar
induction: modeling a representation abstract enough to cover partially filled
slots. In this case, the algorithm fails to find an adequately abstract representation
for the agent, and thus a partially filled slot is not posited. The difficulty of
finding a sufficiently general partially filled slot on the edges of the construction
is that a large number of false positives are possible (e.g., the danger of adding
unnecessary generalized slots to many constructions).
 (19) a. [Noun] + [Past-Participle] + “by”
 b. software developed by
 c. information given by
 d. article written by
 e. training provided by

An important attribute of construction grammars is that fully schematic
and fully item-specific representations can co-exist. In other words, an abstract
argument structure construction (e.g., the ditransitive) co-exists with separately
represented instances of that construction (e.g., the idioms give me a hand and
give me a break). One advantage of this model, then, is that such overlapping
constructions of varying abstractness can be captured, so long as each instance

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

279

itself qualifies as a construction. The point, then, is that this paradigm of
grammar induction is not limited a priori to a single level of representation or
a single level of abstraction.

A final question here is whether these are posited to be psycholinguistically
valid constructions. In other words, are the elements of this grammar
supposed to be those present in the mind of a speaker of this language? The
goal here is somewhat more indirect: to automatically produce the inventory
of constructions necessary to describe the corpus. The question is whether
the algorithm can learn adequate grammatical representations from the
corpus, not that it necessarily learns exactly the same set as a human in exactly
the same manner. This indirectness is a result of the fact that the corpus
under study contains language produced by a large number of individuals.
If the algorithm were run entirely on a corpus of language produced by a
single individual we could consider more direct psycholinguistic tests of the
produced grammar. However, a language such as ‘English’ or even ‘British
English’ is an abstraction over a large number of individuals rather than a
representation of the psycholinguistic reality of language in any single
individual. Thus, in representing an abstraction in this manner the present
algorithm is subject to all the same criticisms as that abstraction in not being
specific to the psycholinguistic state of individuals.

3.2. d i str ibut ions of feature values

The model uses fourteen measures of association for multi-unit potential
constructions. Given that these measures are novel implementations for
dealing with an open problem, it is important to consider the relative
agreement and distributions of these measures. For the evaluation below, the
measures are examined across the first 20 million sentences in the corpus,
and phrase types (e.g., NP) are not considered, for the sake of simplicity. The
descriptive statistics for the measures are calculated using only the subset of
sequences which are more than two units in length (a total of 74,522). This is
because the multi-unit measures have a zero value for sequences of only two
units. Further, no threshold for pairwise association strength is used, unlike
for the measures used in the model itself. This is because the threshold
effectively gives multi-unit sequences a zero for the summed ΔP score if any
pairwise association falls below a set parameter, and this changes the
distributions by enlarging the number of zero values. Thus, this evaluation is
about comparing the measures on multi-unit sequences without a threshold
in order to get a more accurate view of the measures themselves, rather than
evaluating the measures as used for reducing candidates in the overall model.

First, the agreement between each of the measures is shown in Figure 2
and Figure 3, calculated using Pearson’s R. The question is whether the

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

280

measures ultimately represent the same relationships and thus are redundant,
or whether they reveal unique aspects of association. These figures show the
scatterplots of each pair on the right-hand side, a histogram of each measure’s
density distribution in the middle, and the correlation coefficient on the left-
hand side. Each of the correlations is significant, not surprisingly given the
large number of instances.

In both directions the Summed and Mean measures are closely related; the
scatterplot shows three distinct degrees of correlation, with the correlation
diminishing as the sequences in question grow longer (i.e., the sum and the
mean are very similar for shorter sequences, which is expected). Thus,
this relationship decreases as candidates grow longer. The two methods for
comparing subsequences within a candidate, the Divided and Reduced
measures, show little correlation between their respective Beginning and End

Fig. 2. Left-to-Right Correlations.

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

281

variants in both directions (the highest such correlation being 0.230 for the
right-to-left Divided measures). The relationship between the Divided and
Reduced measures is quite high at the beginning of the sequences (i.e., at the
Beginning going left-to-right and at the End going right-to-left), exceeding
0.800 in both cases. However, at the end of the sequences the correlation
is much lower (never higher than 0.370). Thus, these variations on the
subsequence measure do provide unique information in many but not all
situations. For all of these measures, it seems to be the case that they grow
less correlated as the sequences in question grow longer. An interesting
further question, outside the scope of the present paper, is to what extent
sequence length influences the distribution and correlation of association
measures, and what alterations can be made to reduce this influence for shorter
sequences.

Fig. 3. Right-to-Left Correlations.

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

282

The next question is whether the measures make adequate distinctions
between potential multi-unit constructions. We approach this question by
looking at measures of the distribution of each of these features, in Table 9,
calculated as above across only multi-unit potential candidates in the first
20 million sentences in the corpus. The measures show what we would expect:
wide ranges of values with means close to zero. This is because most candidates
do not show association. Those which do show internal association are outliers,
in a sense, and this is what allows them to be identified as actual constructions.
The two measures which do not show means close to zero are the summed
values, in both directions. This is a result of the fact that only multi-unit
candidates are considered here, so that all instances have at least three units.
This, of course, influences the mean value but is necessary to allow this measure
to be compared directly with the others.

3.3. degree of c overage

The ideal construction grammar has at least one construction to account for
every linguistic expression in a corpus. In other words, because all linguistic
expressions are hypothesized to be formed from an underlying grammatical
construction, it should be the case that all attested linguistic expressions can
be described by at least one construction in the predicted grammar. Thus,
the degree of coverage of a grammar is an important criteria for evaluating
a learned construction grammar and, following from this, for evaluating the
learning algorithm itself. The measure of coverage is calculated as in (20),
in which LE stands for Linguistic Expressions (operationalized in this
case as sentences), with c standing for the subset covered by a hypothesized
construction and n for the subset not covered in this way. Thus, this measure
is simply the percentage of the test corpus represented by the learned
grammar, using sentences as the unit of analysis
 (20) LEc / LEc +LEn

This evaluation is conducted by applying the grammar learned from the full
corpus to an unseen portion of the ukWac corpus in order to determine how
much of the unseen corpus is described by the learned grammar. The test set
consists of 1.5 million sentences, evaluated in subsets of 100k sentences each,
allowing us to evaluate fluctuations in the adequacy of the grammar across
different test sets. There is a balance to be reached here between predicting
a small set of generalized and highly associated constructions, on the one
hand, and predicting a grammar that achieves full coverage on the test sets,
on the other. Given this balance, we compare three learned grammars: the
‘full pruning grammar’ (2,309 constructions) contains only those constructions
which pass all the pruning stages discussed above; the ‘no pairwise grammar’

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

283

(26,223 constructions) applies the directional and divided ΔP and horizontal
pruning stages, but does not eliminate candidates using the pairwise threshold.
Finally, the ‘no pruning grammar’ (101,503 constructions) does not apply
any of the pruning rules (except, of course, the construction frequency
threshold). This allows us to see how expanding the grammar increases the
overall coverage on these test sets.

The results are shown in Figure 4, with percentage of coverage across the
subsets of the test corpus shown for each grammar. First, the coverage is
consistent across both grammars and test sets. In other words, each grammar
has very similar coverage across different test sets, showing consistency in
the adequacy of the grammar on unseen linguistic expressions. Further, the
difference between the models is maintained across test sets. For example, both
the third and twelfth sets show a dip in coverage that is observed with all
models. This shows that the coverage tests are stable measures of the quality of
a grammar’s coverage (regardless of the size or generalizability of the grammar).

The coverage experiment shows that larger grammars (e.g., without pruning)
have more coverage. However, this increased coverage is not proportional to
the size of the grammar. Thus, the fully reduced grammar is only 2% of the
size of the full grammar and yet maintains coverage between 5% and 10%
lower than the much larger grammar. Thus, while some important elements
of the grammar have been discarded, the association measure model allows
a much smaller grammar to find most of the optimum constructions. This is
significant because the problem is to maintain high coverage on unseen test
sets without simply positing a very large grammar: the small pruned grammar
contains few false positives, even if it misses some true positives.

The selection or learning of the grammatical constructions from the total
hypothesis space involves a combination of association measures (to model

table 9. Distribution measures for each feature

Feature Mean Std. Dev. Range

Frequency 37,527 69,460 12,600–3,681,400
Summed (LR) 0.317 0.188 0.000–1.201
Summed (RL) 0.334 0.204 –0.004–1.544
Mean (LR) 0.105 0.051 0.000–0.524
Mean (RL) 0.112 0.057 –0.002–0.635
Beginning Reduced (LR) 0.105 0.094 –0.016–0.792
Beginning Reduced (RL) 0.110 0.103 –0.018–0.895
End Reduced (LR) 0.106 0.092 –0.016–0.824
End Reduced (RL) 0.111 0.103 –0.018–0.895
Directional Scalar −0.012 0.152 –1.025–0.946
Beginning Divided (LR) 0.163 0.155 –0.016–0.957
Beginning Divided (RL) 0.006 0.021 –0.005–0.857
End Divided (LR) 0.005 0.016 –0.003–0.601
End Divided (RL) 0.178 0.177 –0.019–0.981

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

284

which sequences are more cognitively entrenched than others) and pruning
rules (to use those association measures to reduce the number of predicted
constructions). We can thus use the coverage experiment to show which
association measures were most useful for producing a small grammar
with high coverage. With only frequency measures, the grammar consists
of 101,503 sequences which could potentially be a grammatical representation;
this is reduced to 26,223 sequences with all pruning except the pairwise
threshold (e.g., the reduced and directional measures). This is further
reduced to 2,309 with the pairwise threshold. While coverage is reduced
with each reduction in the grammar, these reductions are minimal. A further
examination of the amount of influence of each measure individually (e.g.,
comparing performance with different subsets of association measures) is
beyond the scope of this paper, in large part because such tests would be
much more meaningful in a multi-language context: Which measures
perform best for which language? The question here is whether these
measures can be used to produce a meaningful grammatical representation
in the first place.

While the model can always be improved, these coverage results show
that observed frequencies can be used to model the productive elements of a
grammar and distinguish them from possible but not productive elements.
In other words, the frequency threshold has reduced the enormous number
of potential constructions to a smaller but still large number of candidates,
and the association strength measures have reduced this to a small grammar
while maintaining relatively high coverage across sets of unseen linguistic
expressions.

Fig. 4. Degree of coverage across test sets of 100k sentences.

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

285

3.4. stab il ity acr oss c orpus s i zes

Given the grammar induction algorithm, how much variation is there in the
learned or predicted grammars given the size of the corpus used for evaluation?
Another way of looking at this question is how large a corpus needs to be
before the algorithm converges onto a stable output grammar. This question
is approached by running the algorithm on increasingly large subsets of the
corpus and determining, for each subset, how much its grammar agrees with
the final grammar. All non-frequency thresholds are held constant across
corpus sizes, while the frequency thresholds are scaled relative to the size
of the corpus. The results are shown in Table 10, along with the number
of constructions in the grammar for each subset (note that the number of
constructions in the full grammar here differs from the other evaluations as a
result of scaling the frequency thresholds; this scaling was performed in
order to reduce the influence of absolute frequency on the results).

Agreement is calculated using precision: given the grammar learned from
a subset of the corpus, how many of the identified constructions are present
in the full, gold-standard grammar? This measure is quantified as in (21),
where FP stands for false positives (those elements in the subset grammar not
present in the full grammar) and TP stands for true positives (those elements
in both grammars).
 (21) Precision = TPsubset / (TPsubset + FPsubset)

The results in Table 10 show that stability increases as more data is given to
the algorithm. For example, the first sizable increase in agreement is between
10 and 20 million sentences. It is interesting that, even though the subsets
have scaled frequency thresholds, the number of candidates decreases as the
amount of data increases. This is because the model is more clearly able to
separate the grammatical representations from noise as the dataset becomes
larger. Given the cap on this experiment, the question of how much data is
required for convergence is left open. A further question is whether frequency
or association measures have more impact on the amount of data required
for convergence. That is a question for further work; the point here is that
agreement increases as more data is available, but that convergence is not yet
reached.

3.5. stab il ity acr oss learners

An argument for innate structure, advanced by Lidz and Williams (2009),
is that learners produce very similar grammars for a language even though
subject to different observed input. This results, they argue, from innate
constraints. Here we turn this into an empirical question: To what degree do
instances of the same grammar induction algorithm (i.e., language learners)

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

286

agree in their learned grammars when provided mutually exclusive subsets
of the same size? In other words, how much agreement is there when the
algorithm is run on different datasets? If the output grammars largely agree,
this is evidence that such innate constraints are not, in fact, required to
explain this stability in learned grammars. Figure 5 shows the agreement
between the grammars produced on four distinct subsets of the corpus, each
containing 10 million sentences. Agreement is calculated as the number of
shared constructions given the total number of constructions, comparing all
subsets to subset 1 for the sake of visualization.

The agreement ranges from the low- to mid-70s. This is quite strong,
especially considering the measures of stability by size discussed above
(i.e., it would likely be higher if the size of each subset was increased to 20 or
40 million sentences). This means that the algorithm, given entirely different
datasets, produced grammars sharing over 70% of their constructions. While
by no means perfect, this shows that the grammar induction algorithm is not
burdened with a poverty-of-the-stimulus that requires innate structure to
produce consistent output across learners. In other words, the hypothesis of
innate structure is not required to explain relatively consistent grammars
from different language learners.

3.6. further work

As always in projects of this sort, further work is necessary to explore issues
raised in the course of these experiments. First, the dependencies should
be reduced as much as possible to maintain a fully unsupervised pipeline.
This has, in fact, been accomplished with additional algorithms for forming
distributional semantic dictionaries and for learning phrase structure rules
from a part-of-speech parsed corpus. Such work only strengthens the evidence
already presented in this paper. A further important task is to evaluate these
and other multi-unit association measures and their influence on the final
output construction grammar. Such an evaluation ultimately requires a
multi-language and multi-genre experimental design, which renders it outside
the scope of the present paper.

table 10. Grammar agreement across corpus sizes

Corpus Size (Sents) Total Constructions Precision

1 million 2,532 0.2890
5 million 2,167 0.2644
10 million 1,439 0.2966
20 million 1,201 0.3780
40 million 911 n/a

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

287

4. Conclusions From evaluations
Grammar induction algorithms, much like language learners, observe very
large numbers of linguistic expressions and must generalize from these
observations to a relatively small grammar that has the ability to produce
all such observations. The problem is that there are a very large number
of possible grammatical representations for these observations, unless the
space of possible grammatical representations is reduced by positing innate
structures/rules/constraints that eliminate many candidates a priori. This
paper has shown that the construction grammar induction algorithm presented
here can learn a relatively small grammar while (i) maintaining relatively high
coverage on unseen linguistic expressions and (ii) maintaining relatively high
stability across learners.

The results are by no means perfect and continued technical and theoretical
improvements are possible and, in fact, under way. However, these results are
sufficient to provide empirical evidence against the poverty-of-the-stimulus
line of reasoning for Universal Grammar. This source of evidence, further,
is unique in providing large-scale corpus-based evidence for a question which
in the past has been approached with small-scale intuition-based evidence.
In other words, past work has simply posited that such grammar learning is not
possible without constraining innate structures/rules/constraints (e.g., Lidz &
Williams, 2009). This paper, on the other hand, goes beyond simple positing
and provides empirical evidence that such learning is, in principle, possible.

The question here is whether linguistic structure (specifically, a construction
grammar) can be learned from observed language without existing structure
or knowledge about the language. In other words, is the grammar wholly

Fig. 5. Stability across simulated learners.

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

288

learned or is the grammar in part pre-existing? While this algorithm has
dependencies (e.g., part-of-speech tagging), this is a practical issue in the
sense that data-driven part-of-speech tagging does not need to be reinvented
when its current state-of-the-art performs quite well. What this means is that
grammatical representations can be learned from observed frequencies.
While there are always technical improvements to be made, the current
algorithm shows that the learning of grammatical structures in this way is
possible and in this sense provides converging evidence with many other
empirical sources that have been collected within the Cognitive Linguistics
paradigm.

references
Baroni, M., Bernardini, S., Ferraresi, A., & Zanchetta, E. (2009). The WaCky Wide Web:

a collection of very large linguistically processed web-crawled corpora. Language Resources
and Evaluation, 43, 209–226.

Blunsom, P., & Cohn, T. (2010). Unsupervised induction of tree substitution grammars for
dependency parsing. In H. Li, & L. Màrquez, L. (Eds.), Proceedings of the Conference on
Empirical Methods in Natural Language Processing (pp. 1204–1213). Stroudsburg, PA:
Association for Computational Linguistics.

Bod, R. (2006). Exemplar-based syntax: how to get productivity from examples. The Linguistic
Review, 22, 291–320.

Briscoe, T. (2000). Grammatical acquisition: inductive bias and coevolution of language and
the language acquisition device. Language, 76(2), 245–296.

Bryant, J. (2004). Scalable construction-based parsing and semantic analysis. In R. Porzel (Ed.),
Proceedings of the Second International Workshop on Scalable Natural Language Understanding
(HLT-NAACL) (pp. 33–40). Stroudsburg, PA: Association for Computational Linguistics.

Bybee, J. (2006). From usage to grammar: the mind’s response to repetition. Language, 82(4),
711–733.

Bybee, J. (2010). Language, usage, and cognition. Cambridge: Cambridge University Press.
Chang, N., De Beule, J., & Micelli, V. (2012). Computational construction grammar: comparing

ECG and FCG. In L. Steels (Ed.), Computational issues in Fluid Construction Grammar
(pp. 259–288). Berlin: Springer.

Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.
Chomsky, N. (1975). Logical structure of linguistic theory. Philadelphia: Springer.
Clark, A. (2001). Unsupervised induction of stochastic context-free grammars using distributional

clustering. In W. Daelemans & R. Zajac (Eds.), Proceedings of the ACL 2001 Workshop on
Computational Natural Language Learning. Stroudsburg, PA: Association for Computational
Linguistics.

da Silva, J., & Lopes, G. (1999). A local maxima method and a fair dispersion normalization for
extracting multi-word units from corpora. In Proceedings of the Sixth Meeting on the Mathematics
of Language (pp. 369–381). Stroudsburg, PA: Association for Computational Linguistics.

Daudaravičius, V., & Marcinkevičienė, R. (2004). Gravity counts for the boundaries of
collocations. International Journal of Corpus Linguistics, 9(2), 321–348.

Davies, M. (2010). The Corpus of Contemporary American English as the first reliable
monitor corpus of English. Literary and Linguistic Computing, 25(4), 447–464.

Dennis, S. (2005). An exemplar-based approach to unsupervised parsing. In B. Bara,
L. Barsalou, & M. Bucciarelli (Eds.), Proceedings of the 27th Annual Conference of the
Cognitive Science Society (pp. 583–588). Wheatridge, CO: Cognitive Science Society.

Dunn, J. (2015). Review of Levison, Michael; Lessard, Greg; Thomas, Craig; & Donald,
Matthew. 2013. The Semantic Representation of Natural Language. Studies in Language 39(2),
492–500.

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

289

Fillmore, C. (1988). The mechanisms of ‘Construction Grammar.’ In S. Axmaker, A. Jaisser, &
H. Singmaster (Eds.), Proceedings of the Fourteenth Annual Meeting of the Berkeley Linguistics
Society (pp. 35–55). Berkeley, CA: Berkeley Linguistics Society.

Firth, J. (1957). Papers in linguistics, 1934–1951. Oxford: Oxford University Press.
Forsberg, M., Johansson, R., Bäckström, L., Borin, L., Lyngfelt, B., Olofsson, J., & Prentice,

J. (2014). From construction candidates to construction entries: an experiment using semi-
automatic methods for identifying constructions in corpora.” Constructions and Frames,
6(1), 114–135.

Goldberg, A. (2006). Constructions at work: the nature of generalization in language. Oxford:
Oxford University Press.

Goldberg, A. (2009). The nature of generalization in language. Cognitive Linguistics, 20(1),
93–127.

Goldberg, A., Casenhiser, D., & Sethuraman, N. (2004). Learning argument structure
generalizations. Cognitive Linguistics, 15(3), 289–316.

Goldsmith, J. (2001). Unsupervised learning of the morphology of a natural language.
Computational Linguistics, 27(2), 153–198.

Goldsmith, J. (2006). An algorithm for the unsupervised learning of morphology. Natural
Language Engineering, 12(4), 353–371.

Gries, S. (2008). Dispersions and adjusted frequencies in corpora. International Journal of
Corpus Linguistics, 13(4), 403–437.

Gries, S. (2012). Frequencies, probabilities, and association measures in usage- / exemplar-
based linguistics: some necessary clarifications. Studies in Language, 11(3), 477–510.

Gries, S. (2013). 50-something years of work on collocations: what is or should be next.
International Journal of Corpus Linguistics, 18(1), 137–165.

Gries, S., & Mukherjee, J. (2010). Lexical gravity across varieties of English: an ICE-based study
of n-grams in Asian Englishes. International Journal of Corpus Linguistics, 15(4), 520–548.

Gries, S., & Stefanowitsch, A. (2004a). Extending collostructional analysis: a corpus-based
perspective on ‘alternations’. International Journal of Corpus Linguistics, 9(1), 97–129.

Gries, S., & Stefanowitsch, A. (2004b). Co-varying lexemes in the into-causative. In M. Achard &
S. Kemmer (Eds.), Language, culture, and mind (pp. 225–236). Stanford: CSLI.

Headden, W., Johnson, M., & McClosky, D. (2009). Improving unsupervised dependency
parsing with richer contexts and smoothing. In M. Ostendorf, M. Collins, S. Narayanan,
D. Oard, & L. Vanderwende (Eds.), Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of the Association for Computational
Linguistics (pp. 101–109). Stroudsburg, PA: Association for Computational Linguistics.

Heinz, J., de la Higuera, C., & van Zaanen, M. (2016). Grammatical inference for computational
linguistics. San Rafael, CA: Morgan & Claypool.

Hilpert, M. (2008). New evidence against the modularity of grammar: constructions, collocations,
and speech perception. Cognitive Linguistics, 19(3), 483–503.

Hopper, P. (1987). Emergent grammar. In J. Aske, N. Beery, L. Michaelis, & H. Filip (Eds.),
Proceedings of the Thirteenth Annual Meeting of the Berkeley Linguistics Society (pp. 139–157).
Berkeley, CA: Berkeley Linguistics Society.

Istvan, N., & Vincze, V. (2014). VPCTagger: detecting Verb-Particle constructions with syntax-
based methods. In V. Kordoni, M. Egg, A. Savary, E. Wehrli, & S. Evert (Eds.), Proceedings
of the 10th Workshop on Multiword Expressions (pp. 17–25). Stroudsburg, PA: Association
for Computational Linguistics.

Jelinek, F. (1990). Self-organizing language modeling for speech recognition. In A. Waibel &
K. Lee (Eds.), Readings in speech recognition (pp. 450–506). San Mateo, CA: Morgan Kaufmann.

Katzir, R. (2014). A cognitively plausible model for grammar induction. Journal of Language
Modelling, 2(2), 213–248.

Kay, P., & Fillmore, C. (1999). Grammatical constructions and linguistic generalizations: the
What’s X Doing Y? construction. Language, 75(1), 1–33.

Klein, D., & Manning, C. (2002). A generative constituent-context model for improved
grammar induction. In P. Isabelle (Ed.), Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (pp. 128–135). Stroudsburg, PA: Association for
Computational Linguistics.

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

290

Langacker, R. (1987). Foundations of Cognitive Grammar. Stanford: Stanford University Press.
Langacker, R. (2006). On the continuous debate about discreteness. Cognitive Linguistics, 17(1),

107–151.
Langacker, R. (2008). Cognitive Grammar: a basic introduction. Oxford: Oxford University Press.
Levison, M., Lessard, G., Thomas, C., & Donald, M. (2013). The semantic representation of

natural language. New York: Bloomsbury.
Lidz, J., & Williams, A. (2009). Constructions on holiday. Cognitive Linguistics, 20(1), 177–189.
Mareček, D., & Straka, M. (2013). Stop-probability estimates computed on a large corpus

improve unsupervised dependency parsing. In H. Schuetze (Ed.), Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (pp. 281–290). Stroudsburg,
PA: Association for Computational Linguistics.

Nirenburg, S., & Raskin, V. (2004). Ontological semantics. Cambridge, MA: MIT Press.
Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kubler, S., Marinov, S., & Marsi, E.

(2007). MaltParser: a language-independent system for data-driven dependency parsing.
Natural Language Engineering, 13(2), 95–135.

O’Donnell, M., & Ellis, N. (2010). Towards an inventory of English verb argument constructions.
In M. Sahlgren & O. Knutsson (Eds.), Proceedings of the Workshop on Extracting and Using
Constructions in Computational Linguistics (pp. 9–16). Stroudsburg, PA: Association for
Computational Linguistics.

Piao, S., Bianchi, F., Dayrell, C., D’Egidio, A., & Rayson, P. (2015). Development of the
multilingual semantic annotation system. In R. Mihalcea (Ed.), Proceedings of the 2015
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (pp. 1268–1274). Stroudsburg, PA: Association for
Computational Linguistics.

Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In Proceedings of
the International Conference on New Methods in Language Processing.

Solan, Z., Horn, D., Ruppin, E., & Edelman, S. (2005). Unsupervised learning of natural
languages. Proceedings of the National Academy of Sciences, 102(33), 11629–11634.

Spitkovsky, V., Alshawi, H., & Jurafsky, D. (2013). Breaking out of local optima with count
transforms and model recombination: a study in grammar induction. In T. Baldwin &
A. Korhonen (Eds.), Proceedings of 2013 Conference on Empirical Methods in Natural Language
Processing (pp. 1983–1995). Stroudsburg, PA: Association for Computational Linguistics.

Steels, L. (2004). Constructivist development of grounded construction grammar. In D. Scott
(Ed.), Proceedings of the 42nd Meeting of the Association for Computational Linguistics
(pp. 9–16). Stroudsburg, PA: Association for Computational Linguistics.

Steels, L. (2012). Design methods for fluid construction grammar. In L. Steels (Ed),
Computational issues in Fluid Construction Grammar (pp. 3–36). Berlin: Springer.

Stefanowitsch, A., & Gries, S. (2003). Collostructions: investigating the interaction between
words and constructions. International Journal of Corpus Linguistics, 8(2), 209–243.

Stefanowitsch, A., & Gries, S. (2005). Covarying lexemes. Corpus Linguistics and Linguistic
Theory, 1(1), 1–43.

Tomasello, M. (2003). Constructing a language. Cambridge, MA: Harvard University Press.
Tsao, N., & Wible, D. (2013). Word similarity using constructions as contextual features.

In I. Dagan et al. (Eds.), Proceedings of the Joint Symposium on Semantic Processing:
Textual Inference and Structures in Corpora (pp. 51–59). Stroudsburg, PA: Association
for Computational Linguistics.

van de Cruys, T. (2011). Two multivariate generalizations of pointwise mutual information.
In C. Biemann & E. Giesbrecht (Eds.), Proceedings of the Workshop on Distributional
Semantics and Compositionality (pp. 16–20). Stroudsburg, PA: Association for Computational
Linguistics.

van Zaanen, M. (2000). ABL: alignment-based learning. In M. Kay (Ed.), Proceedings of the
18th International Conference on Computational Linguistics (pp. 961–967). San Francisco, CA:
Morgan Kaufmann Publishers.

Vincze, V., Zsibrita, J., & Istvan, N. (2013). Dependency parsing for identifying Hungarian light-
verb constructions. In H. Chen (Ed.), Proceedings of the International Joint Conference on
Natural Language Processing (pp. 207–215). Asian Federation of Natural Language Processing.

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

computational learning of grammars

291

Wei, N., & Li, J. (2013). A new computing method for extracting contiguous phraseological
sequences from academic text corpora. International Journal of Corpus Linguistics, 18(4),
506–535.

Wible, D., & Taso, N. (2010). StringNet as a computational resource for discovering and
investigating linguistic constructions. In M. Sahlgren & O. Knutsson (Eds.), Proceedings of
the Workshop on Extracting and Using Constructions in Computational Linguistics (pp. 25–31).
Stroudsburg, PA: Association for Computational Linguistics.

Zadrozny, W., Szummer, M., Jarecki, S., Johnson, D., & Morhenstern, L. (1994). NL
understanding with a grammar of constructions. In M. Nagao (Ed.), Proceedings of the
International Conference on Computational Linguistics (pp. 1289–1293). International
Conference on Computational Linguistics.

Zuidema, W. (2006). What are the productive units of natural language grammar? A DOP
approach to the automatic identification of constructions. In Proceedings of the 10th
Conference on Computational Natural Language Learning, 29–36.

APPENDIX
Further examples

Construction: [Singular-Noun] + <so c ial act / state> + [Verb] + [Past-Participle]

Examples: limit people are granted
approach should be used
option should be included
team should be asked
assessment should be kept
program must be recommended
notice must be given
bar should be pressed
NP should be accepted
information should be published

Construction: [Singular-Noun] + [Preposition] + [Number] + <t ime>

Examples: delivery within 2 weeks
train within one hour
format within one year
module over six months
increase over ten years
target within three years
mark within six months
change over five years
notice within 7 days

Construction: “be” + [Past-Participle] + “out”

Examples: was grown out
was sent out
was carried out
was made out
was taken out
was worked out
was given out
was forced out
was set out
was delivered out

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

dunn

292

Construction: <movement> + NP + <t ime>

Examples: here NP time
put NP time
train NP day
set NP time
come NP year
go NP night
course NP day
through NP now
stay NP year
follow NP day

Construction: [Comparative-Adj] + [Singular-Noun]

Examples: further information
more power
great power
more variety
great effort
new knowledge
good standard
large area
high quality
long life

Construction: [Singular-Noun] + <money>

Examples: purchase price
NP price
building costs
housing prices
housing market
energy bill
government fund
development company
family business
capital investment

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7

