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abstract

This paper presents an algorithm for learning the construction grammar 
of  a language from a large corpus. This grammar induction algorithm has 
two goals: first, to show that construction grammars are learnable without 
highly specified innate structure; second, to develop a model of  which 
units do or do not constitute constructions in a given dataset. The basic 
task of  construction grammar induction is to identify the minimum set of  
constructions that represents the language in question with maximum 
descriptive adequacy. These constructions must (1) generalize across 
an unspecified number of  units while (2) containing mixed levels of  
representation internally (e.g., both item-specific and schematized 
representations), and (3) allowing for unfilled and partially filled slots. 
Additionally, these constructions may (4) contain recursive structure 
within a given slot that needs to be reduced in order to produce a 
sufficiently schematic representation. In other words, these constructions 
are multi-length, multi-level, possibly discontinuous co-occurrences which 
generalize across internal recursive structures. These co-occurrences are 
modeled using frequency and the ΔP measure of  association, expanded in 
novel ways to cover multi-unit sequences. This work provides important 
new evidence for the learnability of  construction grammars as well as a 
tool for the automated corpus analysis of  constructions.

keywords :  construction grammar, grammar induction, multi-unit 
association measures, poverty of  the stimulus.

1.  Learning construction grammars
The Cognitive Linguistics paradigm holds that language is not strictly separated 
from other cognitive faculties (e.g., Langacker, 1987; Hilpert, 2008) and, to some 
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degree following from this, that languages are learnable without highly specified 
innate structure (e.g., Hopper, 1987). That is, languages are learnable from the 
statistical properties of  observed linguistic expressions without positing innate 
structures present in the learner (e.g., Goldberg, Casenhiser, & Sethuraman, 
2004; Bybee, 2006; Goldberg, 2009). A ‘Grammar’ within Cognitive Linguistics, 
then, is a data-driven and ultimately domain-independent model able to learn 
grammatical generalizations from linguistic input. More precisely, any innate 
constraints on the Grammar in this paradigm are not specific to language 
but rather are general cognitive constraints (e.g., limits on working memory, 
ability to recognize and categorize differences, etc.) that, when applied to 
language learning, result in cross-linguistic patterns. One argument advanced 
for innate structure is that language learners are exposed to different instances of  
observed language but reach relatively similar grammatical representations. 
The question, then, is whether this stability results from learners sharing 
a partially defined initial state (e.g., innate structure) or from learners sharing 
a single domain-independent ability to generalize from observations.

A lower-case grammar is the representation of  a specific language while an 
upper-case Grammar is the ability to learn such a grammar from linguistic 
input alone with minimal innate structure. Thus, language-specific construction 
grammars (e.g., analyses in Fillmore, 1988, and Kay & Fillmore, 1999) can be 
seen as part of  a more general Construction Grammar (e.g., Goldberg, 2006; 
Langacker, 2008). This differs from Chomsky’s various divisions of competence/
performance and universal/specific grammar (1965, 1975), however, in that the 
Grammar does not consist of  predefined structures/rules/constraints but rather 
of  mechanisms for deriving or learning such structures/rules/constraints from 
observed language data. This data-driven view can be visualized as in Figure 1, 
where the Grammar is a link between language observations and generalized 
language representations (grammars).

This illustration of  the data-driven view of Grammar should not be mistaken 
for an innate Language Acquisition Device (e.g., Briscoe, 2000). The view 
here is that the Grammar consists largely or entirely of  domain-independent 
principles for deriving generalizations from a series of  observations, and that 
the form of  produced grammars is a result of  (i) the observed language data 
itself  and (ii) the domain-independent principles for forming generalizations. 
In other words, from this perspective Grammar “is not an overarching set of  
abstract principles, but more a question of  a spreading of  systematicity from 
individual words, phrases, and small sets” (Hopper, 1987, p. 142). This implies, 
for example, that a speaker’s grammar is not fixed but rather continues to be 
modified as more language use is observed. The essential difference between 
these views is whether systematicity in language is seen as a top-down 
phenomenon (defined by innate structure) or a bottom-up phenomenon 
(defined by spreading systematicity from observed language use).

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7


dunn

256

The debate over an innate or a data-driven language faculty comes down 
in part to a simple empirical question: Is it possible to learn the grammar of  
a language without innate structure? In other words, is Grammar a set of  
structures or a set of  mechanisms for learning such structures? This question 
has been approached with a variety of  evidence; the point of  this paper is to 
provide computational corpus-based evidence by simulating the language-
learning process with computational models (e.g., Goldsmith, 2001, 2006; 
Solan, Horn, Ruppin, & Edelman, 2005; as opposed to the approach taken in 
Briscoe, 2000). If  a grammar-induction algorithm is capable of  learning the 
grammar of  a language without innate structure and using purely statistical 
properties of  observed language data, then it follows that such grammar 
learning is possible in principle given only linguistic input. This is the case 
even though the model is provided written language while human learners are 
provided spoken language, and even though human and computational learners 
do not employ the same mechanisms. In other words, the question is whether 
the regularities of  language can be adequately generalized into a productive 
model of  grammar given only observed ‘surface’ linguistic expressions.

Katzir (2014) observes that such computational simulations can be a counter-
argument to the poverty-of-the-stimulus line of  reasoning for Universal 
Grammar. However, this does not address either the richness-of-the-stimulus 
or typological lines of  reasoning for Universal Grammar. Thus, this is one 
piece among many for the view of  language as a learned phenomenon. It is, 
further, only one piece of  converging evidence against the poverty-of-the-
stimulus line of  reasoning. For example, there are two main weaknesses to 
this source of  evidence: (i) that the algorithm requires access to much more 
data than do human learners, and (ii) that that data is presented all at once 
rather than being observed sequentially across many occasions. We can 
perhaps divide the poverty-of-the-stimulus argument into two parts: first, 
that language cannot be learned without innate structure as a matter of  quality 
of  observations, in part because only positive examples can be observed; 
second, that language cannot be learned without innate structure as a matter 
of  quantity of  observations, in that language learners have access to different 
amounts of  linguistic input but reach similar grammatical representations. 
This source of  evidence, then, deals only with poverty-of-the-stimulus in 
terms of  quality of  observed language and not in terms of  quantity.

Fig. 1. Grammar and grammars.
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This work can also be seen as a response to criticisms (e.g., Bod, 2006) that 
construction grammar makes imprecise and thus untestable predictions. In other 
words, it provides a reproducible model of which possible constructions qualify 
as actual constructions in reference to a given dataset, a question that is not 
adequately addressed in the literature. Section 1 of  this paper examines the 
nature of  a construction grammar, the definition of  a construction, and the 
properties of  constructions which the model must capture. Section 2 describes 
the grammar induction algorithm in detail. Section 3 presents several 
introspective and quantitative evaluations of  the output grammar for subsets 
of  the ukWac corpus of  web-crawled English (Baroni, Bernardini, Ferraresi, & 
Zanchetta, 2009).

1.1.  grammar  as  meaningful  symbol ic  units

The basic idea of  construction grammar is that grammar is more than simply 
a formal system consisting of  stable but arbitrary rules for defining well-formed 
sequences. Grammar, instead, consists of  meaningful and symbolic form–
meaning mappings, called constructions (Goldberg, 2006). In this sense, 
a grammar consists of  meaningful constructions in the same way that a lexicon 
consists of  meaningful words (Langacker, 2008). The task of  learning the 
grammar of  a language, in this paradigm, is the task of  learning the vocabulary 
of  meaningful symbolic units which makes up that grammar. This allows us 
to bring together two important premises: first, that grammar consists of  
meaningful symbolic units (e.g., Langacker’s Cognitive Grammar); second, that 
co-occurrence and distribution are indicators of  meaning (e.g., Firth, 1957).

Taken together, these premises suggest that constructions, like words, can 
be studied and defined as a set of  co-occurring elements in a corpus. In this 
case, however, the elements are in fact abstract and productive schemas 
representing a large number of  linguistic forms. If  grammars consist of  
symbolic form–meaning mappings, and if  the distribution of  elements in a 
corpus reveals their meaning, then the problem of  grammar induction can be 
viewed as the problem of  distinguishing those potential constructions which 
significantly co-occur from those potential constructions which do not 
significantly co-occur. It should be noted that the constructions discussed 
here are not simple idioms or phrases (although such may be constructions) 
but rather range from fully schematic and productive to fully item-specific 
representations.

Given that constructions are productive and co-occurring schemas, such 
co-occurrences can be disguised in observed language data by two sorts of  
phenomena: (1) by recursive structure within a particular element of  the 
construction; or (2) by unfilled or partially filled elements in the construction. 
This means that the language represented by these constructions can appear 
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to be discontinuous. The problem is that this greatly increases the hypothesis 
space and raises the question of  learnability: With such a large hypothesis 
space, unconstrained by innate structure, is it feasible for the learner to 
distinguish valid constructions from the much larger number of  potential 
constructions? Lidz and Williams (2009), for example, argue that the great 
number of  possible grammatical representations, taken together with similar 
learned output grammars across language learners, requires the constraining 
power of  innate structures/rules/constraints. This objection is countered in 
the evaluation section of  this paper by comparing the agreement of  output 
grammars learned from different subsets of the corpus. In this case, the subsets 
represent multiple learners with the same Grammar learning the language from 
different inputs.

1.2.  prec i se  def in it ions  for  what  c onst itutes  a 
c onstr uct ion

What is a construction? Or, asked another way, which units count as grammatical 
entities (i.e., constructions) for a given speaker and a given language? The 
discussion above contrasts potential constructions and actual constructions, 
framing the language-learning task as one of  distinguishing between these 
two categories. A Construction Grammar in the sense discussed here provides 
a mathematical definition of  co-occurrence such that the theory can distinguish 
between potential and actual constructions and thus produce a set of constructions 
(i.e., a grammar) representing a given language. This sort of  grammar is 
updateable in the sense that the units which qualify as constructions change 
over time as new language use is observed. The model is based on form (e.g., 
multi-length and multi-level non-continuous sequences with possible internal 
recursive structure) and distribution (e.g., frequency and multi-unit association 
measures). The implicit hypothesis, then, is that constructions can be identified 
using these measures on surface linguistic expressions.

A counter-argument to this program of  precisely defining constructions 
is that it is based on the classical theory of  categorization’s strict category 
boundaries rather than on the fuzzy and gradient membership posited by 
proto-type categorization theory. This is a false dichotomy, however, because 
the model ranks constructions using scalar measures. The classical, strict 
categorization approach can be simulated by setting a strict boundary 
threshold. The proto-type, fuzzy categorization, approach can be achieved 
by retaining the order of  constructions posited by the model. In short, the 
container metaphor for language (e.g., that a grammar and a lexicon contain 
certain elements and not others) is a conventional way of  discussing linguistic 
theory, even when we are aware that parts of  this metaphor are not accurate 
(e.g., Langacker, 2006). In other words, the idea of  an optimum grammar 
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to describe a language is a metaphoric idea, subject in practice to variations 
within speakers (e.g., across genres) and between speakers (e.g., across speech 
communities). Although not explored further here, such variations in learned 
construction grammars occur at two levels: types of  constructions (presence or 
absence of a given construction) and usage of constructions (relative frequency 
of  a given construction).

The grammatical generalizations learned by the algorithm are abstracted 
away from individual speakers by definition, in that they are learned from a 
corpus of  data produced by many speakers. Thus, the argument presented 
here participates in the abstraction by which language-use is generalized 
away from individuals and discussed as a single entity such as ‘English’ or 
‘German’. This abstraction means that the elements of  a grammar are not 
necessarily a psycholinguistic reality for any single speaker, a limitation that 
also applies to the work presented here.

1.3.  pr opert ies  of  c onstr uct ions  to  be  modeled

Constructions are form–meaning mappings that differ in their size, internal 
complexity, and level of  schematicity. This paper is concerned only with 
constructions above the level of  individual words. The constructions that 
need to be identified are idioms like the partially filled idiom in (1), argument 
constructions like the ditransitive in (2), and sentence-level constructions like 
the covariational conditional in (3) (c.f. Goldberg, 2006). 
 (1)  jog [someone’s] memory
 (2)  NP + <transfer> + NP + NP
 (3)  the [X’er], the [Y’er] 

These examples represent three of  the essential properties of  constructions 
that need to be captured: (i) varying length, (ii) varying levels of  representation 
in each slot, and (iii) filled, partially filled, or unfilled slots. A fourth essential 
property of  constructions (iv) is the ability to contain recursive material 
within a given slot (e.g., a nominal construction nested within a verbal 
construction) as well as constituents with varied internal structure.

The first challenge is that constructions vary in length and that word-based 
measures of  length do not account for constituent-internal structure.  
For example, the idiom in (1) contains three units, while the ditransitive in 
(2) contains four units. Further, and creating a greater difficulty, constructions 
can have recursively filled slots. For example, (4a) through (4c) contain 
instances of  the same ditransitive construction but contain different numbers 
of  lexical units, ranging from five to eight. The algorithm must be able to 
generalize over these different lengths and recursively filled slots to identify 
the underlying construction: NP + <transfer> + NP + NP. In other words, 
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co-location can occur at the word-level but also at the phrase-level, so that in 
(4c), for example, Bill’s uncle and two Canadian dollars can be seen as being 
separated by six units (at the word-level) or by two units (at the phrase-level). 
The algorithm must be sufficiently flexible to allow item-specific representations 
(e.g., (4e)) to be identified alongside fully schematized representations as in (2). 
In other words, the problem is how to measure multi-level co-occurrence. 
 (4)  a.  Bill gave Wendy two dollars.
 b.  Bill gave Wendy’s sister two dollars.
 c.  Bill’s uncle gave Wendy’s older half-sister from Paris two Canadian 

dollars.
 d.  Bill’s uncle gave Wendy a hand.
 e.  gave X a hand
 

The second challenge is that constructions vary in the level of  representation 
used and may contain mixed levels of  representation. For example, the 
ditransitive construction in (2) must be represented using parts-of-speech 
and semantic categories. The idiom in (1), on the other hand, has to be 
represented at multiple levels: the fixed part of  the idiom requires simple 
lexical representation but the unfilled slot has semantic restrictions (e.g., an 
animate object). This multi-level requirement makes the task more difficult 
than collocation identification and, more importantly, again multiplies the 
space within which the learner must search for potential constructions.

The grammar induction algorithm operates on three levels: first, on 
lemmatized word-forms representing the lexical level of  language; second, on 
part-of-speech forms representing lexical units grouped according to their 
syntactic distribution; third, on semantic or conceptual forms representing 
lexical units grouped according to their meaning. In addition, the algorithm 
allows for the reduction of  internal structure within prepositional phrases, 
noun phrases, multi-word named entities, and adjunct units in order to measure 
distance at both the fully schematized and the item-specific levels for purposes 
of  measuring co-occurrence. These phrasal representations are similar to 
Fillmore’s (1988) ‘maximal’ categories, whereas the lemma and part-of-speech 
representations are similar to ‘minimal’ categories.

The third challenge is that constructions contain filled, partially filled, 
and unfilled slots. In other words, a particular slot of  the construction can be 
filled by a lexical item, can be constrained to a unit of  a particular semantic 
category, or can be left entirely unfilled. This means that a construction can 
be non-continuous in the surface linguistic expression. For example, the 
idiom in (5) has an unspecified slot which, however, must be filled by a human 
or some entity which takes on the properties of  a human via metonymy or 
personification. The idiom in (6a), however, can be filled by any material 
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whatsoever, as shown by the examples in (6b–d). The algorithm deals with 
this requirement by using multiple levels of  representation: partially filled 
slots can be defined by their semantic requirements (e.g., any animate object), 
and unfilled slots can be defined by their syntactic requirements (e.g., any noun 
phrase). This again multiplies the search space for potential constructions. 
 (5)  send [someone] to the cleaners
 (6)  a.  They didn’t pay [NP] any heed.
 b.  They didn’t pay [me] any heed.
 c.  They didn’t pay [the warning signs] any heed.
 d.  They didn’t pay [the smoke on the horizon] any heed. 

The fourth challenge is that constructions can have recursively filled internal 
structure. This takes two forms: (i) a syntactically defined slot can be filled with 
a wide range of  complex constituents of  the same type (e.g., NPs take many 
different forms), and (ii) constructions can be nested within other constructions. 
As an example of  the first case, if  we take the ditransitive construction in (2) 
above, repeated in (7a), any of  the components can contain constituents with 
varied internal structure, so that (7b) through (7d) are all instantiations of  the 
same construction. As an example of  the second case, (7e) contains the same 
ditransitive construction nested within a different instance of  the construction, 
so that ball is part of  the main ditransitive as well as the relative clause version 
of  the ditransitive. The first sort of  recursion, of  interchangeable constituents 
in a single more general slot, although a challenge to model, is a relatively simple 
phenomenon for construction grammar in general. The second sort, however, 
is more difficult on both levels. 
 (7)  a.  NP + <transfer> + NP + NP
 b.  He gave her the ball.
 c.  The short man quickly gave her the blue ball.
 d.  The two short men quickly refused to give her any of the balls.
 e.  He gave her the ball Bob had just given him two days before.
 

The constructions output by the algorithm have a linear form such as in 
(8a–d). In this formula, units of  a given level of  representation occur in the 
specified order. Four levels of  representation are used in the final output: 
first, specific word-forms and lemmas, as in (8a) with “be”; second, part-of-
speech tags for individual units, as also in (8a) with the units in brackets; 
third, semantic or conceptual categories which constrain the fillers of  the slot 
in question, as in (8c) in small caps; fourth, syntactic phrases with reduced 
internal structure, such as NP and PP in (8d). 
 (8)  a.  [Wh-Determiner] + [Modal] + “be” + [Past-Participle]
 b.  “to” + [Verb] + [Determiner] + [Noun]
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 c.  [Noun] + [Preposition] + [Determiner] + <planning>
 d.  “be” + [Past-Participle] + PP+ NP 

The use of  multiple levels of  generality shows the influence of  corpus 
linguistics on the algorithm in addition to Cognitive Grammar: the goal is 
to find the inventory of  symbolic grammatical units attested in the corpus, 
even if  those units are not abstract or schematic but rather fully item-specific. 
This is an important part of  grammar induction because observed patterns in 
usage show that speakers have clear preferences both for schematic structures 
and for specific instances of  such structures.

Finally, an essential property of  constructions more generally is that they 
are form–meaning mappings rather than purely syntactically defined sequences. 
This is modeled here both directly and indirectly. Directly, it is captured 
using semantic or conceptual representations of  words; in effect, this means 
that the filler of  a slot can be defined in terms of  a specific meaning, rather 
than in terms of  a specific lexical or syntactic item. Indirectly, this is captured 
using overlapping constructions with different levels of  schematicity. More 
item-specific constructions represent different instances of  a more general or 
schematized construction and have different meanings from generic instances 
of  that construction (e.g., give me two pieces of  cheese vs. give me a hand).

2.  The construction induction algorithm
This section looks at the construction induction algorithm1 in detail, starting 
in Section 2.1 with a discussion of  the underlying problem and how it is 
distributed across the algorithm. Section 2.2 looks at the different levels of  
representation used in the algorithm. The core functions of  the algorithm are 
then examined: the generation of  potential constructions (2.3), formulating 
association measures to evaluate candidates (2.4), and then using association 
measures to select the best candidates. The algorithm is then situated relative to 
other computational work on constructions, relative to collostructional analysis, 
and relative to other work on grammar induction (2.5).

2.1.  a spects  of  the  pr oblem

The goal of the construction grammar induction algorithm is to search through 
the many linguistic expressions present in a large corpus in order to find the 
relatively small number of  underlying generalizable grammatical units which 
produce or represent those linguistic expressions. In other words, the problem 

[1]  Code and related data for the Construction Induction algorithm is available at www.jdunn.
name.
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is to cut through the noise in the textual data and return only those units 
which can be considered part of  the grammar represented in the corpus. The 
linguistic expressions in the corpus have a very large number of  possible 
representations (i.e., potential constructions); the problem is to find the 
optimum set of  representations.

The construction grammar induction algorithm identifies multi-length, 
multi-level, non-continuous co-occurrences while abstracting over internal 
recursive structure. In other words, the algorithm builds frequency and 
association measures of co-occurrence but does so at multiple levels of analysis. 
This task is divided across three stages in the algorithm: first, the candidate 
generation stage deals with recursive structures and non-continuous 
representations. Second, the construction identification stage forms templates 
for construction types and identifies the presence of  these construction 
templates in linguistic expressions in order to extract and inventory potential 
constructions. Third, the candidate evaluation stage searches through the 
very large number of  potential grammatical representations (i.e., candidate 
constructions) to determine the set which best represents the linguistic 
expressions in the input corpus using frequency and multi-unit association 
measures. The pseudo-code for the algorithm is shown in Table 1; this 
pseudo-code can be considered a diagram of  the essential workings of  the 
algorithm and also a guide to a specific Python implementation.

2.2.  l e vels  of  representat ion

Level of  representation refers to the type of  linguistic analysis used to label 
a particular element in the construction: part-of-speech (e.g., noun), phrase 
type (e.g., prepositional phrase), semantic-category (e.g., animate), and lemma 
(e.g., “candle”). The idea behind varying levels of  representation within a 
construction is (1) that language is composed of  layered and interacting levels 
of  structure and (2) that grammatical units can be fossilized at each level. 
In other words, some constructions may be completely schematic and others 
may be completely item-specific. The algorithm, therefore, must operate on 
multiple levels of  representation because we cannot know a priori for a given 
linguistic expression the specificity or type of  representation present in the 
construction that produced it.

The algorithm has a few dependencies. First, it relies on part-of-speech 
tagging (in this case, TreeTagger: Schmid, 1994), which labels lexical units 
according to their syntactic distribution and function. Second, it relies on 
semantic or conceptual tagging (in this case, the UCREL Semantic Analysis 
System: Piao, Bianchi, Dayrell, D’Egidio, & Rayson, 2015), which labels 
lexical units according to their ontological meaning. Third, it relies on a 
dependency parser (in this case, MaltParser: Nivre et al., 2007), which aids 
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table  1. The construction-grammar induction algorithm

1 Create unit inventories for each level of  representation
 a. Create list of  all unit values at each level of  representation
 b. Discard unit values below frequency threshold
 c. Assign each unit value a numeric index

2 Ingest input files
 a. Divide into units divided by sentence boundaries and/or punctuation (by parameter)
  i. Represent each unit as vector of  unit value indexes
  ii. Represent each clause/sentence as a collection of  unit vectors

3 Search for recursive structures and non-continuous units
 a. For each clause:
  i. Look for adjunct units (e.g., adverbs)
  ii. Look for PPs (e.g., “into the house”)
  iii. Look for NPs (e.g., “the house”)
  iv. Look for Multi-Word Named Entities (e.g., “Norman Rockwell”)
 b. For each reduction in each clause:
  i. Create alternate clause with unit either reduced (e.g., to “NP”) or removed
  ii. Create alternate clauses with all combinations of  reductions applied

4 Create construction templates
 a. For all lengths from 2 through N (Max construction length):
  i. All possible combinations of  levels of  representation

5 Extract candidate constructions using templates and units of  text
 a. For each template:
  i. Search through original and alternate linguistic expressions
  ii. Extract and count all matches
  iii. Disregard any matches containing discarded labels
  iv. Remove all candidates below the frequency threshold

6 Evaluate candidates:
 a. Frequency
 b. Summed ΔP, Left-to-Right
 c. Summed ΔP, Right-to-Left
 d. Mean ΔP, Left-to-Right
 e. Mean ΔP, Right-to-Left
 f. Beginning-Reduced ΔP, Left-to-Right
 g. Beginning-Reduced ΔP, Right-to-Left
 h. End-Reduced ΔP, Left-to-Right
 i. End-Reduced ΔP, Right-to-Left
 j. Beginning-Divided ΔP, Left-to-Right
 k. Beginning-Divided ΔP, Right-to-Left
 l. End-Divided ΔP, Left-to-Right
 m. End-Divided ΔP, Right-to-Left
 n. Direction Scalar ΔP
 o. Direction Categorical ΔP

7 Prune candidates:
 i. By Association Strength
 ii. Horizontally (prefer longest candidates)
 iii. Vertically (remove alternate representations)

in the reduction of  prepositional phrases and noun phrases. There is no 
theoretical reason why these functions could not be incorporated into a single 
framework, only the practical consideration of  avoiding the duplication of  
existing work. These dependencies do not invalidate the argument against 
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innate structure because each could itself  be performed in an unsupervised 
and data-driven fashion.2

2.3.  generat ing  potential  c onstr uct ions

The candidate generation step carries the weight of  deriving possible 
generalizations from each linguistic expression. There are two separate stages 
here: first, producing alternate representations of  a linguistic expression to 
reduce recursive units; second, extracting construction templates of  varying 
length and level of  representation from those alternate representations of  the 
linguistic expressions (i.e., steps 3–5 in the pseudo-code).

For example, the sentences in (9a–c) all depend on the ditransitive construction, 
with increasing substructures within the slots of  the construction that create 
noise for the language-learning algorithm. In other words, finding the 
construction “NP + <transfer> + NP + NP” from the sentence in (9c) 
requires looking at each constituent as a whole, as shown with brackets in (9d). 
The algorithm approaches this problem by generating alternate forms for 
each linguistic expression and then including these alternate forms in the 
search for co-occurrences. 
 (9)  a.  “The coffee gave her a headache.”
 b.  “The dark unfiltered coffee soon gave her a splitting headache.”
 c.  “The dark unfiltered coffee from South America soon gave her a 

splitting headache and a feeling of nausea.”
 d.  “[The dark unfiltered coffee from South America] [soon gave] [her]  

[a splitting headache and a feeling of nausea].” 
Given an expanded set of linguistic expressions, the algorithm handles varying 

length and varying levels of representation by creating templates for all possible 
combinations of  representations within the defined length parameter. Each 
template, therefore, represents the most abstract properties of  a construction: 
How many units and what representations does it contain? The algorithm then 
extracts all potential constructions, which are simply instantiations of  each 
template in a linguistic expression.

2.4.  e valuat ing  potential  c onstr uct ions

The evaluation of  potential constructions involves mathematically modeling 
the properties which separate constructions and non-constructions, either 

[2]  More recent versions of  the algorithm incorporate a distributional method of  creating 
semantic dictionaries as well as the unsupervised learning of  phrase structure rules which 
supports the further reduction of  complex constituents, thus removing two of  the three 
dependencies.
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with a sharp delineation of  the two categories or with a scalar ordering by 
degrees of  entrenchment. In this case, the model is observational in that it 
operates on a corpus of  attested linguistic expressions. Thus, the question is 
what quantitative distributional measures are required to develop a model of  
constructions. Two standard measures are used: frequency and association 
strength. The implementation of  these standard measures, however, must 
allow for the evaluation of  multi-unit candidates, which requires developing 
multi-unit association measures.

The first measure is frequency, a simple representation of  how often 
something appears in the dataset. This measure is relative frequency, in that 
all candidates are evaluated on the same dataset. In addition to providing 
a constraint on the overall search space, frequency remains an important 
measure of  a candidate’s status as a construction, in order to prefer some 
possible representations over others. The frequency threshold is enforced by 
creating an index of  unit frequencies on the entire corpus or on a significant 
subset of  the corpus (i.e., a million word subset) and ignoring those units 
which do not pass this indexing threshold. While this reduces the search 
space for the algorithm, it is not psychologically plausible in the sense that 
human learners do not have this sort of  large existing dataset to query in 
advance of  learning. As noted in more detail below, one critical assumption 
behind this approach is that human learners have the ability to store and 
update the frequencies of  units and sequences of  units largely without limit. 
The present algorithm, because it has access to the entire corpus all at once, 
can use frequency indexing as a means of  reducing the hypothesis space in a 
way that human learners cannot.

Association strength is measured using the bi-directional ΔP (Gries, 2013; 
cf. Gries, 2008, 2012), calculated both left-to-right and right-to-left, as shown 
in Table 2. To be more precise, the ΔP is not bi-directional but rather consists 
of  two direction-dependent measures; taken together, these two direction-
dependent measures allow us to model linguistic associations in all possible 
directions. Both spoken and written language are one-dimensional in the sense 
that Unit A can either come before or come after Unit B. The construction 
induction algorithm is based on multi-directional (left-to-right or right-to-left), 
multi-dimensional (across varying levels of representation), multi-length (across 
two or more units) association strength, measured with and without complex 
constituent-internal structure (i.e., distance is measured at different levels of  
abstraction). The idea is that sequences which are constructions (e.g., are 
cognitively entrenched to some degree) are more internally associated than 
sequences which are not constructions (e.g., those which are chance co-occurrences 
of units). The purpose of the association measures (and the frequency counts on 
which such measures are ultimately based) is to learn an inventory of constructions 
from the very large hypothesis space of  all observed sequences.
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table  2. Calculating ΔP

1 Let X be a unit of  any representation
2 Let Y be any other unit of  any representation
3 Let Xa indicate that unit X is absent
4 Let Xp indicate that unit X is present
5 ΔP(X|Y) = p(Xp |Yp) - p(Xp |Ya)
6 ΔP(Y|X) = p(Yp |Xp) - p(Yp |Xa)

Like most linguistic association strength measures, ΔP is usually employed 
to measure the relationship between two individual words. Given the 
variable length required by constructions, this is converted into a multi-
word measure in four different ways. Each calculation is given for a sequence 
of  elements listed in (10) for the sake of  example. Association strength is 
an important addition to frequency because it allows the model to capture 
the constraint of  degree of  openness (Goldberg, 2006). The basic problem is 
that very frequent units occur often in competing potential constructions 
and association measures prevent the over-identification of  false positive 
constructions containing frequent units. 
 (10)  A B C D E F 

First, the simplest multi-word measure is a sum of  the total directional 
association within a candidate, implemented with a minimum pairwise threshold. 
In other words, so long as each pairwise ΔP is above the threshold, this measure 
simply sums the total association strength. While this first measure tends to favor 
longer candidates, it is left as-is in order to counteract the frequency thresholds 
which tend to favor shorter candidates. An alternate version, the mean ΔP, 
is normalized by the length of  the candidate in number of  units to produce 
the mean pairwise association score across the entire sequence. Both measures 
are shown in Table 3.

This multi-unit measure is similar to Daudaravičius and Marcinkevičienė’s 
(2004) work on detecting the borders of collocations, except that it allows both 
a minimum threshold and a final score (e.g., the summed association strength). 
In other words, the gravity count measure is a different formulation for 
association strength and a collocation is defined as a sequence of pairs whose 
association falls above a given threshold. The summed ΔP is similar, except 
that it also outputs a sum of  pairwise associations for those sequences which 
do exceed the threshold. This similarity is disguised by a difference in 
implementation. For example, Jelinek (1990) also uses an iterative approach 
that tests increasingly longer sequences for sufficient association strength; in the 
current implementation, each candidate is considered independently, although 
any longer sequence which passes the frequency threshold is by definition 
made up of  smaller sequences which have themselves passed that threshold. 
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Gries and Mukherjee (2010) also use mean pairwise association strength to test 
multi-unit candidates. Finally, it should be noted that all measures discussed 
below are implemented in both left-to-right and right-to-left directions, although 
the discussion is streamlined by exemplifying each measure in a single direction.

The second multi-unit measure is the difference between the mean ΔP with 
and without the candidate’s edge members. In other words, going from left-
to-right, this measures the difference between the association between A-B-
C-D and B-C-D: Do we gain or lose association by extending the unit? This 
measures whether the longer version of  the candidate increases or decreases 
the overall association strength. Given that the evaluation is trying to discover 
the optimum candidates, those candidates which reduce the mean association 
strength can be viewed as less than optimum. This measure has two variants, 
one looking at the front and the other at the end of  the candidate (and each, 
like the underlying ΔP, is calculated in both directions), as shown in Table 4.

The third multi-unit association measure is the ΔP of  the first unit and the 
rest of  the candidate (A|BCDEFG) and the ΔP of  the last unit and the rest 
of  the candidate (ABCDEF|G). This is an alternate measure of  how much 
the increased length raises or lowers the overall association strength. This is 
calculated as in Table 5 (and, as before, in both directions).

The fourth multi-unit measure uses the dominant pairwise direction of  
association. In other words, moving through the candidate, is the left-to-
right or right-to-left association stronger between the current pair of  units? 
The idea here is that the optimum candidate should have a single dominating 
direction, and that the more disagreement there is in pairwise directional 
associations the worse the candidate is. This sort of  measure was suggested, 
for example, by Gries (2013), although not implemented. The assumption 
that a construction should have a single dominating direction of  association 
is not entirely transparent, and further work needs to be done on this issue.

There are two methods of  calculating this measure, a scalar method and 
a categorical method. First, the scalar method finds the difference between 
both directions for each pairwise unit and sums these differences. Positive 
numbers indicate the dominance of  left-to-right association while negative 
numbers indicate dominance of  right-to-left association. This provides 
both the direction and the degree of  the dominance. One weakness, however, 

table  3. Calculating the Summed ΔP

1 Calculate each ordered pairwise ΔP:
2   A|B, B|C, C|D, D|E, E|F
3 Fp = Pairwise Frequency Threshold
4 If  any ordered pairwise ΔP < Fp, discard candidate construction
5 Summed ΔP = ( )( )Σ ∆ | ∆ | …P(A B) P(B C)

6 Mean ΔP = ( ( )( )Σ ∆ ∆| | …P(A B) P(B C) ) / Nunits
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table  4. Calculating the Reduced ΔP

1 Beginning-Reduced ΔP = Mean ΔP(ABCDEFG) – Mean ΔP(BCDEFG)
2 End-Reduced ΔP = Mean ΔP(ABCDEFG) – Mean ΔP(ABCDEF)

is that two large pairwise differences can cancel each other out. Thus, the 
related categorical measure simply counts the number of  pairs for which the 
left-to-right or right-to-left measure dominates and returns the minimum of  
these as a counter of  how many times the dominating direction changed while 
moving sequentially through the candidate. Thus, a candidate in which either 
direction of  association wholly predominates would receive a 0, a candidate 
with one change in direction would receive a 1, and so on. These are calculated 
as shown in Table 6.

This collection of  association measures, together with frequency, is used 
to create a vector representing each candidate. A summary of  the measures 
contained in this vector is given in Table 7. The selection and ordering of  
possible candidates is performed using this vector representation. This is, 
as all quantitative models are, a simplification of  a construction grammar, 
in this case focusing only on frequency and frequency-based co-occurrence 
information to determine which potential constructions form the strongest or 
most associated units. The question, however, is whether this simplification 
(i.e., purely statistical generalization) is sufficient for learning a construction 
grammar from a corpus.

Alternate methods for calculating multi-unit association strength include Wei 
and Li (2013), who start with da Silva and Lopes’ (1999) notion of  pseudo-
bigrams, in which all sequences longer than two units are reduced to all possible 
pairwise combinations (e.g., A|BCD, AB|CD, ABC|D for the sequence 
ABCD). This is similar to the divided ΔP measures described above. Starting 
with these pseudo-bigrams, Wei and Li take the average pointwise mutual 
information score for each pseudo-bigram in the sequence, but refine the average 
by weighting each pseudo-bigram by its probability in the corpus. This gives 
more weight in the final measure to the most probable subsequences.

The one assumption that these measures require is that the language 
learner is able to store frequencies, both of  units and of  sequences. In other 
words, a sizable amount of  linguistic memory is required to store all the 
units and sequences that make up possible candidates and to update the 
frequencies of  those units and sequences as new language is observed. 
This could be done, in algorithmic terms, either with cumulative observed 
frequencies or with a rolling time-based window. This approach, then, does 
assume that learners are capable of  this sort of  frequency storage, a question 
that is beyond the scope of  the present paper (although see Tomasello, 2003, 
and Bybee, 2010).
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For the sake of  example, sample calculations are shown for the sequence 
did not know about it. Only lexical items are considered for simplicity. 
First, this sequence consists of  the pairs in (11). Each word is shown with 
its frequency in the Corpus of  Contemporary American English (COCA: 
Davies, 2010) in brackets, with the total co-occurrences of  each pair 
following. The left-to-right (LR) and right-to-left (RL) ΔP are shown  
for each (note that the total number of  words in COCA is rounded to  
520 million in these calculations). Given these measures, the summed ΔP 
left-to-right is 0.0939 with a smallest pairwise value of  0.0108 (“know 
about”) and the mean ΔP is 0.0234. Going from right-to-left, the summed 
ΔP is 0.2052 with a smallest pairwise value of  0.0052 (“not know”) and a 
mean ΔP of  0.0513. 
 (11)  a.  “did” [895,094] + “not” [2,155,912] and their co-occurrence [128,432]
 a’.  LR = 0.0581, RL = 0.1395
 b.  “not” [2,155,912] + “know” [857,571] and their co-occurrence 

[14,697]
 b’.  LR = 0.0130, RL = 0.0052
 c.  “know” [857,571] + “about” [1,444,147] and their co-occurrence 

[17,933]
 c’.  LR = 0.0108, RL = 0.0182
 d.  “about” [1,444,147] + “it” [5,146,411] and their co-occurrence [75,164]
 d’.  LR = 0.0120, RL = 0.0423
 

The reduced ΔP compares the mean values for subsequences; the formulation 
for the beginning-reduced is shown in (12a) and the end-reduced in (12b). 
For the end-reduced measures, in both directions, the mean association is 
lower in the longer sequence than in the reduced sequence, although the 
difference is quite small. The point, though, is to see if  a smaller sequence has 
a higher mean association. It is important to remember that these measures 
are also calculated on other subsequences if  those subsequences are themselves 
candidates. In this case, for example, each pair is itself  a candidate (although 
not a multi-unit candidate), as are both reduced sequences. This results from 
the fact that any longer sequence which passes the frequency threshold is 
composed of  subsequences which have also passed the frequency threshold. 
In practical terms, then, it is the multi-unit measures taken together with 
the different candidates that allow full coverage in the search for actual 
constructions and makes iterative measures unnecessary.

table  5. Calculating the Divided ΔP

1 Beginning-Divided ΔP = ΔP(A|BCDEFG)
2 End-Divided ΔP = ΔP(ABCDEF|G)
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 (12)  a.  Beginning-Reduced: Mean (“did not know about it”) – Mean  
(“not know about it”)

 a’.  LR = 0.0115, RL = 0.0291
 b.  End-Reduced: Mean (“did not know about it”) – Mean (“did not 

know about”)
 b’.  LR = –0.0039, RL = –0.0030 

The divided ΔP calculates multi-unit association with units instead of  pairs. 
This is shown in (13) with its beginning and end variants. The frequency of  
each unit is shown (in this case, with larger sequences viewed as units), and 
the frequency of  the entire sequence is 16. Longer sequences like this can 
result in high association: given the sequence not know about it, the preceding 
elements are limited and thus the association is high even though frequency 
is low. It is important to note, again, that other subsequences are compared in 
other shorter and longer candidates. 
 (13)  a.  Beginning-Divided: (“did” [895,094] | “not know about it” [33])
 a’.  LR = 0.4831, RL = 0.0000
 b.  End-Divided: (“did not know about” [197] | “it” [5,146,411])
 b’.  LR = 0.0000, RL = 0.0714 

The final two measures quantify the role of  direction within the sequence: 
Given a series of  pairwise associations, how stable is the dominating direction 
of  association? The first measure subtracts the right-to-left association from 
the left-to-right association in order to show accumulating effects of  dominance. 
In this case, the final measure is –0.1191, showing that, overall, the dominating 
pairwise direction is right-to-left. The categorical measure looks at how many 
times the direction changes. In this case, there is one left-to-right dominating 
pair (“not know”), giving the measure a value of  1. The purpose of  this 
discussion has been to provide an example of  how the measures are calculated, 
rather than a complete analysis of  their many permutations.

2.5.  model ing  c onstr uct ions

The final and essential step is to take this large number of possible constructions 
and model the properties which separate possible and actual constructions in 
order to predict the inventory of  the dataset-specific construction grammar. 
It will be useful, first, to look at some existing approaches to this problem.

table  6. Calculating the Direction ΔP

1 Direction-Scalar ΔP = [ ( ) ( ) ( ) ( ) ]∆P A B ∆P B A ∆P A B ∆P B AΣ …( | − | ), ( | − | )
2 Direction-Categorical ΔP = min(Number LR dominant pairs, Number RL  

dominant pairs)
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Wible and Tsao (2010) present StringNet, which finds all sequences of  
word-form, lemma, or part-of-speech (unigrams to 8-grams) which pass a 
frequency threshold. StringNet uses a mutual information measure to rank 
results; however, this measure is not expanded for multi-unit sequences but 
rather normalized across the results of  a particular query. Pruning of  nested 
or redundant sequences is used to reduce the number of  candidates. Tsao 
and Wible (2013) use co-occurrence vectors with these sequences to produce 
distributional similarity scores. Forsberg et al. (2014) build on StringNet by 
incorporating dependency parsing to identify phrases as parts of  potential 
constructions, similar to the how the present algorithm reduces complex 
constituents in identifying potential constructions. Frequency is used to prune 
potential constructions and the final evaluation is performed using a multivariate 
generalization of  pointwise mutual information (van de Cruys, 2011) scaled 
by the number of  unique word-form sequences instantiating each candidate. 
Zuidema (2006) formulates the problem of identifying constructions as taking 
parse trees and identifying those sub-trees which frequently re-occur and 
which may contain syntactically defined (e.g., partially filled) slots at the end. 
This approach uses a simpler definition of  constructions, along the lines of  
productive multi-word expressions.

Taken together, this previous work introduces elements present in the 
current algorithm which are expanded and incorporated into an overall 
model of  a construction grammar in this paper. First, the current algorithm 
has more robust approaches to dealing with recursive structure (e.g., reducing 
noun phrases) and partially filled / unfilled slots. Further, it includes semantic 
category as a level of  representation, an important part of  representing 
constructions. These improvements involve the generation of  possible 
constructions. The primary contribution of  this paper, however, consists of  
developing and aggregating measures of  association to model the gradient 
distinction between possible and actual constructions. This component is the 
essential central problem of  construction grammar induction: reducing large 

table  7. Summary of  measures in vector representing the candidates

Measure Variations

Simple Frequency
Summed ΔP Left-to-Right, Right-to-Left
Mean ΔP, Left-to-Right, Right-to-Left
Beginning-Reduced ΔP Left-to-Right, Right-to-Left
End-Reduced ΔP Left-to-Right, Right-to-Left
Beginning-Divided ΔP Left-to-Right, Right-to-Left
End-Divided ΔP Left-to-Right, Right-to-Left
Direction-Scalar ΔP
Direction-Categorical ΔP
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numbers of possible representations to a small number of actual and productive 
constructions. Thus, the current work builds on existing work to produce a 
coherent and efficient model for construction identification and extraction.

Given a large number of  potential constructions with frequency and 
association strength values, the model for determining which to include in 
the grammar first removes clear false positives and then ranks the remaining 
candidates by their degree of  entrenchment. The pruning steps, shown in 
Table 8, begin by removing those candidates which fall below the pairwise 
threshold. In other words, multi-unit candidates such as ABCDEF have both 
multi-unit association scores and pairwise scores; the idea here is to remove 
those candidates which have weak links between at least one pair, indicating 
that an alternative candidate with alternate boundaries is a better representation.

The second step is to remove those candidates whose mean association 
strength as a whole is lower than the mean association strength of a subsequence 
(e.g., ABCDEF vs. BCDEF or ABCDE). The idea here is that the representation 
with the higher mean association strength is the best grammatical unit.

The third step is to prune those candidates in which the dominating pairwise 
direction of  association changes internally. For example, with the sequence 
ABCDEF, if  all dominating pairwise associations are left-to-right except for 
CD, in which right-to-left dominates, this is an indicator that the candidate 
provides a non-optimal boundary.

The final two reduction steps are the simplest: horizontal pruning takes the 
remaining candidates and chooses the largest, while vertical pruning finds those 
candidates of the same length which share the same association strengths, so that 
they are alternate representations of  the same underlying construction.

These reduction rules are applied in this order, with association strength given 
the most weight because it removes the largest number of  candidates and thus 
eases the application of subsequent rules. The final step is to rank the remaining 
constructions by their degree of  entrenchment; in other words, the idea is to 
order constructions by how highly associated they are. This is done using the 
mean ΔP and the end-divided and beginning-divided ΔP. First, the highest 
directional score for each of  these three measures is taken, and then again the 
highest of  these scores. Thus, each candidate is represented by its highest 
direction and type of association measure. In other words, because constructions 
take many forms and association can be captured by any of these measures, each 
candidate is represented by its highest association and ranked accordingly.

2.6.  c onstr uct ion  identif icat ion  and  c ollostr uct ional 
analys i s

The measures of  association used to model constructions complement existing 
work on measuring properties of  constructions from corpora. Collostructional 

https://doi.org/10.1017/langcog.2016.7 Published online by Cambridge University Press

https://doi.org/10.1017/langcog.2016.7


dunn

274

analysis (Stefanowitsch & Gries, 2003, 2005; Gries & Stefanowitsch, 2004a, 
2004b) encapsulates the most relevant area of  work, performing three related 
tasks: (i) quantifying the relationship between individual words and a given 
slot of a given construction; (ii) using the relationship between individual words 
and a given slot of  a given construction to quantify the relationship between 
similar constructions; and (iii) quantifying the relationship between individual 
words in two different slots in a given construction. This work differs from 
the present in that it focuses on quantifying differences within and between 
constructions while taking the existence of  particular constructions as a given. 
The current work, put in similar terms, focuses on quantifying and modeling 
the differences between constructions and non-constructions. These non-
constructions, like other counter-factuals or ungrammatical forms in linguistic 
analysis, represent possible alternate generalizations drawn from linguistic 
expressions. Thus, collostructional analysis looks at variations in the use 
of  constructions, whereas this work looks at variations in inventories of  
constructions across individuals and speech communities.

2.7.  c omparison  to  ex i st ing  algorithms

Knowledge-based approaches to computational linguistics manually build 
machine-tractable representations of  language. Such representations include 
an ontology of  atomic concepts with their properties and connections as well 
as machine-tractable descriptions of  the meaning of  linguistic expressions 
phrased in terms of  these atomic concepts (see, for example, Nirenburg & 
Raskin, 2004; Levison, Lessard, Thomas, & Donald, 2013, and the comparison 
of  these approaches to formal semantics in Dunn, 2015). Both Fluid 
Construction Grammar (FCG) and Embodied Construction Grammar (ECG) 
(e.g., Bryant, 2004; Steels, 2004, 2012; Chang, De Beule, & Micelli, 2012) can be 
viewed as variants of  this work, in which hand-crafted but machine-tractable 
representations of  constructions, frames, and concepts are collected and 
manipulated computationally for various purposes (similar to but expanding 
on Zadrozny, Szummer, Jarecki, Johnson, & Morhenstern, 1994). These 
approaches do not interface with natural language (e.g., they do not operate 

table  8. From potential to actual constructions

Order Operation

1 SΔP: Remove candidates which fall below pairwise ΔP threshold
2 RΔP: Remove candidates which lose association strength when reduced
3 Direction: Remove candidates which change directions of  association
4 Horizontal Pruning: Keep longest sequence possible within remaining candidates
5 Vertical Pruning: Keep representation with highest association strength
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on linguistic expressions). Rather, they should be seen as an extension of  
introspective analysis of  constructions into computational applications by 
standardizing the units and methods of  analysis. These approaches are unable 
to learn constructions from linguistic expressions and cannot be used to 
simulate language learning because the representations are themselves a sort 
of  innate representation provided to any algorithms which take them as input.

There are also previous computational treatments of  constructions in actual 
corpora. For example, O’Donnell and Ellis (2010) develop an algorithm for 
searching a RASP-parsed version of  the British National Corpus for instances 
of  two predefined verb–argument constructions. Vincze, Zsibrita, and Istvan 
(2013) and Istvan and Vincze (2014) computationally distinguish between 
verb–particle constructions and non-construction verb–particle co-occurrences 
using a parser to identify candidates and then employing a supervised binary 
classifier to distinguish those which are part of  a construction from those which 
are not, using lexical, syntactic, and semantic features.

The present algorithm is also an approach to unsupervised grammar 
induction, the task of  learning a generalized grammatical representation 
from observed language (e.g., from text). Van Zaanen (2000) approaches this 
task as a problem of  finding constituents and their boundaries, so that the 
task is to identify which units are mutually replaceable. The algorithm compares 
every pair of  sentences, using edit distance to determine which units, if  any, 
are shared by the sentences. Those units which occur with shared structures, 
then, are constituents which can be mutually replaced. This generates candidate 
constituents which are then evaluated using the probability that the candidate 
is a constituent. Dennis (2005) takes a similar approach using part-of-speech 
sequences rather than word-form sequences and adding a span-based edit 
distance measure. Clark’s (2001) approach to finding clusters of  constituent 
types is to take an input text as a sequence of  part-of-speech tags and to 
cluster sequences of  these tags using their distribution. Mutual information 
(MI: i.e., association strength) is used to filter out redundant or nested candidates, 
and the MI threshold is determined using minimum description length to 
evaluate possible grammars (cf. Goldsmith, 2006). Klein and Manning (2002) 
take yet another approach to finding constituents, starting with all possible 
subsequences of part-of-speech tags within the same sentence as the candidate 
set, considering only those candidates which produce binary trees. Given 
observed sentences and unobserved constituents, Expectation Maximization 
is used to cluster candidates as actual constituents or non-constituents.

While more current approaches to grammar induction have made a number of  
improvements (Bod, 2006; Headden, Johnson, & McClosky, 2009; Blunsom & 
Cohn, 2010; Mareček & Straka, 2013; Spitkovsky, Alshawi, & Jurafsky, 2013), 
this work has focused on grammar as a tree of  dependency relations and on 
categories with phrase-structure rules, such as in combinatory categorical 
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grammar. The present algorithm, however, focuses on grammar as a set of  
meaningful and symbolic form–meaning mappings. The output is not a parse 
tree or a set of  categorized dependencies, but rather a mapping between 
linguistic expressions and schematic constructional representations of  those 
expressions at varying levels of  abstraction. Thus, this work is not reviewed 
in more detail here, although see Heinz, de la Higuera, and van Zaanen (2016) 
for a general overview of  the problem.

3.  Evaluating learned grammars
This section presents a rigorous quantitative evaluation of  learned grammars. 
The first part (3.1) describes the general experimental design and provides a 
qualitative analysis of  the sorts of  constructions formulated by the algorithm. 
The next subsection (3.2) begins the quantitative analysis by looking at the 
distributions of  and correlations between the various multi-unit association 
measures employed. The next part (3.3) examines the grammar’s coverage on 
unseen test sets under different construction pruning conditions. The section 
after this (3.4) quantifies stability in learned grammars across different sizes 
of  datasets and, after this (3.5), the stability in learned grammars across 
mutually exclusive datasets, with each instance of  the algorithm simulating a 
single language learner.

3.1.  exper imental  des ign  and  qual itat ive  analys i s  of 
results

For the purposes of  this evaluation, the construction grammar induction 
algorithm is run on 1 billion words (40 million sentences) from the ukWac 
web-crawled corpus of  UK domain sites (Baroni et al., 2009). The advantage 
of  using this corpus is, in part, its size. This is important for two reasons: 
first, it showcases the feasibility of  the algorithm in terms of efficiency; second, 
it allows us to examine the stability of  the learned grammar across different 
subsets of  the corpus. Given the grammar learned on this dataset, we start 
with a qualitative analysis of  the sorts of  constructions which are included in 
the grammar, looking at representative examples of  constructions identified 
in the ukWac corpus. Additional constructions and examples are given in the 
‘Appendix’.

The first example of  a learned construction is shown in (14a), with examples 
in (14b–e). This construction is defined by part-of-speech information and 
the lemma “be”, representing a relative clause with a passive verb. While this 
generalization covers multiple complementizers and modal verbs, it does not allow 
for multiple tenses within the verb phrase. It remains, however, a productive and 
schematic representation that covers a large number of  linguistic expressions.
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 (14)  a.  [Wh-Determiner] + [Modal] + “be” + [Past-Participle]
 b.  that will be provided
 c.  that can be played
 d.  which will be presented
 e.  that should be made 

The second example, in (15a), again consists of  parts-of-speech with a 
single high-frequency lemma, “to”. This represents an infinitive verb phrase 
with an object, which, as shown in (15d), can be generalized to any NP. One 
weakness with this representation, however, is that the determiner is often 
part of  a noun phrase, so that this representation could be made more general 
by eliminating the [Determiner] from the construction. Of  course, the whole 
point of  a data-driven model such as this is that it builds representations from 
observed usage and not from intuitions about the most productive schema. 
 (15)  a.  “to” + [Verb] + [Determiner] + [Noun]
 b.  to bring an end
 c.  to get an idea
 d.  to use any NP
 e.  to sell a product 

A more item-specific example is shown in (16a), this time including a partially 
filled slot that is defined only by its semantic category of  rel ig ion. In this 
case, the construction reflects the metaphor in which a religious organization 
takes on the characteristics of  a physical body. What separates this as a 
construction, however, is that whereas literal statements about a body do 
not require a specific form (strengthen your body, heal your body, etc.), the 
interpretation here requires a prepositional phrase in which the type of  body 
is specified (strengthen the body of  the church, heal the body of  Christ, etc.). 
An example of  over-identification is shown in (16e), in which church is 
actually referring to a physical object and used as a reference point. Thus, this 
is not an example of  this metaphoric construction, but rather is an over-
generalization from the learned representation. 
 (16)  a.  [Noun] + [Preposition] + [Determiner] + <rel ig ion>
 b.  body of the church
 c.  member of the church
 d.  need in the church
 e.  west of the church 

A simple prepositional phrase construction is shown in (17a), involving spatial 
relations for a given location. This is a schematic construction that does not 
differentiate between different spatial relations and different types of locations. 
This does not, however, preclude the algorithm from learning more specific 
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spatial phrases, which in fact it does. For example, more specific identified 
constructions include: “in” + NamedEntity; “in” + NP; “through” + NP. These 
are cases where more item-specific and more schematic constructions overlap. 
 (17)  a.  [Preposition] + “the” + <lo cat ion>
 b.  on the site
 c.  in the area
 d.  into the city
 e.  throughout the area 

A specific verb phrase construction is shown in (18a), in which a movement 
verb has an infinitive verb as an object. In this case, the infinitive object shows 
the purpose of  the movement, as in examples (18b–e). The object of  the 
infinitive is not included in this construction, and specifying specific objects 
would result in a finer-grained analysis. 
 (18)  a.  <move> + “to” + [Verb]
 b.  go to buy
 c.  come to learn
 d.  travel to find
 e.  walk to see 

Finally, the example in (19a) shows an identified construction which 
contains incorrect boundaries. We would expect, given introspective analysis, 
that some semantic definition of  the agent would follow “by”, but this is not 
the case. This illustrates one of  the major difficulties of  construction grammar 
induction: modeling a representation abstract enough to cover partially filled 
slots. In this case, the algorithm fails to find an adequately abstract representation 
for the agent, and thus a partially filled slot is not posited. The difficulty of  
finding a sufficiently general partially filled slot on the edges of the construction 
is that a large number of  false positives are possible (e.g., the danger of  adding 
unnecessary generalized slots to many constructions). 
 (19)  a.  [Noun] + [Past-Participle] + “by”
 b.  software developed by
 c.  information given by
 d.  article written by
 e.  training provided by 

An important attribute of  construction grammars is that fully schematic 
and fully item-specific representations can co-exist. In other words, an abstract 
argument structure construction (e.g., the ditransitive) co-exists with separately 
represented instances of  that construction (e.g., the idioms give me a hand and 
give me a break). One advantage of  this model, then, is that such overlapping 
constructions of  varying abstractness can be captured, so long as each instance 
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itself  qualifies as a construction. The point, then, is that this paradigm of  
grammar induction is not limited a priori to a single level of  representation or 
a single level of  abstraction.

A final question here is whether these are posited to be psycholinguistically 
valid constructions. In other words, are the elements of  this grammar 
supposed to be those present in the mind of  a speaker of  this language? The 
goal here is somewhat more indirect: to automatically produce the inventory 
of  constructions necessary to describe the corpus. The question is whether 
the algorithm can learn adequate grammatical representations from the 
corpus, not that it necessarily learns exactly the same set as a human in exactly 
the same manner. This indirectness is a result of  the fact that the corpus 
under study contains language produced by a large number of  individuals. 
If  the algorithm were run entirely on a corpus of  language produced by a 
single individual we could consider more direct psycholinguistic tests of  the 
produced grammar. However, a language such as ‘English’ or even ‘British 
English’ is an abstraction over a large number of  individuals rather than a 
representation of  the psycholinguistic reality of  language in any single 
individual. Thus, in representing an abstraction in this manner the present 
algorithm is subject to all the same criticisms as that abstraction in not being 
specific to the psycholinguistic state of  individuals.

3.2.  d i str ibut ions  of  feature  values

The model uses fourteen measures of  association for multi-unit potential 
constructions. Given that these measures are novel implementations for 
dealing with an open problem, it is important to consider the relative 
agreement and distributions of  these measures. For the evaluation below, the 
measures are examined across the first 20 million sentences in the corpus, 
and phrase types (e.g., NP) are not considered, for the sake of  simplicity. The 
descriptive statistics for the measures are calculated using only the subset of  
sequences which are more than two units in length (a total of  74,522). This is 
because the multi-unit measures have a zero value for sequences of  only two 
units. Further, no threshold for pairwise association strength is used, unlike 
for the measures used in the model itself. This is because the threshold 
effectively gives multi-unit sequences a zero for the summed ΔP score if  any 
pairwise association falls below a set parameter, and this changes the 
distributions by enlarging the number of  zero values. Thus, this evaluation is 
about comparing the measures on multi-unit sequences without a threshold 
in order to get a more accurate view of  the measures themselves, rather than 
evaluating the measures as used for reducing candidates in the overall model.

First, the agreement between each of  the measures is shown in Figure 2 
and Figure 3, calculated using Pearson’s R. The question is whether the 
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measures ultimately represent the same relationships and thus are redundant, 
or whether they reveal unique aspects of  association. These figures show the 
scatterplots of  each pair on the right-hand side, a histogram of  each measure’s 
density distribution in the middle, and the correlation coefficient on the left-
hand side. Each of  the correlations is significant, not surprisingly given the 
large number of  instances.

In both directions the Summed and Mean measures are closely related; the 
scatterplot shows three distinct degrees of  correlation, with the correlation 
diminishing as the sequences in question grow longer (i.e., the sum and the 
mean are very similar for shorter sequences, which is expected). Thus, 
this relationship decreases as candidates grow longer. The two methods for 
comparing subsequences within a candidate, the Divided and Reduced 
measures, show little correlation between their respective Beginning and End 

Fig. 2. Left-to-Right Correlations.
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variants in both directions (the highest such correlation being 0.230 for the 
right-to-left Divided measures). The relationship between the Divided and 
Reduced measures is quite high at the beginning of  the sequences (i.e., at the 
Beginning going left-to-right and at the End going right-to-left), exceeding 
0.800 in both cases. However, at the end of  the sequences the correlation 
is much lower (never higher than 0.370). Thus, these variations on the 
subsequence measure do provide unique information in many but not all 
situations. For all of  these measures, it seems to be the case that they grow 
less correlated as the sequences in question grow longer. An interesting 
further question, outside the scope of  the present paper, is to what extent 
sequence length influences the distribution and correlation of  association 
measures, and what alterations can be made to reduce this influence for shorter 
sequences.

Fig. 3. Right-to-Left Correlations.
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The next question is whether the measures make adequate distinctions 
between potential multi-unit constructions. We approach this question by 
looking at measures of  the distribution of  each of  these features, in Table 9, 
calculated as above across only multi-unit potential candidates in the first 
20 million sentences in the corpus. The measures show what we would expect: 
wide ranges of values with means close to zero. This is because most candidates 
do not show association. Those which do show internal association are outliers, 
in a sense, and this is what allows them to be identified as actual constructions. 
The two measures which do not show means close to zero are the summed 
values, in both directions. This is a result of  the fact that only multi-unit 
candidates are considered here, so that all instances have at least three units. 
This, of course, influences the mean value but is necessary to allow this measure 
to be compared directly with the others.

3.3.  degree  of  c overage

The ideal construction grammar has at least one construction to account for 
every linguistic expression in a corpus. In other words, because all linguistic 
expressions are hypothesized to be formed from an underlying grammatical 
construction, it should be the case that all attested linguistic expressions can 
be described by at least one construction in the predicted grammar. Thus, 
the degree of  coverage of  a grammar is an important criteria for evaluating 
a learned construction grammar and, following from this, for evaluating the 
learning algorithm itself. The measure of  coverage is calculated as in (20), 
in which LE stands for Linguistic Expressions (operationalized in this 
case as sentences), with c standing for the subset covered by a hypothesized 
construction and n for the subset not covered in this way. Thus, this measure 
is simply the percentage of  the test corpus represented by the learned 
grammar, using sentences as the unit of  analysis 
 (20)  LEc / LEc +LEn 

This evaluation is conducted by applying the grammar learned from the full 
corpus to an unseen portion of  the ukWac corpus in order to determine how 
much of  the unseen corpus is described by the learned grammar. The test set 
consists of  1.5 million sentences, evaluated in subsets of  100k sentences each, 
allowing us to evaluate fluctuations in the adequacy of  the grammar across 
different test sets. There is a balance to be reached here between predicting 
a small set of  generalized and highly associated constructions, on the one 
hand, and predicting a grammar that achieves full coverage on the test sets, 
on the other. Given this balance, we compare three learned grammars: the 
‘full pruning grammar’ (2,309 constructions) contains only those constructions 
which pass all the pruning stages discussed above; the ‘no pairwise grammar’ 
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(26,223 constructions) applies the directional and divided ΔP and horizontal 
pruning stages, but does not eliminate candidates using the pairwise threshold. 
Finally, the ‘no pruning grammar’ (101,503 constructions) does not apply 
any of  the pruning rules (except, of  course, the construction frequency 
threshold). This allows us to see how expanding the grammar increases the 
overall coverage on these test sets.

The results are shown in Figure 4, with percentage of  coverage across the 
subsets of  the test corpus shown for each grammar. First, the coverage is 
consistent across both grammars and test sets. In other words, each grammar 
has very similar coverage across different test sets, showing consistency in 
the adequacy of  the grammar on unseen linguistic expressions. Further, the 
difference between the models is maintained across test sets. For example, both 
the third and twelfth sets show a dip in coverage that is observed with all 
models. This shows that the coverage tests are stable measures of  the quality of  
a grammar’s coverage (regardless of  the size or generalizability of  the grammar).

The coverage experiment shows that larger grammars (e.g., without pruning) 
have more coverage. However, this increased coverage is not proportional to 
the size of  the grammar. Thus, the fully reduced grammar is only 2% of  the 
size of  the full grammar and yet maintains coverage between 5% and 10% 
lower than the much larger grammar. Thus, while some important elements 
of  the grammar have been discarded, the association measure model allows 
a much smaller grammar to find most of  the optimum constructions. This is 
significant because the problem is to maintain high coverage on unseen test 
sets without simply positing a very large grammar: the small pruned grammar 
contains few false positives, even if  it misses some true positives.

The selection or learning of  the grammatical constructions from the total 
hypothesis space involves a combination of  association measures (to model 

table  9. Distribution measures for each feature

Feature Mean Std. Dev. Range

Frequency 37,527 69,460 12,600–3,681,400
Summed (LR) 0.317 0.188 0.000–1.201
Summed (RL) 0.334 0.204 –0.004–1.544
Mean (LR) 0.105 0.051 0.000–0.524
Mean (RL) 0.112 0.057 –0.002–0.635
Beginning Reduced (LR) 0.105 0.094 –0.016–0.792
Beginning Reduced (RL) 0.110 0.103 –0.018–0.895
End Reduced (LR) 0.106 0.092 –0.016–0.824
End Reduced (RL) 0.111 0.103 –0.018–0.895
Directional Scalar −0.012 0.152 –1.025–0.946
Beginning Divided (LR) 0.163 0.155 –0.016–0.957
Beginning Divided (RL) 0.006 0.021 –0.005–0.857
End Divided (LR) 0.005 0.016 –0.003–0.601
End Divided (RL) 0.178 0.177 –0.019–0.981
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which sequences are more cognitively entrenched than others) and pruning 
rules (to use those association measures to reduce the number of  predicted 
constructions). We can thus use the coverage experiment to show which 
association measures were most useful for producing a small grammar 
with high coverage. With only frequency measures, the grammar consists 
of  101,503 sequences which could potentially be a grammatical representation; 
this is reduced to 26,223 sequences with all pruning except the pairwise 
threshold (e.g., the reduced and directional measures). This is further 
reduced to 2,309 with the pairwise threshold. While coverage is reduced 
with each reduction in the grammar, these reductions are minimal. A further 
examination of  the amount of  influence of  each measure individually (e.g., 
comparing performance with different subsets of  association measures) is 
beyond the scope of  this paper, in large part because such tests would be 
much more meaningful in a multi-language context: Which measures 
perform best for which language? The question here is whether these 
measures can be used to produce a meaningful grammatical representation 
in the first place.

While the model can always be improved, these coverage results show 
that observed frequencies can be used to model the productive elements of  a 
grammar and distinguish them from possible but not productive elements. 
In other words, the frequency threshold has reduced the enormous number 
of  potential constructions to a smaller but still large number of  candidates, 
and the association strength measures have reduced this to a small grammar 
while maintaining relatively high coverage across sets of  unseen linguistic 
expressions.

Fig. 4. Degree of  coverage across test sets of  100k sentences.
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3.4.  stab il ity  acr oss  c orpus  s i zes

Given the grammar induction algorithm, how much variation is there in the 
learned or predicted grammars given the size of the corpus used for evaluation? 
Another way of  looking at this question is how large a corpus needs to be 
before the algorithm converges onto a stable output grammar. This question 
is approached by running the algorithm on increasingly large subsets of  the 
corpus and determining, for each subset, how much its grammar agrees with 
the final grammar. All non-frequency thresholds are held constant across 
corpus sizes, while the frequency thresholds are scaled relative to the size 
of  the corpus. The results are shown in Table 10, along with the number 
of  constructions in the grammar for each subset (note that the number of  
constructions in the full grammar here differs from the other evaluations as a 
result of  scaling the frequency thresholds; this scaling was performed in 
order to reduce the influence of  absolute frequency on the results).

Agreement is calculated using precision: given the grammar learned from 
a subset of  the corpus, how many of  the identified constructions are present 
in the full, gold-standard grammar? This measure is quantified as in (21), 
where FP stands for false positives (those elements in the subset grammar not 
present in the full grammar) and TP stands for true positives (those elements 
in both grammars). 
 (21)  Precision = TPsubset / (TPsubset + FPsubset) 

The results in Table 10 show that stability increases as more data is given to 
the algorithm. For example, the first sizable increase in agreement is between 
10 and 20 million sentences. It is interesting that, even though the subsets 
have scaled frequency thresholds, the number of  candidates decreases as the 
amount of  data increases. This is because the model is more clearly able to 
separate the grammatical representations from noise as the dataset becomes 
larger. Given the cap on this experiment, the question of  how much data is 
required for convergence is left open. A further question is whether frequency 
or association measures have more impact on the amount of  data required 
for convergence. That is a question for further work; the point here is that 
agreement increases as more data is available, but that convergence is not yet 
reached.

3.5.  stab il ity  acr oss  learners

An argument for innate structure, advanced by Lidz and Williams (2009), 
is that learners produce very similar grammars for a language even though 
subject to different observed input. This results, they argue, from innate 
constraints. Here we turn this into an empirical question: To what degree do 
instances of  the same grammar induction algorithm (i.e., language learners) 
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agree in their learned grammars when provided mutually exclusive subsets 
of  the same size? In other words, how much agreement is there when the 
algorithm is run on different datasets? If  the output grammars largely agree, 
this is evidence that such innate constraints are not, in fact, required to 
explain this stability in learned grammars. Figure 5 shows the agreement 
between the grammars produced on four distinct subsets of  the corpus, each 
containing 10 million sentences. Agreement is calculated as the number of  
shared constructions given the total number of  constructions, comparing all 
subsets to subset 1 for the sake of  visualization.

The agreement ranges from the low- to mid-70s. This is quite strong, 
especially considering the measures of  stability by size discussed above 
(i.e., it would likely be higher if  the size of  each subset was increased to 20 or 
40 million sentences). This means that the algorithm, given entirely different 
datasets, produced grammars sharing over 70% of  their constructions. While 
by no means perfect, this shows that the grammar induction algorithm is not 
burdened with a poverty-of-the-stimulus that requires innate structure to 
produce consistent output across learners. In other words, the hypothesis of  
innate structure is not required to explain relatively consistent grammars 
from different language learners.

3.6.  further  work

As always in projects of  this sort, further work is necessary to explore issues 
raised in the course of  these experiments. First, the dependencies should 
be reduced as much as possible to maintain a fully unsupervised pipeline. 
This has, in fact, been accomplished with additional algorithms for forming 
distributional semantic dictionaries and for learning phrase structure rules 
from a part-of-speech parsed corpus. Such work only strengthens the evidence 
already presented in this paper. A further important task is to evaluate these 
and other multi-unit association measures and their influence on the final 
output construction grammar. Such an evaluation ultimately requires a 
multi-language and multi-genre experimental design, which renders it outside 
the scope of  the present paper.

table  10. Grammar agreement across corpus sizes

Corpus Size (Sents) Total Constructions Precision

1 million 2,532 0.2890
5 million 2,167 0.2644
10 million 1,439 0.2966
20 million 1,201 0.3780
40 million 911 n/a
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4.  Conclusions From evaluations
Grammar induction algorithms, much like language learners, observe very 
large numbers of  linguistic expressions and must generalize from these 
observations to a relatively small grammar that has the ability to produce 
all such observations. The problem is that there are a very large number 
of  possible grammatical representations for these observations, unless the 
space of  possible grammatical representations is reduced by positing innate 
structures/rules/constraints that eliminate many candidates a priori. This 
paper has shown that the construction grammar induction algorithm presented 
here can learn a relatively small grammar while (i) maintaining relatively high 
coverage on unseen linguistic expressions and (ii) maintaining relatively high 
stability across learners.

The results are by no means perfect and continued technical and theoretical 
improvements are possible and, in fact, under way. However, these results are 
sufficient to provide empirical evidence against the poverty-of-the-stimulus 
line of  reasoning for Universal Grammar. This source of  evidence, further, 
is unique in providing large-scale corpus-based evidence for a question which 
in the past has been approached with small-scale intuition-based evidence. 
In other words, past work has simply posited that such grammar learning is not 
possible without constraining innate structures/rules/constraints (e.g., Lidz & 
Williams, 2009). This paper, on the other hand, goes beyond simple positing 
and provides empirical evidence that such learning is, in principle, possible.

The question here is whether linguistic structure (specifically, a construction 
grammar) can be learned from observed language without existing structure 
or knowledge about the language. In other words, is the grammar wholly 

Fig. 5. Stability across simulated learners.
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learned or is the grammar in part pre-existing? While this algorithm has 
dependencies (e.g., part-of-speech tagging), this is a practical issue in the 
sense that data-driven part-of-speech tagging does not need to be reinvented 
when its current state-of-the-art performs quite well. What this means is that 
grammatical representations can be learned from observed frequencies. 
While there are always technical improvements to be made, the current 
algorithm shows that the learning of  grammatical structures in this way is 
possible and in this sense provides converging evidence with many other 
empirical sources that have been collected within the Cognitive Linguistics 
paradigm.
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APPENDIX
Further  examples

Construction: [Singular-Noun] + <so c ial  act / state> + [Verb] + [Past-Participle]

Examples: limit people are granted
approach should be used
option should be included
team should be asked
assessment should be kept
program must be recommended
notice must be given
bar should be pressed
NP should be accepted
information should be published

Construction: [Singular-Noun] + [Preposition] + [Number] + <t ime>

Examples: delivery within 2 weeks
train within one hour
format within one year
module over six months
increase over ten years
target within three years
mark within six months
change over five years
notice within 7 days

Construction: “be” + [Past-Participle] + “out”

Examples: was grown out
was sent out
was carried out
was made out
was taken out
was worked out
was given out
was forced out
was set out
was delivered out
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Construction: <movement> + NP + <t ime>

Examples: here NP time
put NP time
train NP day
set NP time
come NP year
go NP night
course NP day
through NP now
stay NP year
follow NP day

Construction: [Comparative-Adj] + [Singular-Noun]

Examples: further information
more power
great power
more variety
great effort
new knowledge
good standard
large area
high quality
long life

Construction: [Singular-Noun] + <money>

Examples: purchase price
NP price
building costs
housing prices
housing market
energy bill
government fund
development company
family business
capital investment
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