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Probing strongly coupled plasma

As discussed in Sections 2.3 and 2.4, two of the most informative probes of strongly
coupled plasma that are available in heavy ion collisions are the rare highly ener-
getic partons and quarkonium mesons produced in these collisions. In this chapter
and in Chapter 9, we review results obtained by employing the AdS/CFT corre-
spondence that are shedding light on these classes of phenomena. In Sections 8.1
and 8.2, we describe how a test quark of mass M moving through the strongly
coupled N = 4 SYM plasma loses energy and picks up transverse momentum.
In Section 8.3 we consider how the strongly coupled plasma responds to the hard
parton plowing through it; that is, we describe the excitations of the medium which
result. In Section 8.4, we discuss calculations of the stopping distance of a light
quark moving through the strongly coupled plasma. Throughout Sections 8.1, 8.2,
8.3 and 8.4 we assume that all aspects of the phenomena associated with an ener-
getic parton moving through the plasma are strongly coupled. In Section 8.5, we
present an alternative approach in which we assume that QCD is weakly coupled
at the energy and momentum scales that characterize gluons radiated from the
energetic parton, while the medium through which the energetic parton and the
radiated gluons propagate is strongly coupled. In this case, one uses the AdS/CFT
correspondence only in the calculation of those properties of the strongly coupled
plasma that arise in the calculation of radiative parton energy loss and transverse
momentum broadening. In Section 8.6, we describe a calculation of synchrotron
radiation in strongly coupled N = 4 SYM theory that allows the construction of a
narrowly collimated beam of gluons (and adjoint scalars) which we can then watch
as it is quenched by the strongly coupled plasma. This opens a new path toward
analyzing jet quenching.

In Section 8.7, we review those insights into the physics of quarkonium mesons
in heavy ion collisions that have been obtained via AdS/CFT calculations of
the temperature-dependent screening of the potential between a heavy quark
and antiquark. To go farther, we need to introduce a holographic description of
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262 Probing strongly coupled plasma

quarkonium-like mesons themselves. In Chapter 9, we first present this construc-
tion and then describe the insights that it has yielded. In addition to shedding
light upon the physics of quarkonia in hot matter that we have introduced in Sec-
tion 2.4, as we describe in Section 9.6.2 these calculations have also resulted
in the discovery of a new process by which a hard parton propagating through
a strongly coupled plasma can lose energy: Cherenkov radiation of quarkonium
mesons.

8.1 Parton energy loss via a drag on heavy quarks

When a heavy quark moves through the strongly coupled plasma of a conformal
theory, it feels a drag force and consequently loses energy [452, 394]. We shall
review the original calculation of this drag force in N = 4 SYM theory [452, 394];
it has subsequently been done in many other gauge theories with dual gravitational
descriptions [453, 224, 225, 610, 645, 772, 395, 418, 468, 144, 161]. In calcula-
tions of the drag on heavy quarks, one determines the energy per unit time needed
to maintain the forced motion of the quark in the plasma. In these calculations one
regards the quark as an external source moving at fixed velocity, v, and one per-
forms thermal averages over the medium. This picture can be justified if the mass
of the quark is assumed to be much larger than the typical momentum scale of the
medium (temperature), and if the motion of the quark is studied in a time window
that is large compared with the relaxation scale of the medium but short compared
to the time it takes the quark to change its trajectory. In this limit the heavy quark
is described by a Wilson line along the worldline of the quark.

The dual description of the Wilson line is given by a classical string hanging
down from the quark on the boundary of AdS. Since we are considering a single
quark, the other end of the string hangs down into the bulk of the AdS space. We
consider the stationary situation, in which the quark has been moving at a fixed
velocity for a long time, meaning that the shape of the string trailing down and
behind it is no longer changing with time. For concreteness, we will assume that
the quark moves in the x1 direction, and we choose to parametrize the string world
sheet by τ = t and σ = z. By symmetry, we can set two of the perpendicular coor-
dinates, x2 and x3 to a constant. The problem of finding the string profile reduces,
then, to finding a function

x1(τ, σ ) , (8.1)

that fulfills the string equations of motion. The string solution must also satisfy the
boundary condition

x1(t, z → 0) = vt . (8.2)
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8.1 Parton energy loss via a drag on heavy quarks 263

Since we are interested in the stationary situation, the string solution takes the form

x1(t, z) = vt + ζ(z) , (8.3)

with ζ(z → 0) = 0. We work in an N = 4 plasma, whose dual gravitational
description is the AdS black hole with the metric Gμν given in (5.34). The induced
metric on the string worldsheet gαβ = Gμν∂αxμ∂βxν is then given by

ds2
ws = R2

z2

(
− (

f (z) − v2
)

dτ 2 +
(

1

f (z)
+ ζ ′2(z)

)
dσ 2

+v ζ ′(z)v (dτdσ + dσdτ)

)
, (8.4)

where, as before, f (z) = 1 − z4/z4
0 and ζ ′(z) denotes differentiation with respect

to z.
The Nambu–Goto action for this string reads

S = − R2

2πα′T
∫

dz

z2

√
f (z) − v2 + f (z)2ζ ′2(z)

f (z)
= T

∫
dzL , (8.5)

with T the total time traveled by the quark. Extremizing this action yields the
equations of motion that must be satisfied by ζ(z). The action (8.5) has a constant
of motion given by the canonical momentum

�1
z = ∂L

∂x ′
1

= − R2

2πα′
1

z2

f (z)3/2ζ ′(z)√
f (z) − v2 + f (z)2ζ ′2(z)

, (8.6)

which coincides with the longitudinal momentum flux in the z direction. In terms
of �1

z , the equation of motion for ζ obtained from (8.5) takes the form

ζ ′2(z) =
(

2πα′

R2
�1

z

)2 z4

f (z)2

f (z) − v2

f (z) − (
2πα′

R2 �1
z

)2
z4

. (8.7)

The value of �1
z can be fixed by inspection of this equation, as follows: both the

numerator and the denominator of (8.7) are positive at the boundary z = 0 and
negative at the horizon z = z0; since ζ ′(z) is real, both the numerator and the
denominator must change sign at the same z; this is only the case if

�1
z = ± R2

2πα′z2
0

γ v , (8.8)

with γ = 1/
√

1 − v2 the Lorentz γ factor. Thus, stationary solutions can only
be found for these values of the momentum flux. (Or, for �1

z = 0, for which
ξ =constant. This solution has real action only for v = 0.)
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vv

Figure 8.1 String solutions of Eq. (8.8). The physical (unphysical) solution in
which momentum flows into (out of) the horizon and the string trails behind
(curves ahead) of the quark at the boundary is plotted in the left (right) panel.
Figure from Ref. [452].

The two solutions (8.8) correspond to different choices of boundary conditions
at the horizon. Following Refs. [452, 394], we choose the solution for which
the momentum flux along the string world sheet flows from the boundary into the
horizon, corresponding to the physical case in which the energy provided by the
external agent that is pulling the quark through the plasma at constant speed is
dissipated into the medium. This solution to (8.7) is given by

ζ(z) = −v z0

2

(
arctanh

(
z

z0

)
− arctan

(
z

z0

))
. (8.9)

As illustrated in Fig. 8.1, this solution describes a string that trails behind the
moving quark as it hangs down from it into the bulk spacetime.

The momentum flux flowing down from the boundary, along the string world
sheet (8.9), and towards the horizon determines the amount of momentum lost
by the quark in its propagation through the plasma. In terms of the field theory
variables,

dp

dt
= −�1

z = −πT 2
√
λ

2
γ v . (8.10)

Note, however, that in the stationary situation we have described, there is by con-
struction no change in the actual momentum of the quark at the boundary; instead,
in order to keep the quark moving with constant speed v against the force (8.10)
there must be some external agent pushing the quark through the strongly coupled
plasma. This force can be viewed as due to a constant electric field acting on the
string endpoint, with the magnitude of the field given by

E = πT 2
√
λ

2
γ v . (8.11)

The physical set-up described by the string (8.9) is thus that of forced motion of the
quark through the plasma at constant speed in the presence of a constant electric
field. The external force on the quark balances the backward drag force (8.10) on
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8.1 Parton energy loss via a drag on heavy quarks 265

the quark exerted by the medium through which it is moving. To make it explicit
that the medium exerts a drag force, we can rewrite (8.10) as

dp

dt
= −ηD p , (8.12)

with p = Mγ v the relativistic expression of the momentum of the quark and M
the mass of the heavy particle. The drag coefficient is then

ηD = π
√
λT 2

2M
. (8.13)

For test quarks with M → ∞, as in the derivation above, this result is valid for
motion with arbitrarily relativistic speeds v. It is remarkable that the energy loss
of a heavy quark moving through the quark–gluon plasma with constant speed is
described so simply, as due to a drag force. In contrast, in either a weakly coupled
plasma [628] or a strongly coupled plasma that is not conformal [585], dp/dt is
not proportional to p even at low velocities.

We shall see in Section 8.2 that a heavy quark moving through the strongly
coupled plasma of N = 4 SYM theory experiences transverse and longitudinal
momentum broadening, in addition to losing energy via the drag that we have ana-
lyzed above. We shall review the implications of the understanding of how the
presence of the strongly coupled plasma affects the motion of heavy quarks for
heavy ion collision phenomenology at the end of Section 8.2.

8.1.1 Regime of validity of the drag calculation

In the derivation of the drag force above, we considered a test quark with M → ∞.
The result is, however, valid for quarks with finite mass M , as long as M is not too
small. As we now show, the criterion that must be satisfied by M depends on the
velocity of the quark v. The closer v is to 1, the larger M must be in order for
the energy loss of the quark to be correctly described via the drag force calculated
above. In deriving the regime of validity of the drag calculation, we shall assume
for simplicity that we are interested in large enough γ = 1/

√
1 − v2 that the M

above which the calculation is valid satisfies M � √
λT . We will understand the

need for this condition in Chapter 9.
The introduction of quarks with finite mass M in the fundamental representation

of the gauge group corresponds in the dual gravitational description to the intro-
duction of D7-branes [513], as we have reviewed in Section 5.5 and as we will
further pursue in Chapter 9. The D7-brane extends from the boundary at z = 0
down to some zq , related to the mass of the quarks it describes by
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266 Probing strongly coupled plasma

M =
√
λ

2π zq
, (8.14)

a result that we shall explain in Section 9.1. The physical reason that the calculation
of the drag force breaks down if M is too small or v is too large is that if the
electric field E required to keep the quark moving at constant speed v gets too
large, one gets copious production of pairs of quarks and antiquarks with mass
M , and the picture of dragging a single heavy quark through the medium breaks
down completely [253]. The parametric dependence of the critical field Ec at which
pair production becomes copious can be estimated by inspection of how the Dirac–
Born–Infeld action for the D7-brane depends on E , namely

SDB I ∼
√

1 −
(

2πα′

R2
E z2

q

)2

. (8.15)

The critical maximum field strength that the D7-brane can support is the Ec at
which this action vanishes. This yields a criterion for the validity of the drag
calculation, namely that E must be less than of order

Ec = 2πM2

√
λ

. (8.16)

This maximum value of the electric field implies a maximum value of γ up to
which the drag calculation can be applied for quarks with some finite mass M .
From Eq. (8.11) and Eq. (8.16), this criterion is

γ v <

(
2M√
λT

)2

. (8.17)

We shall assume that M � √
λT , meaning that in (8.17) we can take γ v � γ . And,

the estimate is only parametric, so the factor of two is not to be taken seriously.
Thus, the result to take away is that the drag calculation is valid as long as

γ �
(

M√
λT

)2

. (8.18)

The argument in terms of pair production for the limit (8.18) on the quark veloc-
ity gives a nice physical understanding for its origin, but this limit arises in a
variety of other ways. For example, at (8.18) the velocity of the quark v becomes
equal to the local speed of light in the bulk at z = zq , where the trailing string
joins onto the quark on the D7-brane. For example, at (8.18) the screening length
Ls (described below in Section 8.7) at which the potential between a quark and
antiquark is screened becomes as short as the Compton wavelength of a quark
of mass M , meaning that the calculation of Section 8.7 is also valid only in the
regime (8.18) [584].
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Yet further understanding of the meaning of the limit (8.18) can be gained by
asking the question of what happens if the electric field is turned off, and the quark
moving with speed v begins to decelerate due to the drag force on it. We would
like to be able, at least initially, to calculate the energy loss of this now decelerating
quark by assuming that this energy loss is due to the drag force, which from (8.10)
means

d E

dt

∣∣∣∣
drag

= −π

2

√
λT 2γ v2 = −π

2

√
λT 2 pv

M
. (8.19)

However, once the quark is decelerating it is natural to expect that, due to its decel-
eration, it radiates and loses energy via this radiation also. The energy lost by a
quark in strongly coupled N = 4 SYM theory moving in vacuum along a trajec-
tory with arbitrary acceleration has been calculated by Mikhailov [618].1 For the
case of a linear trajectory with deceleration a, his result takes the form

d E

dt

∣∣∣∣
vacuum radiation

= −
√
λ

2π
a2γ 6 = −

√
λ

2π

1

M2

(
dp

dt

)2

. (8.20)

At least initially, dp/dt will be that due to the drag force, namely (8.10). We now
see that the condition that d E/dt due to the vacuum radiation (8.20) caused by the
drag-induced deceleration (8.10) be less than d E/dt due to the drag itself (8.19)
simplifies considerably and becomes

γ <

(
2M√
λT

)2

, (8.21)

the same criterion that we have seen before. This gives further physical intuition
into the criterion for the validity of the drag calculation and at the same time
demonstrates that this calculation cannot be used in the regime in which energy
loss due to deceleration-induced radiation becomes dominant.

Motivated by the above considerations, the authors of Ref. [346] considered the
(academic) case of a test quark moving in a circle of radius L with constant angular
frequency ω. They showed that in this circumstance, d E/dt is given by (8.19), as if
due to drag with no radiation, as long as ω2 � (πT )2γ 3, with γ the Lorentz factor
for velocity v = Lω. But, for ω2 � (πT )2γ 3, the energy loss of the quark moving
in a circle through the plasma is precisely what it would be in vacuum according
to Mikhailov’s result, which becomes

d E

dt

∣∣∣∣
vacuum radiation

=
√
λ

2π
v2ω2γ 4 =

√
λ

2π
a2γ 4 (8.22)

1 Mikhailov’s general result for an accelerating quark in N = 4 SYM theory at T = 0 is equivalent to Liénard’s
classical result for electromagnetic radiation from an accelerating charge upon replacing the QED coupling
constant 2e2/3 by

√
λ/(2π). Finite mass corrections to Mikhailov’s result have been explored in Ref. [280].
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268 Probing strongly coupled plasma

for circular motion. Note that the radiative energy loss (8.22) is greater than that
due to drag, (8.19), for

ω2 � (πT )2γ 3 , (8.23)

so the result of the calculation is that energy loss is dominated by that due to
acceleration-induced radiation or that due to drag wherever each is larger. (Where
they are comparable in magnitude, the actual energy loss is somewhat less than
their sum [346].) This calculation shows that the calculational method that yields
the result that a quark moving in a straight line with constant speed v in the regime
(8.21) loses energy via drag can yield other results in other circumstances (see
[280, 283, 282] for further examples). In the case of circular motion, the crite-
rion for the validity of the calculational method is again (8.21), but there is a wide
range of parameters for which this criterion and (8.23) are both satisfied [346]. This
means that, for a quark in circular motion, the calculation is reliable in a regime
where energy loss is as if due to radiation in vacuum. As we shall see in Section 8.6,
this opens the possibility to using this calculation as a device with which to make
a beam of strongly coupled gluons and adjoint scalars, whose quenching in the
strongly coupled plasma can then be analyzed.

8.2 Momentum broadening of a heavy quark

In the same regime in which a heavy quark moving through the strongly coupled
plasma of N = 4 SYM theory loses energy via drag, as described in Sec-
tion 8.1, it is also possible to use gauge/gravity duality to calculate the transverse
(and, in fact, longitudinal) momentum broadening induced by motion through the
plasma [252, 396, 253, 254]. We shall review these calculations in this section.
They have been further analyzed [328, 311, 378], and extended to study the effects
of nonconformality [585, 675, 419] and acceleration [808, 227].

For non-relativistic heavy quarks, the result (8.12) is not surprising. The dynam-
ics of this particle is that of Brownian motion which can be described by the
effective equation of motion

dp

dt
= −ηD p + ξ(t) , (8.24)

where ξ(t) is a random force that encodes the interaction of the medium with the
heavy probe and that causes the momentum broadening that we describe in this
section. For heavy quarks, we have seen in (8.13) that ηD is suppressed by mass.
This reflects the obvious fact that the larger the mass of the quark the harder it
is to change the momentum of the particle. Thus, for a heavy quark the typical
time for such a change, 1/ηD, is long compared to any microscopic time scale of
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8.2 Momentum broadening of a heavy quark 269

the medium τmed. This fact allows us to characterize the force distribution by the
two-point correlators

〈
ξT (t)ξT (t

′)
〉 = κT δ(t − t ′) ,〈

ξL(t)ξL(t
′)
〉 = κLδ(t − t ′) , (8.25)

where the subscripts L and T refer to the forces longitudinal and transverse to the
direction of the particle’s motion. Here, we are also assuming an isotropic plasma
which leads to 〈ξL(t)〉 = 〈ξT (t)〉 = 0. In general, the force correlator would have
a nontrivial dependence on the time difference (different from δ(t − t ′)). How-
ever, since the dynamics of the heavy quark happens on time scales that are much
larger than τmed, we can approximate all medium correlations as happening instan-
taneously. It is then easy to see that the coefficient κT (κL) corresponds to the mean
squared transverse (longitudinal) momentum transferred to the heavy quark per
unit time. For example, the transverse momentum broadening is given by

〈
p2

⊥
〉 = 2

∫
dtdt ′ 〈ξT (t)T ξT (t

′)
〉 = 2κTT , (8.26)

where T is the total time duration (which should be smaller than 1/ηD) and where
the 2 is the number of transverse dimensions. It is clear from the correlator that κT

is a property of the medium, independent of any details of the heavy quark probe.
Our goal in this section is to calculate κT and κL . We shall do so first at low velocity,
and then throughout the velocity regime in which the calculation of the drag force
is valid.

Before we begin, we must show that in the limit we are considering the noise
distribution is well characterized by its second moment. Odd number correlators
vanish because of symmetry, so the first higher moment to consider is the fourth
moment of the distribution of the transverse momentum picked up by the heavy
quark moving through the plasma

〈
p4

⊥
〉 = ∫

dt1dt2dt3dt4 〈ξT (t1)ξT (t2)ξT (t3)ξT (t4)〉 . (8.27)

The four-point correlator may be decomposed as

〈ξT (t1)ξT (t2)ξT (t3)ξT (t4)〉 = 〈ξT (t1)ξT (t2)ξT (t3)ξT (t4)〉c (8.28)

+〈ξT (t1)ξT (t2)〉 〈ξT (t3)ξT (t4)〉
+ 〈ξT (t1)ξT (t3)〉 〈ξT (t2)ξT (t4)〉
+ 〈ξT (t1)ξT (t4)〉 〈ξT (t2)ξT (t3)〉 ,

(8.29)
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270 Probing strongly coupled plasma

which is the definition of the connected correlator. Owing to time translational
invariance, the connected correlator is a function

〈ξT (t1)ξT (t2)ξT (t3)ξT (t4)〉c = f (t4 − t1, t3 − t1, t2 − t1) . (8.30)

As before, the correlator has a characteristic scale of the order of the medium scale.
As a consequence, since the expectation value due to the connected part has only
one free integral, we find

〈
p4

⊥
〉 = (

3 (2κT )
2 + O(

τmed

T )
)
T 2 , (8.31)

where the dominant term comes from the disconnected parts in Eq. (8.28). Since
we are interested in times parametrically long compared to τmed, we can neglect the
connected part of the correlator.

8.2.1 κT and κL in the p → 0 limit

The dynamical equations (8.24) together with (8.25) constitute the Langevin
description of heavy quarks in a medium. In the p → 0 limit, there is no distinction
between transverse and longitudinal, meaning that both the fluctuations in (8.25)
must be described by the same correlator with κL = κT ≡ κ . The Langevin equa-
tions (8.24) and (8.25) describe the time evolution of the probability distribution
for the momentum of an ensemble of heavy quarks in a medium. A standard anal-
ysis shows that, independent of the initial probability distribution, after sufficient
time any solution to the Langevin equation yields the probability distribution

P(p, t → ∞) =
(

1

π

ηD

κ

)3/2

exp
{
−p2 ηD

κ

}
, (8.32)

which coincides with the equilibrium (i.e. Boltzmann) momentum distribution for
the heavy quark provided that

ηD = κ

2MT
. (8.33)

This expression is known as the Einstein relation. Thus, the Langevin dynam-
ics of non-relativistic heavy quarks is completely determined by the momentum
broadening κ , and the heavy quarks equilibrate at asymptotic times.

The Einstein relation (8.33) together with the computation of ηD in (8.13) for
strongly coupled N = 4 SYM theory allow us to infer the value of κ for this
strongly coupled conformal plasma, namely

κ = π
√
λT 3 . (8.34)
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The dynamical equation (8.12) that we used in the previous section does not include
the noise term simply because in that section we were describing the change in the
mean heavy quark momentum only.

8.2.2 Direct calculation of the noise term

We would like to have a direct computation of the noise term in the description of a
heavy quark in a strongly coupled gauge theory plasma. There are two motivations
for this: (1) to explicitly check that the Einstein relation (8.33) is fulfilled and (2)
to compute the momentum broadening for moving heavy quarks, which are not in
equilibrium with the plasma and to which the Einstein relation therefore does not
apply. This computation is somewhat technical; the reader interested only in the
results for κT and κL for a moving heavy quark may skip to Section 8.2.3.

We need to express the momentum broadening in terms which are easily com-
puted within the gauge/gravity correspondence. To do so, we prepare a state of
the quark at an initial time t0 which is moving at given velocity v in the plasma.
In quantum mechanics, the state is characterized by a density matrix, which is a
certain distribution of pure states

ρ(t0) =
∑

n

w(n) |n〉 〈n| , (8.35)

where the sum is performed over a complete set of states and the weight w(n) is the
ensemble. For a thermal distribution, the states are eigenstates of the Hamiltonian
and w(n) = exp{−En/T }.

In the problem we are interested in, the density matrix includes not only the
quark degrees of freedom but also the gauge degrees of freedom. However, we start
our discussion using a one-particle system. In this case, the distribution function of
the particle is defined from the density matrix as

f̂ (x, x ′; t0) =
∑

n

w(n) 〈x | n〉 〈n| x ′〉 , (8.36)

where, as usual, 〈x | n〉 is the wave function of the particle in the state |n〉. It is
also common to call f (x, x ′) the density matrix. It is conventional to introduce the
mean and relative coordinates and express the density matrix as

f (X, r; t0) = f̂
(

X + r

2
, X − r

2
; t0

)
, (8.37)

where X = (x + x ′)/2 and r = x − x ′. It is then easy to see that the mean position
and mean momentum of the single particle with a given density matrix are given by
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〈x〉 = tr {ρ(t0) x} =
∫

dxx f̂ (x, x; t0) =
∫

d X X f (X, 0; t0) ,

〈p〉 = tr {ρ(t0) p} =
∫

dx
−i

2
(∂x − ∂x ′) f̂ (x, x ′; t0)

∣∣∣
x ′=x

= −i
∫

d X∂r f (X, r; t0)|r=0 , (8.38)

meaning that r is the conjugate variable to the momentum and the mean squared
momentum of the distribution is〈

p2
〉 = −

∫
d X∂2

r f (X, r; t0)|r=0 , (8.39)

the result from this analysis of the one-particle system that we shall need below.
Returning now to the problem of interest to us, we must consider an ensemble

containing the heavy quark and also the gauge field degrees of freedom. Since
we assume the mass of the quark to be much larger than the temperature, we can
describe the pure states of the system as∣∣A′〉 = Q†

a(x) |A〉 , (8.40)

where |A〉 is a state of the gauge fields only, |A′〉 denotes a state of the heavy quark
plus the gauge fields, and Q†

a(x) is the creation operator (in the Schrödinger pic-
ture) of a heavy quark with color a at position x . Corrections to this expression are
(exponentially) suppressed by T/M . The Heisenberg representation of the operator
Q(x) satisfies the equation of motion

(iu · D − M) Q = 0 , (8.41)

where u is the four-velocity of the quark and D is the covariant derivative with
respect to the gauge fields of the medium. This equation realizes the physi-
cal intuition that the heavy quark trajectory is not modified by the interaction
with the medium, which leads only to a modification of the quark’s phase. (The
expression (8.41) can also be derived from the Dirac equation by performing a
Foldy–Wouthuysen transformation, which in the heavy quark rest frame is given
by Q = exp{γ · D/2M}ψ , where γ = 1/

√
1 − v2.)

The full density matrix of the system, ρ, describes an ensemble of all the degrees
of freedom of the system. Since we are only interested in the effects of the medium
on the momentum of the heavy quark probe, we can define a one-body den-
sity matrix from the full density matrix by integrating over the gauge degrees of
freedom

f (X, r; t0) =
〈
Q†

a

(
X − r

2
;
)

Uab Qb

(
X + r

2

)〉
= Tr

[
ρ Q†

a

(
X − r

2

)
Uab Qb

(
X + r

2

)]
, (8.42)
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where the trace is taken over a complete set of states

∑
A,a

∫
dx Q†

a(x) |A〉 〈A| Qa(x) . (8.43)

Note that the inclusion of the operators in the trace in (8.42) plays the same role as
the projectors |x〉 in (8.36). The gauge link Uab in (8.42) joins the points X + r/2
and X − r/2 to ensure gauge invariance. In the long time limit, the precise path is
not important, and we will assume that Uab is a straight link. To simplify our pre-
sentation, we shall explicitly treat only transverse momentum broadening, which
means taking the separation r to be in a direction perpendicular to the direction of
motion of the heavy quark, r = |r⊥|.

At a later time t , after the heavy quark has propagated through the plasma for a
time t − t0, the one-body density matrix has evolved from (8.42) to

f (X, r⊥; t) = Tr
[
ρ ei H(t−t0)Q†

a

(
X − r⊥

2

)
e−i H(t−t0)

ei H(t−t0)Uab e−i H(t−t0)

ei H(t−t0)Qb

(
X + r⊥

2

)
e−i H(t−t0)

]
, (8.44)

where we have introduced evolution operators to express the result in the Heisen-
berg picture. We then introduce a complete set of states, obtaining

f (X, r⊥; t) =
∫

dx1dx2

∑
A1,A2,A3,A4

ρa1a2[x1, x2; A1, A2]

〈A2| Qa2(x2)Q†
a

(
X − r⊥

2
; t
)

|A3〉
〈A3| Uab(t) |A4〉
〈A4| Qb

(
X + r⊥

2
; t
)

Q†
a1
(x1) |A1〉 , (8.45)

where we have defined

ρa1a2[x1, x2; A1, A2] ≡ 〈A1| Qa1 (x1) ρ Q†
a2
(x2) |A2〉 . (8.46)

The expression (8.45) can be expressed as a path integral. Note that the expres-
sion in the second line of (8.45) is an anti-time-ordered correlator; thus, its path
integral representation involves a time reversal of the usual path integral. Instead
of introducing two separate path integrals corresponding to the second and fourth
lines of (8.45), we introduce the time contour shown in Fig. 8.2 and use this con-
tour to define a single path integral. In this contour the −iε shift is inherited from
the standard iε prescription in field theory. The fields A1 and A2 are the values at
the endpoints of the contour. The one-body density matrix then reads
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X = (t − iε, x0 + v Δt − ivε)Xf = (t0 − iε, x0 − ivε)   

X0 = (t0, x0) X = (t,x0 + v Δt)

t′c

tc

Figure 8.2 Time contour C in the complex time plane for the path integral (8.47).
Here, �t ≡ t − t0 and the iε prescription in time is translated to the longitudinal
coordinate x since the quark trajectory is x = vt . The two-point functions com-
puted from the partition function (8.47) are evaluated at two arbitrary points tC
and t ′C on the contour. Figure from Ref. [253].

f (X, r⊥; t) =
∑
A1,A2

∫
dx1dx2

∫
[DA] DQ DQ†ei

∫
C d4x{LY M +Q†(iu·D−M)Q}

ρa1a2[x1, x2; A1, A2] Uab(t)

Qa2 (x2, t0 − iε) Q†
a

(
X − r⊥

2
, t − iε

)
Qb

(
X + r⊥

2
, t
)

Q†
a1
(x1, t0) . (8.47)

By generalizing the static heavy quark computations in Ref. [611] to nonzero
velocity, standard techniques for fermionic path integrals can be used to do the
path integrals over the heavy quark fields in (8.47). To do so, we must compute
the Green’s function of the quark fields for a fixed configuration of gauge fields,
namely

iG(2, 1) = 〈
TC Qa2 (x2, t2C) Q†

a1
(x1, t1C)

〉
, (8.48)

where tC is the time along the contour and TC denotes the contour ordered product.
Since the quark Lagrangian has only one dynamical spacetime variable, the Green’s
function satisfies

(iu · D − M) iG(2, 1) = iδ3(x2 − x1)δC(t2C − t1C) , (8.49)

which has the solution

iG(2, 1) = e+i Mu·(X2−X1)

∫
C

dtC
γ

θ(tC − t1C) δ
4
C(X2 − X X1

(tC))

×
[

P exp

(
−i

∫ tC

t1C

dt ′
C

γ
uμ Aμ(X X1

(t ′
C))

)]
a2a1

, (8.50)

where Xμ
X1
(tC) = Xμ

1 + uμ(tC − t1C)/γ is the heavy quark worldline that passes
through X1. Carrying out this integration over the quark field and working to
leading order in T/M (which means neglecting the fermionic determinant) yields

f (X, r⊥; t) =
〈
tr
[
ρ
[

X + r⊥
2
, X − r⊥

2
; A1, A2

]
WC

[r⊥
2
,−r⊥

2

]]〉
A
, (8.51)
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(t0,x⊥ + r⊥/2, x0) (t,x⊥ + r⊥/2, x0 + vΔt)

(t,x⊥ − r⊥/2, x0 + vΔt − ivε)(t0 − iε,x⊥ − r⊥/2, x0 − ivε)

ρ°

Figure 8.3 Graphical representation of Eq. (8.51). The Wilson line indicated by
the black line is denoted WC[r⊥/2,−r⊥/2]. This Wilson line is traced with the
initial density matrix, ρo

a1a2
. The horizontal axis is along the time direction and

the vertical axis is along one of the transverse coordinates, x⊥. �t ≡ t −t0. Figure
from Ref. [253].

where the subscript A indicates averaging with respect to the gauge fields, and
where the Wilson line WC

[
r⊥/2,−r⊥/2

]
is defined in Fig. 8.3. We have used the

fact that the Green’s function of Eq. (8.41) is the (contour ordered) Wilson line.
Next, we perform a Taylor expansion of the time-evolved density matrix (8.51)

about r⊥ = 0, obtaining

f (X, r⊥; t) = f (X, 0; t) +
r2
⊥
2

〈
tr

[
∂2

∂r2
⊥
ρ
[

X + r⊥
2
, X − r⊥

2
; A1, A2

]
WC [0]

]〉
A

+
r2
⊥
2
κT�t 〈tr [ρ [X, X; A1, A2] WC [0]]〉A + O(r4

⊥) . (8.52)

The second term in this expression involves only derivatives of the initial density
matrix; thus, as in (8.39) it is the mean transverse momentum squared of the initial
distribution (which may be supposed to be small). In the last term, which scales
with the elapsed time �t , we have defined

κT�t = 1

4

1

〈trρWC[0]〉A

∫
C

dtC dt ′
C

〈
tr ρ[X, X; A1, A2] δ2WC[δy]

δy(tC) δy(t ′
C)

〉
A

, (8.53)

where tC denotes time along the contour depicted in Fig. 8.2, and κT�t is the
mean transverse momentum squared picked up by the heavy quark during the time
�t . We have expressed the transverse derivatives of the Wilson line as functional
derivatives with respect to the path of the Wilson line. The path δy denotes a small
transverse fluctuation δy(t) away from the path X1 = vt .

The contour δy may be split into two pieces, δy1 and δy2, which run along
the time-ordered and anti-time-ordered part of the path. Thus, the fluctuation
calculation defines four correlation functions
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iG11(t, t ′) = 1

〈trρoWC[0, 0]〉A

〈
tr ρo δ2WC[δy1, 0]

δy1(t) δy1(t ′)

〉
A

, (8.54)

iG22(t, t ′) = 1

〈trρoWC[0, 0]〉A

〈
tr ρo δ2WC[0, δy2]

δy1(t) δy2(t ′)

〉
A

, (8.55)

iG12(t, t ′) = 1

〈trρoWC[0, 0]〉A

〈
tr ρo δ2WC[δy1, δy2]

δy1(t) δy2(t ′)

〉
A

, (8.56)

iG21(t, t ′) = 1

〈trρoWC[0, 0]〉A

〈
tr ρo δ2WC[δy2, δy2]

δy1(t ′) δy2(t)

〉
A

. (8.57)

Note that the first two correlators correspond to time-ordered and anti-time-ordered
correlators, while the last two are unordered. We can then divide the integration
over tC and tC ′ in (8.53) into four parts corresponding to the cases where each of tC
and tC ′ is on the upper or lower half of the contour in Fig. 8.2. In the large �t limit
we can then use time translational invariance to cast (8.53) as

κT = lim
ω→0

1

4

∫
dte+iωt [iG11(t, 0) + iG22(t, 0) + iG12(t, 0) + iG21(t, 0)] .

(8.58)
This admittedly rather formal expression for κT is as far as we can go in general.
In Section 8.2.3 we evaluate κT (and κL ) in the strongly coupled plasma of N = 4
SYM theory.

Although our purpose in deriving the expression (8.58) is to use it to analyze
the case v 
= 0, it can be further simplified in the case that v = 0. On the time
scales under consideration, the static quark is in equilibrium with the plasma, and
the Kubo–Martin–Schwinger relation which takes the form

i [G11(ω) + G22(ω) + G12(ω) + G21(ω)] = −4 coth
( ω

2T

)
ImG R(ω) (8.59)

once ε has been allowed to vanish applies [571]. Here, G R is the retarded correlator.
Thus, we find

κT (v = 0) = lim
ω→0

(
−2T

ω

)
Im G R(ω) . (8.60)

If v 
= 0, however, we must evaluate the four correlators in the expression (8.58).

8.2.3 κT and κL for a moving heavy quark

We see from the expression (8.53) that the transverse momentum broadening coef-
ficient κT is extracted by analyzing small fluctuations in the path of the Wilson line
depicted in Fig. 8.3. In the strongly coupled plasma of N = 4 SYM theory, we
can use gauge/gravity duality to evaluate κT starting from (8.53). In the dual grav-
itational description, the small fluctuations in the path of the Wilson line amount
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to perturbing the location on the boundary at which the classical string (whose
unperturbed shape is given by (8.9)) terminates according to

(x1(t, z), 0, 0) → (x1(t, z), y(t, z), 0) . (8.61)

The perturbations of the Wilson line at the boundary yield fluctuations on the string
world sheet dragging behind the quark. Because we wish to calculate κT , in (8.61)
we have only introduced perturbations transverse to the direction of motion of the
quark. We shall quote the result for κL at the end; calculating it requires extending
(8.61) to include perturbations to the function x1(t, z).

In order to analyze fluctuations of the string worldsheet, we begin by casting the
metric induced on the string worldsheet in the absence of any perturbations

ds2
ws = R2

z2

(
− (

f (z) − v2
)

dτ 2 + f̂ (z)

f 2(z)
dσ 2 − v2 z2/z2

0

f (z)
(dτdσ + dσdτ)

)
(8.62)

in a simpler form. In (8.62), we have defined f̂ (z) ≡ 1 − z4/(z4
0γ

2). The induced
metric (8.62) is diagonalized by the change of worldsheet coordinates

t̂ = t√
γ

+ z0

2
√
γ

(
arctan

(
z

z0

)
− arctanh

(
z

z0

)

−√
γ arctan

(√
γ z

z0

)
+ √

γ arctanh

(√
γ z

z0

))
,

ẑ = √
γ z , (8.63)

in terms of which the induced metric takes the simple form

ds2
ws = R2

ẑ2

(
− f (ẑ)dt̂2 + 1

f (ẑ)
dẑ2

)
. (8.64)

Note that this has the same form as the induced metric for the worldsheet hang-
ing below a motionless quark, upon making the replacement (t̂, ẑ) → (t, z). In
particular, the metric (8.64) has a horizon at ẑ = z0, which means that the met-
ric describing the worldsheet of the string trailing behind the moving quark has a
worldsheet horizon at z = zws ≡ z0/

√
γ . For v → 0, the location of the worldsheet

horizon drops down toward the spacetime horizon at z = z0. But, for v → 1, the
worldsheet horizon moves closer and closer to the boundary at z = 0, i.e. towards
the ultraviolet. As at any horizon, the singularity at z = zws (i.e. at ẑ = z0) in (8.64)
is just a coordinate singularity. In the present case, this is manifest since (8.64)
was obtained from (8.62) which is regular at z = zws by a coordinate transforma-
tion (8.63). Nevertheless, the worldsheet horizon has clear physical significance: at
z = zws the local speed of light at this depth in the bulk matches the speed v with
which the quark at the boundary is moving. Furthermore, and of direct relevance
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to us here, because of the worldsheet horizon at z = zws fluctuations of the string
worldsheet at z > zws, below – to the infrared of – the worldsheet horizon, are
causally disconnected from fluctuations at z < zws above the worldsheet horizon
and in particular are causally disconnected from the boundary at z = 0.

The remarkable consequence of the picture that emerges from the above analysis
of the unperturbed string worldsheet trailing behind the quark at the boundary mov-
ing with speed v is that the momentum fluctuations of this quark can be thought
of as due to the Hawking radiation on the string worldsheet, originating from the
worldsheet horizon at z = zws [396, 253]. It is as if the force fluctuations that the
quark in the boundary gauge theory feels are due to the fluctuations of the string
worldsheet to which it is attached, with these fluctuations arising due to the Hawk-
ing radiation originating from the worldsheet horizon. It will therefore prove useful
to calculate the Hawking temperature of the worldsheet horizon, which we denote
Tws. As detailed in Appendix B this can be done in the standard fashion, upon using
a further coordinate transformation to write the metric (8.64) in the vicinity of the
worldsheet horizon in the form ds2

ws = −b2ρ2dt̂2+dρ2 for some constant b, where
the worldsheet horizon is at ρ = 0. Then, it is a standard argument that in order to
avoid having a conical singularity at ρ = 0 in the Euclidean version of this metric,
namely ds2

ws = b2ρ2d θ̂2 + dρ2, bθ̂ must be periodic with period 2π . The period-
icity of the variable θ̂ , namely 2π/b, is 1/T . Since at the boundary, where z = 0,
Eq. (8.63) becomes t̂ = t/

√
γ , this argument yields

Tws = T√
γ

, (8.65)

a result that we shall use below.
We have gained significant physical intuition by analyzing the unperturbed string

world sheet, but in order to obtain a quantitative result for κT we must introduce the
transverse fluctuations y(t, z) defined in (8.61) explicitly. We write the Nambu–
Goto action for the string worldsheet with y(t, z) 
= 0, and expand it to second
order in y, obtaining the zeroth order action (8.5) plus a second order contribution

S(2)
T [y] = γ R2

2πα′

∫
dt̂d ẑ

ẑ2

1

2

(
ẏ2

f (ẑ)
− f (ẑ)y′2

)
, (8.66)

where ˙ and ′ represent differentiation with respect to t̂ and ẑ respectively. This
action is conveniently expressed as

S(2)
T [y] = − γ R2

2πα′

∫
dt̂d ẑ

ẑ2

1

2

√−hhab∂a y∂b y, (8.67)

with hab the induced metric on the unperturbed worldsheet that we have analyzed
above. The existence of the worldsheet horizon means that we are only interested
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in solutions to the equations of motion for the transverse fluctuations y obtained
from (8.67) that satisfy infalling boundary conditions at the worldsheet horizon.
This constraint in turn implies a relation among the correlators analogous to those
in (8.58) that describe the transverse fluctuations of the worldsheet, and in fact the
relation turns out to be analogous to the Kubo–Martin–Schwinger relation (8.59)
among the gauge theory correlators [253]. Consequently, for a quark moving with
velocity v the transverse momentum broadening coefficient κT (v) is given by the
same expression (8.60) that is valid at v = 0 with T replaced by the worldsheet
temperature Tws of (8.65) [396, 253]. That is,

κT (v) = lim
ω→0

(
− 2 Tws

ω
ImĜ R(ω)

)
, (8.68)

where Ĝ R denotes the retarded correlator at the worldsheet horizon. The fact that
in the strongly coupled theory there is a KMS-like relation at v 
= 0 after all is a
non-trivial consequence of the development of the worldsheet horizon.

The computation of the retarded correlator follows the general procedure of
Ref. [747] described in Section 5.3. Since the action (8.66) is a function of t̂ which
is given by t/

√
γ at the boundary, the retarded correlator is a function of ω̂ = √

γω

(with ω the frequency of oscillations at the boundary). To avoid this complication,
and in particular in order to be able to apply the general results for Im G R that we
derived in Section 6.2, it is convenient to define

t̃ = √
γ t̂ , (8.69)

so that t̃ = t at the boundary. We now wish to apply the general expressions (A.10),
(6.17) and (6.18). In order to do so, we identify the world sheet metric hab and the
field y in the action (8.67) with the metric gM N and the field φ in the action (6.16),
meaning that in our problem the function q in (6.16) takes the specific form

1

q(z)
= γ R2

2πα′
1

ẑ2
=

√
λ

2π z2
. (8.70)

Furthermore, for the two-dimensional worldsheet metric we have −h = ht̃ t̃ hzz ,
meaning that from the general result (6.25) we find

− lim
ω→0

Im Ĝ R(ω)

ω
= 1

q(zws)
= γ

√
λ

2π
(πT )2 , (8.71)

and thus

κT = √
λγπT 3 , (8.72)

which is our final result for the transverse momentum broadening coefficient.
The analysis of longitudinal fluctuations and the extraction of κL proceed analo-

gously to the analysis we have just presented, except that in (8.61) we introduce a
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perturbation to the function x1 instead of a transverse perturbation y. At quadratic
order, there is no coupling between the transverse and longitudinal perturbations.
Remarkably, the action for longitudinal fluctuations of the string is the same as that
for transverse fluctuations, Eq. (8.66) up to a constant:

S(2)
L [x] = γ 2S(2)

T [x] , (8.73)

with γ the Lorentz factor. Following the analogous derivation through, we con-
clude that

κL = γ 2κT = γ 5/2
√
λπT 3 . (8.74)

This result shows that κL depends very strongly on the velocity of the heavy quark.
Indeed, κL grows faster with increasing velocity than the energy squared of the
heavy quark, γ 2 M2. Thus, the longitudinal momentum acquired by a quark mov-
ing through a region of strongly coupled N = 4 SYM plasma of finite extent does
not become a negligible fraction of the energy of the quark in the high energy limit.
This is very different from the behavior of a quark moving through a weakly cou-
pled QCD plasma, in which the longitudinal momentum transferred to the quark
can be neglected in the high energy limit. However, we should keep in mind that,
due to the bound (8.18), for a given value of the mass M and the coupling

√
λ the

calculation of κL (and of κT ) is only valid for finite energy quarks, with γ limited
by (8.18).

The fact that κL grows faster with γ than γ 2 M2 would seem to indicate that
once the heavy quark has traveled through the medium for a distance L so long
that κL L > γ 2 M2, meaning

LπT >

(
M

T

)2 1√
γ λ

, (8.75)

the calculation in this section must break down since the fluctuations in the longi-
tudinal momentum of the quark have become greater than the momentum itself. In
fact, this criterion never comes into play because the calculation always “breaks
down”, in a trivial sense, earlier. The heavy quark feels a drag force given by
(8.12), meaning that after it has traveled a distance L = 1/ηD, its momentum
has been degraded by a factor of order 1. This means that calculating the longitu-
dinal fluctuations as if the γ of the quark is constant, and comparing κL L to the
initial momentum of the quark, only makes sense for L < 1/ηD, which according
to (8.13) means that L must satisfy

LπT <
2M

T

1√
λ
. (8.76)

We have already seen that the entire calculation is valid only as long as the criterion
(8.18) is satisfied, which is to say (M/T ) >

√
γ λ. This means that at the L at
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which the criterion (8.76) ends the calculation, κL L is smaller than γ 2 M2 by at
least a factor of order

√
λ, and the regime (8.75) is never reached.

We see from the expressions (8.72) and (8.74) for κT and κL derived by explicit
analysis of the fluctuations that in the v → 0 limit we have κT = κL = κ with
κ given by (8.34), as we obtained previously from the drag coefficient ηD via the
use of the Einstein relation (8.33). This is an example of the fluctuation–dissipation
theorem.

In the gauge theory, momentum broadening is due to the fluctuating force exerted
on the heavy quark by the fluctuating plasma through which it is moving. In the
dual gravitational description, the quark at the boundary feels a fluctuating force
due to the fluctuations of the world sheet that describes the profile of the string to
which the quark is attached. These fluctuations have their origin in the Hawking
radiation of fluctuations of the string worldsheet originating from the worldsheet
horizon. The explicit computation of this worldsheet Hawking radiation for a quark
at rest was performed in Refs. [311, 751], and these results nicely reproduce those
we have obtained within the Langevin formalism. This computation was extended
to quarks moving at nonzero velocity in Refs. [378, 254].

8.2.4 Heavy quarks in hot QCD and in heavy ion collisions

So far, we have discussed a general framework for calculating the transverse and
longitudinal momentum broadening κT and κL that enter the Langevin equations
(8.24) and (8.25) for non-relativistic heavy quarks. We have then given explicit
results for strongly coupled N = 4 SYM theory. We now discuss how these results
relate to, and help us to understand, what we know about hot QCD and about the
phenomenology of heavy ion collisions. We consider the case in which the relative
velocity of the heavy quark and the hot fluid is small, meaning that κT = κL ≡ κ . In
this regime, the heavy quark is carried along by the moving fluid, diffusing within
it with a diffusion constant that is given by

D = 2T 2

κ
, (8.77)

meaning that the result (8.34) translates into the statement that a heavy quark in the
strongly coupled N = 4 SYM theory plasma obeys a Langevin equation with

D = DSYM ≡ 4√
λ

1

2πT
≈ 1.1

2πT

√
1

αSYM Nc
. (8.78)

The diffusion constant D parametrizes how strongly the heavy quark couples to
the medium. At weak coupling, smaller D corresponds to stronger coupling and
shorter mean free path. However, D is well defined even if it is so small that it
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does not even make sense to define a mean free path for the heavy quark, as is the
case in the plasma of strongly coupled N = 4 SYM theory in which D is given
by (8.78) with λ large. Recall that in this case we have calculated κ , and hence
D, in the earlier parts of this section without ever defining the notion of a mean
free path.

In a QCD plasma that is hot enough that it is sufficiently weakly coupled that
lowest order perturbation theory can be used as a guide, we also have reliable
information about the diffusion constant. In this regime, D is large and the diffusing
heavy quark has a long mean free path. Leading order perturbative calculations
for a weakly coupled QCD plasma [628] can be summarized by an approximate
expression

Dweakly coupled QCD ≈ 14

2πT

(
0.33

αs

)2

, (8.79)

in which we have neglected an additional logarithmic dependence on αs . How-
ever, the perturbative expansion converges quite poorly meaning that this result
only becomes quantitatively reliable at values of αs that are much smaller than
0.33 [237, 238]. Nevertheless, we note that if we simply compare (8.78) and (8.79)
with Nc = 3 and αSYM = αs = 0.33 (or 0.5) the diffusion constant in a strongly
coupled N = 4 SYM plasma is smaller than that in a weakly coupled QCD plasma
by a factor of about 12 (or 7). It is reasonable to guess that the diffusion constant
for a heavy quark in the strongly coupled QCD plasma produced in heavy ion col-
lisions lies between these two estimates. Indeed, early estimates of nonperturbative
contributions to D in the strongly coupled QCD plasma suggested that at a tem-
perature T = 200 MeV it should have a D that is smaller than the weakly coupled
result by a factor of three or four [784]. Before we turn to a discussion of what can
be inferred from experiments to date, we shall discuss in turn two possible paths
toward improved theoretical predictions. Neither (8.78) nor (8.79) can be applied
quantitatively to the strongly coupled plasma produced in heavy ion collisions even
though each is reliable in a certain domain – in one case in the strongly coupled
plasma of a non-Abelian gauge theory that is not QCD and in the other case in the
weakly coupled QCD plasma at temperatures that are orders of magnitude higher
than those accessed in experiment.

We first ask whether it is possible to sharpen inferences concerning the value of
D in the strongly coupled plasma of QCD that can be drawn from the result (8.78).
Can we do better than just comparing N = 4 SYM theory and QCD at αSYM = αs?
We need to ask how D would change if we could deform N = 4 SYM theory so
as to turn it into QCD. This is not a question to which the answer is known, but
we can make several observations. First, in a large class of conformal theories, at
a given value of T , Nc and λ both the drag coefficient ηD and κ (and therefore
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1/D) scale with the square root of the entropy density [584]. (The argument is the
same as that for the jet quenching parameter q̂, and we shall describe it briefly in
Section 8.5.) The number of degrees of freedom in QCD is smaller than that in
N = 4 SYM theory by a factor of 47.5/120 for Nc = 3, suggesting that κ and ηD

should be smaller in QCD by a factor of
√

47.5/120 = 0.63, making D larger by
a factor of

√
120/47.5 = 1.59. Note that ηD and 1/D scale in the same way even

though they are proportional to T 2 and T respectively, meaning that scaling these
quantities between two theories with different numbers of degrees of freedom is
not equivalent to scaling the temperature. Second, N = 4 SYM theory is of course
conformal, while QCD is not. Analysis of one toy model in which nonconformal-
ity can be introduced by hand suggests that turning on nonconformality to a degree
suggested by lattice calculations of QCD thermodynamics reduces D somewhat,
by a few tens of percent or perhaps at most by a factor of two [585]. Turning on
nonconformality in N = 2∗ theory also reduces D [468]. In a different model,
however, reducing the number of degrees of freedom as in QCD and simultane-
ously turning on nonconformality (again to a degree benchmarked against lattice
calculations of (ε − 3P)/T 4) increases D by a factor of two to five [419]. We
conclude that, at present, D in a strongly coupled QCD plasma cannot be inferred
reliably from these arguments, with the reduction in degrees of freedom increasing
D relative to (8.78) while the nonconformality may push in the opposite direction
or may increase D further. We can summarize the current uncertainty by estimat-
ing that D in the strongly coupled plasma of QCD is larger than that in (8.78) by a
factor that lies between one and five.

The other possible route to improved theoretical predictions of D in the strongly
coupled plasma of QCD is lattice quantum field theory. This route is not straight-
forward since diffusion is a real time process meaning that D cannot be written
directly in terms of derivatives of the thermodynamic partition function. As we
have already seen in our discussion of the lattice determination of spectral functions
via the maximum entropy method in Chapter 3, constraining real time correlators
using lattice calculations done at finitely many points in imaginary time necessar-
ily involves making additional assumptions. In the particular case of the diffusion
constant D, however, it is possible to make progress [240]. In the large quark mass
limit, heavy quark effective theory can be used to relate D to a certain Euclidean
correlation function involving color–electric fields that can be related by analytic
continuation to the random force two-point correlators 〈ξ(t) ξ(t ′)〉 = κδ(t − t ′)
appearing in (8.25). Furthermore, unlike in the case of the transport quantities that
we have discussed in Section 6.3, in this case there is no transport peak in the
relevant spectral function. Quite unlike the case illustrated in Fig. 6.1, here the rel-
evant spectral function is featureless at small frequency at weak coupling [240].
This indicates that at least in principle it should be possible to constrain D reliably
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from Euclidean lattice calculations. A first, exploratory, study based on this method
is underway [357], to date only in the SU (3) gluon plasma (QCD without quarks)
and to date with the continuum limit and the infinite volume limit not yet taken.
Although exploratory, these calculations are already unambiguous in showing that
DQCD is significantly smaller than Dweakly coupled QCD in (8.79), as can be antici-
pated from the general consideration that smaller D corresponds to smaller mean
free paths. The calculations suggest that [357]

Dlattice QCD ∼ 3 − 5

2πT
, (8.80)

for QCD without quarks in a temperature range between 1.5Tc and 3Tc, and taking
into account only statistical uncertainties. The systematic uncertainties in this esti-
mate remain to be quantified. It is nevertheless intriguing to see the estimate (8.80)
obtained from pioneering lattice calculations landing in the same range as the esti-
mate we came to in the previous paragraph by considering the (also pioneering)
attempts to investigate how the estimate (8.78) for D would change if we could
deform N = 4 SYM theory so as to turn it into QCD.

In heavy ion collisions, information about the motion of heavy quarks in the
plasma is experimentally accessible via measurements of the semi-leptonic or
hadronic decay products of heavy-flavored hadrons. In general, two classes of
observables can be expected to provide experimental constraints on the Langevin
dynamics of heavy quarks. First, heavy quarks lose energy by drag, as discussed
in Section 8.1. Therefore, the characterization of heavy quark energy loss via
the nuclear modification factor of the observed decay products of heavy-flavored
hadrons can constrain the drag coefficient ηD and, via (8.33) and (8.77) in the case
where the heavy quark velocity is not large, the diffusion coefficient D. Second,
if D is small enough that on the time scales available in a heavy ion collision the
motion of the heavy quarks is diffusive (i.e. if the heavy quark mean free path is not
so long that the heavy quarks scatter only a few times) then by the time the plasma
hadronizes the heavy quarks will have been picked up (or slowed down) and car-
ried along by the collective flow of the strongly coupled liquid in which they find
themselves. That is, if D is small enough the heavy quarks diffusing in the mov-
ing fluid will end up with the same mean velocity as the fluid itself. This results
in a non-vanishing elliptic flow v2 for heavy quarks with transverse momenta of
order their mass or smaller. While there are parton energy loss processes that do
not involve Langevin dynamics (see for instance the radiative parton energy loss
discussed in Section 2.3), the observation of sizable elliptic flow in the decay prod-
ucts of heavy-flavored hadrons [18] provides strong support for the picture that
the dynamics of non-relativistic heavy quarks produced in heavy ion collisions is
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described by a Langevin equation with a small enough D that the diffusing heavy
quarks end up being carried along by the moving fluid.

The qualitative considerations above indicate that measurements of RAA and
v2 for the decay products of heavy-flavored hadrons can be used to constrain the
heavy quark diffusion constant D. Many authors are developing models based upon
Langevin dynamics to describe the motion of heavy quarks within the hot expand-
ing fluid produced in heavy ion collisions [628, 785, 464, 784, 32, 138, 410, 706,
656, 658, 41]. Many of these analyses include comparisons to data on isolated elec-
trons, which are most probably produced in the decays of mesons containing either
c or b quarks but with which there is no way to separate these two contributions.
The more refined measurements needed to separately identify the decay products
of hadrons containing c and b quarks are the object of intense experimental effort
at the time of writing. There are also significant theoretical uncertainties related to
determining the range of validity of a Langevin analysis. For example, to focus on
heavy quarks whose relative velocity through the hot strongly coupled fluid was
sufficiently small one seeks to study the decay products of heavy-flavored hadrons
at sufficiently small transverse momentum, but a quantitative criterion for what
“sufficiently small” means is missing. Without discussing these model-dependent
uncertainties in more detail, we emphasize here that data from heavy ion colli-
sions show two robust qualitative features: the observed elliptic flow of the decay
products of heavy-flavored hadrons and the heavy quark energy loss measured via
the nuclear modification factor of the same decay products are comparable to the
elliptic flow and nuclear modification factor of light-flavored hadrons. Both these
classes of observations provide strong qualitative support to a picture in which
heavy quarks lose energy efficiently and end up following the flow field of the
strongly coupled plasma. This explains why even given all the uncertainties that
make a quantitative determination difficult at present, the comparisons between
models of Langevin dynamics and heavy ion collision data all typically favor small
values of the diffusion constant D. For example, two studies that compare Langevin
dynamics to RHIC data yield [32]

DQGP@RHIC ≈ 2 − 6

2πT
(8.81)

and [784]

DQGP@RHIC ≈ 3 − 5

2πT
. (8.82)

These phenomenologically determined values of the diffusion constant are remark-
ably similar to the estimate that the diffusion constant in the quark–gluon plasma of
QCD is one to five times greater than the result obtained in (8.78) for the plasma of
strongly coupled N = 4 SYM theory and to the estimate (8.80) obtained in lattice
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calculations. So, although there is plenty of room for improvement on all fronts, at
present this story hangs together rather well indeed.

8.3 Disturbance of the plasma induced by an energetic heavy quark

In Sections 8.1 and 8.2 we have analyzed the effects of the strongly coupled plasma
of N = 4 SYM theory on an energetic heavy quark moving through it, focusing on
how the heavy quark loses energy in Section 8.1 and on the momentum broadening
that it experiences in Section 8.2. In this section, we turn the tables and analyze the
effects of the energetic heavy quark on the medium through which it is propagat-
ing [713, 763, 245, 719, 727, 708, 244, 246, 709, 363, 811, 399, 810, 288, 403, 408,
400, 289, 655, 652, 401, 648, 657, 649, 423, 147, 148, 650, 410, 651, 149]. From
the point of view of QCD calculations and heavy ion collision phenomenology,
the problem of understanding the response of the medium to an energetic probe
is quite complicated. An energetic particle passing through the medium can excite
the medium on many different wavelengths. Furthermore, even if the medium had
thermalized prior to its interaction with the probe, the disturbance caused by the
probe must drive the medium out of equilibrium, at least close to the probe. And,
non-equilibrium processes are difficult to treat, especially at strong coupling.

Furthermore, in general the formulation of how an energetic heavy quark
interacts with the medium requires detailed information about the microscropic
dynamics that couples the hard probe and the medium, meaning that in almost
all analyses quantum field theory and hydrodynamics must be supplemented by
model-dependent assumptions. There is but one known example where a field
theoretically consistent formulation of heavy quark energy loss in a strongly cou-
pled plasma determines fully and without additional model-dependence how this
hard probe excites the medium. This is the holographic formulation of heavy
quark energy loss via drag that we have discussed in detail in Section 8.1.
That the gauge/gravity correspondence provides such a unique arena for study-
ing plasma excitations induced by hard probes justifies the detailed discussion of
these excitations that we shall present in this section.

At various points in the following, we shall compare plasma disturbances cal-
culated via gauge/gravity duality to hydrodynamic excitations. The latter can be
formulated in a simple model in which the energetic heavy quark is modeled as
a simple line source in the hydrodynamic equations of motion for the fluid. The
model-dependence of this fluid dynamic picture of probe–medium interactions
resides in the details of the source term entering the hydrodynamic equations and,
of course, in the assumption that the hard probe excites only hydrodynamic per-
turbations. There are, however, several reasons for starting our discussion with
this simple model in Section 8.3.1. First, historically, the analysis of jet–medium
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interactions started with the discussion of such hydrodynamical models. Moreover,
as we have seen throughout this book, the strongly coupled N = 4 SYM plasma
is an almost perfect fluid. This makes it natural to discuss within a hydrodynamic
picture the perturbations induced by heavy quarks in the strongly coupled N = 4
SYM plasma. In particular, as we shall see in the following, a hydrodynamic model
of jet–medium interactions provides a simple setting in which to disentangle dif-
ferent classes of hydrodynamic perturbations in the fluid. For a hard probe that
propagates along a straight-line trajectory with a velocity v larger than the sound
velocity in the plasma, one expects the excitation of two kinds of hydrodynamic
perturbations. First, there should be sound waves that form a Mach cone, namely a
sound front moving away from the trajectory of the energetic particle at the Mach
angle

cos"M = cs

v
. (8.83)

In addition, however, it is reasonable to expect that even a pointlike source in the
hydrodynamic equations should perturb the fluid through which the heavy quark
has moved, stirring it up and/or setting it into motion following behind the quark
that disturbed it. Certainly a macroscopic object moving through a fluid leaves a
wake behind, and to some degree so too should a pointlike heavy quark. As we
shall discuss, both a Mach cone and a wake can be accommodated in the hydro-
dynamical modeling of jet–medium interactions, but hydrodynamic considerations
alone do not determine their relative importance. And, their relative importance
will prove important in assessing the possibility that heavy quark energy loss in
heavy ion collisions may result in observable Mach-cone-like patterns in the final
state hadrons. We shall see that both a Mach cone and a wake are found in the holo-
graphic computation of the response of the N = 4 SYM plasma to a heavy quark
probe that we present in Section 8.3.2, and in this context their relative importance
is fully determined. Keeping this destination in mind, the detailed discussion in
Section 8.3.1 of the hydrodynamic framework within which these phenomena in
fluid physics can be pictured easily will be very useful.

8.3.1 Hydrodynamic preliminaries

It is natural to attempt to describe the disturbance of the medium using hydro-
dynamics, with the energetic particle treated as a source for the hydrodynamic
equations. This approach is based on two assumptions. First, one must assume that
the medium itself can be described hydrodynamically. Second, one has to assume
that the non-equilibrium disturbance in the vicinity of the energetic particle relaxes
to some locally equilibrated (but still excited) state after the energetic particle has
passed on a timescale that is short compared to the lifetime of the hydrodynamic
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medium itself. The first assumption is clearly supported by data from heavy ion
collisions at RHIC and the LHC, as discussed in Section 2.2. The second assump-
tion is stronger, and less well justified. Even though, as we saw in Section 2.2, there
is evidence from the data that in heavy ion collisions a hydrodynamic medium in
local thermal equilibrium forms rapidly, after only a short initial thermalization
time, it is not clear a priori that the relaxation time for the disturbance caused by
an energetic quark plowing through this medium is comparably short, particularly
since the density of the medium drops with time. Finally, even if a hydrodynamic
approach to the dynamics of these disturbances is valid, the details of the functional
form of this hydrodynamic source are unknown, since the relaxation process is not
under theoretical control.

Keeping the above difficulties in mind, it is still possible to use the symmetries
of the problem and some physical considerations to make some progress toward
understanding the source for the hydrodynamic equations corresponding to the
disturbance caused by an energetic quark. If the propagating parton is sufficiently
energetic, we may assume that it moves at a fixed velocity; this ansatz forces the
source to be a function of x − vt , with the parton moving in the x-direction. We
may also assume that the source has cylindrical symmetry around the parton direc-
tion. We may also constrain the source by the amount of energy and momentum
that is fed into the plasma, which for the case of the plasma of strongly coupled
N = 4 SYM theory we calculated in Section 8.1. In an infinite medium, at late
enough times, all the energy lost by the probe must thermalize and be incorporated
into heating and/or hydrodynamic motion. (This may not be a good approxima-
tion for a very energetic parton propagating through weakly coupled plasma of
finite extent since, as we have discussed in Section 2.3, in this setting the parton
loses energy by the radiation of gluons whose energy and momentum are large
relative to the temperature of the medium, which may escape from the medium
without being thermalized.) Although the caveats above caution against attempt-
ing to draw quantitative conclusions without further physical inputs, the success of
the hydrodynamical description of the medium itself support the conclusion that
there must be some hydrodynamic response to the passage of the energetic particle
through it.

From the point of view of hydrodynamics, the disturbance of the medium
induced by the passage of an energetic probe must be described by adding some
source to the conservation equation:

∂μT μν(x) = J ν(x) . (8.84)

As we have stressed above, we do not know the functional form of the source,
since it not only involves the way in which energy is lost by the energetic par-
ticle but also how this energy is thermalized and how it is incorporated into the
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medium. The source will in general depend not only on the position of the quark
but also on its velocity. In this subsection, we will use general considerations valid
in any hydrodynamic medium to constrain the functional form of the source. From
Eq. (8.84) it is clear that the amount of energy–momentum deposited in the plasma
is given by.

d Pν

dt
=

∫
d3x J ν(x) . (8.85)

We note as an aside that if the source moves supersonically, one component of its
energy loss is due to the emission of sound waves. This is conventionally known as
sonic drag, and is a part of the energy loss computed in Section 8.1.

We now attempt to characterize the hydrodynamic modes that can be excited in
the plasma due to the deposition of the energy (8.85). We will assume, for simplic-
ity, that the perturbation on the background plasma is small. We will also assume
than the background plasma is static. The modification of the stress tensor

δT μν ≡ T μν − T μν

background (8.86)

satisfies a linear equation.
Since in the hydrodynamic limit the stress tensor is characterized by the local

energy density, ε, and the three components of the fluid spatial velocity, ui , there
are only four independent fields, which can be chosen to be

E ≡ δT 00 and Si ≡ δT 0i . (8.87)

Using the hydrodynamic form of the stress tensor, (2.13), all other stress tensor
components can be expressed as a function of these variables. Since we have
assumed that these perturbations are small, all the stress tensor components can
be expanded to first order in the four independent fields (8.87).

In Fourier space, keeping the shear viscosity correction, the linearized form of
Eqs. (8.84) for the mode with a wave vector q that has the magnitude q ≡ |q| take
the form

∂tE + iq SL = J 0 ,

∂t SL + ic2
s qE + 4

3

η

ε0 + p0
q2SL = JL ,

∂t ST + η

ε0 + p0
q2ST = JT , (8.88)

where S = SLq/q + ST , J = JLq/q + JT , L and T refer to longitudinal and trans-
verse relative to the hydrodynamical wave-vector q and ε0, p0, cs = √

dp/dε and
η are the energy density, pressure, speed of sound and shear viscosity of the unper-
turbed background plasma. We observe that the longitudinal and transverse modes
are independent. This decomposition is possible since the homogeneous equations
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have a SO(2) symmetry corresponding to rotation around the wave-vector q. The
spin zero (longitudinal) and spin one (transverse) modes correspond to the sound
and diffusion mode respectively. (The spin two mode is a subleading perturbation
in the gradient expansion, since its leading contribution is proportional to veloc-
ity gradients.) After combining the first two equations of Eqs. (8.88) and doing a
Fourier transformation, we find(

ω2 − c2
s q2 + i

4

3

η

ε0 + p0
q2ω

)
SL = i c2

s q J 0 + iωJL ,(
iω − η

ε0 + p0
q2

)
ST = −JT . (8.89)

The sound mode (SL) satisfies a wave equation and propagates with the speed of
sound while the diffusion mode (ST ), which does not propagate, describes the dif-
fusion of transverse momentum as opposed to wave propagation. We also note
that only the sound mode results in fluctuations of the energy density, while the
diffusion mode involves only momentum densities (the Si of Eq. (8.87)). In the
linear approximation that we are using, the excitation of the diffusion mode pro-
duces fluid motion but does not affect the energy density. This result can be further
illustrated by expressing the energy fluctuations in terms of the velocity fields

δT 00 = δε + 1

2
(ε + P) (δv)2 + · · · . (8.90)

The second term in this expression corresponds to the kinetic energy contribution
of the fluid motion which takes a non-relativistic form due to the small perturbation
approximation. This expression is quadratic in the velocity fluctuation, and thus is
not described in the linearized approximation. The sound mode corresponds to both
compression/rarefaction of the fluid and motion of the fluid; sound waves result in
fluctuations of the energy density as a consequence of the associated compression
and rarefaction. But, the diffusion mode corresponds to fluid motion only and, to
this order, does not affect the energy density.

Solving the linearized hydrodynamic equations (8.88) yields hydrodynamic
fields given by

E(t, x) =
∫

dω

2π

d3q

(2π)3

iq JL + iωJ 0 − �sq2 J 0

ω2 − c2
s q2 + i�sq2ω

e−iωt+iq·x, (8.91)

SL(t, x) =
∫

dω

2π

d3q

(2π)3

q
q

c2
s iq J 0 + iωJL

ω2 − c2
s q2 + i�sq2ω

e−iωt+iq·x, (8.92)

ST (t, x) =
∫

dω

2π

d3q

(2π)3

−JT

iω − Dq2
e−iωt+iq·x, (8.93)
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where the sound attenuation length and the diffusion constant are

�s ≡ 4

3

η

ε0 + p0
, (8.94)

D ≡ η

ε0 + p0
. (8.95)

We note in passing that the integral of the longitudinal momentum density over all
space vanishes.

The hydrodynamic solutions (8.91), (8.92) and (8.93) are only of formal value
without any information about the source. And, as we have stressed above, a lot of
nonlinear, non-equilibrium physics goes into determining the source as a function
of the coordinates. Still, we can make some further progress. If we assume that the
energetic quark moves at a constant velocity v for a long time (as would be the case
if the quark is either ultra-relativistic or very heavy) then we expect

Jμ(ω, k) = 2πδ(ω − v · q)Jμ
v (q) , (8.96)

where the factor δ(ω − v · q) comes from Fourier transforming δ(x − vt). We
also note that far away from the source, and at sufficiently small q that we can
neglect any energy scales characteristic of the medium and any internal structure
of the particle moving through the medium, the only possible vectors from which
to construct the source are v and q. In this regime, we may decompose the source as

J 0
v (q) = e0(q),

Jv(q) = v g0(q) + q g1(q) . (8.97)

Then, inspection of the solutions (8.91), (8.92) and (8.93) together with the obser-
vation that a particle moving with a velocity close to the speed of light loses similar
amounts of energy and momentum, shows that, at least for an ultra-relativistic
probe, non-vanishing values of e0(q) must be linked to non-vanishing values of
g0(q). We call this case Scenario 1. However, if the interaction of the probe with
the plasma is such that both g0 and e0 are zero (or parametrically small compared
to g1), from Eqs. (8.85) and (8.97) and since q g1(q) is a total derivative, one may
mistakenly conclude that the energetic probe has created a disturbance carrying
zero energy and momentum. In this scenario, which we shall call Scenario 2, the
energy and momentum loss are actually quadratic in the fluctuations. These two
scenarios lead to disturbances with different characteristics. In Scenario 2, only the
sound mode is excited while in Scenario 1, both the sound and diffusion mode are
excited. The correct answer for a given energetic probe may lie in between these
two extreme cases.

The phenomenological implications of this analysis depend critically on the
degree to which the diffusion mode is excited. This mode leads to an excess of

https://doi.org/10.1017/9781009403504.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.008


292 Probing strongly coupled plasma

momentum density along the direction of the source which does not propagate out
of the region of deposition, but only diffuses away. Therefore, the diffusion mode
excited by an energetic quark moving through the plasma corresponds to a wake
of moving fluid, trailing behind the quark and moving in the same direction as the
quark. In a heavy ion collision, therefore, the diffusion wake excited by the away-
side energetic quark will become hadrons at �φ ∼ π , whereas the Mach cone will
become a cone of hadrons with moment at some angle away from �φ = π . If most
of the energy dumped into the medium goes into the diffusion wake, even if a Mach
cone were produced it would be overwhelmed in the final state, and invisible in the
data. Only in the case in which the diffusion mode is absent (or sufficiently small)
is the formation of a Mach cone potentially visible as a non-trivial correlation in
the data, i.e. in the momenta of the hadrons in the final state.

8.3.2 AdS computation

In Section 8.1 we have computed the amount of energy lost by a heavy quark as it
plows through the strongly coupled N = 4 SYM theory plasma. Here, we com-
pute the fate of this energy. Remarkably, every one of the difficulties associated
with answering this question in QCD or attempting to do so in a hydrodynamic cal-
culation without microscopic inputs can be addressed for the case of an energetic
heavy quark propagating through the strongly coupled plasma of N = 4 SYM the-
ory. As in Sections 8.1 and 8.2, we shall assume that the relevant physics is strongly
coupled at all length scales, treating the problem entirely within strongly coupled
N = 4 SYM theory. In this calculation, the AdS/CFT correspondence is used to
determine the stress tensor of the medium, excited by the passing energetic quark,
at all length scales. This dynamical computation will allow us to quantify to what
extent hydrodynamics can be used to describe the response of the strongly coupled
plasma of this theory to the disturbance produced by the energetic quark, as well as
to study the relaxation of the initially far-from-equilibrium disturbance. This cal-
culation applies to quarks with mass M whose velocity respects the bound (8.18).
We note here that the calculation whose results we shall describe in Section 8.6
of the waves of energy produced in the strongly coupled plasma of N = 4 SYM
theory by the motion of a quark through it along a circular trajectory is done using
similar techniques to those that we shall present in full here, here in the simpler
setting of a quark moving through the plasma along a straight line.

In order to address the fate of the energy lost by a heavy quark plowing through
the strongly coupled plasma of N = 4 SYM theory, we must determine the stress
tensor of the gauge theory fluid at the boundary that corresponds to the string
(8.9) trailing behind the quark in the bulk. In the dual gravitational theory, this
string modifies the metric of the (4+1)-dimensional geometry. That is, it produces
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gravitational waves. The stress energy tensor of the gauge theory plasma at the
boundary is determined by the asymptotic behavior of the bulk metric perturbations
as they approach the boundary [363, 288, 289, 403].

The modifications of the 4 + 1-dimensional metric due to the presence of the
trailing string are obtained by solving the Einstein equations

Rμν − 1

2
Gμν(R − 2�) = κ2

5 tμν , (8.98)

where κ2
5 = 4π2 R3/N 2

c and � = −6/R2 with R the AdS radius and where tμν is
the five-dimensional string stress tensor, which can be computed from the Nambu–
Goto action:

tμν = − 1

2πα′

∫
dτdσ

√−h√−G
hab∂a Xμ(τ, σ )∂b X ν(τ, σ )δ(5) (x − X (τ, σ )) ,

(8.99)
where hab is the induced metric on the string and X (τ, σ ) is the string profile. For
the case of a trailing string (8.9), the stress tensor is given by

t00 = s( f + v2z4/z4
0) ,

t0i = −svi ,

t0z = −sv2z2/z2
0 f ,

tzz = s( f − v2)/ f 2 ,

ti j = sviv j ,

ti z = svi z
2/z2

0 f , (8.100)

where

s = zγ
√
λ

2π R3
δ3 (x − vt − ζ(z)) , (8.101)

with ζ(z) the string profile (8.9). After solving the Einstein equations (8.98) with
the string stress tensor (8.100), the expectation value of the boundary stress tensor
is then obtained by following the prescription (5.48), namely by performing func-
tional derivatives of the Einstein–Hilbert action evaluated on the classical solution
with respect to the boundary metric.

We need to analyze the small fluctuations on top of the background AdS black
hole metric. Denoting these fluctuations by hμν and the background metric by gμν ,
the left-hand side of the Einstein equations (8.98) are given to leading order in
hμν by

− D2hμν + 2Dσ D(μhν)σ − DμDνh + 8

R2
hμν

+
(

D2h − Dσ Dδhσδ − 4

R2
h

)
gμν = 0 , (8.102)
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with Dμ the covariant derivative with respect to the full metric, namely gμν + hμν .
This equation has a gauge symmetry

hμν → hμν + Dμξν + Dνξμ , (8.103)

inherited from reparameterization invariance, that, together with five constraints
from the linearized Einstein equations (8.102), reduces the number of degrees of
freedom from fifteen to five. It is therefore convenient to introduce gauge invariant
combinations which describe the independent degrees of freedom. These can be
found after Fourier transforming the (3 + 1)-dimensional coordinates. The gauge
invariants can be classified by how they transform under SO(2) rotations around the
wave-vector q. Upon introducing Hμν = z2hμν/R2, one possible choice of gauge
invariants is given by [288, 289]

Z(0) = q2 H00 + 2ωq H0q + ω2 Hqq + 1

2

[
(2 − f )q2 − ω2

]
H,

Z(1)α = (
H ′

0α − iωHα5
)
,

Z(2)αβ =
(

Hαβ − 1

2
Hδαβ

)
, (8.104)

where q ≡ |q|, q̂ ≡ q/q, H0q ≡ H0i q̂ i , Hqq ≡ Hi j q̂i q̂ j , α and β (which are each
either 1 or 2) are space coordinates transverse to q̂, ′ means ∂z , and H ≡ Hαα. When
written in terms of these gauge invariants, the Einstein equations (8.102) become
three independent equations for Z(0), Z(1)α and Z(2)αβ , which correspond to the spin
zero, one and two fluctuations of the stress tensor. We focus on the spin zero and
spin one fluctuations, since these are the relevant modes in the hydrodynamic limit.
Their equations of motion are given by

Z ′′
(1)α + z f

′ − 3 f

z f
Z ′
(1)α + 3 f 2 − z(zq2 + 3 f

′
) f + z2ω2

z2 f 2
Z(1)α = S(1)α (8.105)

and

Z ′′
(0) + 1

u

[
1 + u f

′

f
+ 24(q2 f − ω2)

q2(u f ′ − 6 f ) + 6ω2

]
Z ′
(0)

+ 1

f

[
−q2 + ω2

f
− 32q2z6/z8

0

q2(u f ′ − 6 f ) + 6ω2

]
Z(0) = S(0) , (8.106)

where the sources are combinations of the string stress tensor and its derivatives.
Choosing one of the transverse directions (which we shall denote by α = 1) to lie
in the (v,q) plane, the source for the trailing string is given explicitly by
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S(1)1 = 2κ2
5γ

√
λ

R3

vq⊥
q f

δ(ω − v · q)e−iq·ζ ,

S(1)2 = 0 , (8.107)

S(0) = κ2
5γ

√
λ

3R3

q2(v2 + 2) − 3ω2

q2

z
[
q4z8 + 48iq2z2

0z5 − 9(q2 − ω2)2z8
0

]
f ( f q2 + 2q2 − 3ω2)z8

0

×δ(ω − vq)e−iq·ζ , (8.108)

where q⊥ is the magnitude of the component of q perpendicular to v. The boundary
action can be expressed in terms of the gauge invariants Z(1)α and Z(0) plus cer-
tain counterterms (terms evaluated at the boundary). This procedure, which can be
found in Ref. [289], is somewhat cumbersome but straightforward, and we shall not
repeat it here. Once this is achieved, the stress tensor components can be obtained
from the classical solution to (8.105)–(8.106), following the prescription (5.48).

To find the classical solution to (8.105)–(8.106) we must specify boundary con-
ditions. Since the quark propagates in flat space, the metric fluctuations must vanish
at the boundary. Also, since we are interested in the response of the medium, the
solution must satisfy retarded boundary condition, meaning that at the horizon it
must be composed only of infalling modes. Thus, we may construct the Green’s
function

Gs(z, z′) = 1

Ws(z′)
(
θ(z′ − z)gn

s (z)g
i
s(z

′) + θ(z − z′)gi
s(z)g

n
s (z

′)
)
, (8.109)

where the subscript s which can be 0 or 1 denotes the spin component and gn
s and

gi
s denote the normalizable and infalling solutions to the homogeneous equations

obtained by setting the left-hand side of (8.105) equal to zero. Ws is the Wronskian
of the two homogeneous solutions. The full solution to (8.105) may be then written
as

Zs(z) =
∫ zh

0
dz′Gs(z, z′)Ss(z

′). (8.110)

Close to the boundary, these solutions behave as

Z(0) = z3 Z [3]
(0) + z4 Z [4]

(0) + · · ·
�Z(1) = z2 �Z [2]

(1) + z3 �Z [3]
(1) + · · · . (8.111)

The components Z [3]
(0) and Z [2]

(1) can be computed analytically and are temperature
independent. They yield a divergent contribution to the boundary stress tensor.
However, this contribution is analytic in q and, thus, has δ-function support at
the position of the heavy quark. This divergent contribution is the contribution
of the heavy quark mass to the boundary theory stress tensor. The response of
the boundary theory gauge fields to the disturbance induced by the passing ener-
getic quark is encoded in the components Z [4]

(0) and Z [3]
(1), which must be computed
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numerically. After expressing the boundary actions in terms of gauge invariants,
the nondivergent spin zero and one components of the boundary stress tensor are
given by

T0 = 4q2

3κ2
5 (q

2 − ω2)2
Z [4]
(0) + D + ε0 , (8.112)

�T1 = − L3

2κ5

�Z [3]
(1), (8.113)

where T0 = T 00 and �T1 = T 0a ε̂a , with ε̂a the spatial unit vectors orthogonal to the
spatial momentum q, and where the counterterm D is a complicated function of ω
and q that depends on the quark velocity and the plasma temperature and that is
given in Ref. [289].

Results from Ref. [289] on the numerical computation of the disturbance in the
gauge theory plasma created by a supersonic quark moving with speed v = 0.75
are shown in Fig. 8.4. The top panel shows the energy density of the disturbance
and clearly demonstrates that a Mach cone has been excited by the supersonic
quark. The front is moving outwards at the Mach angle "M , where cos"M =
cs/v = 4/(3

√
3). Recall from our general discussion above that fluid motion is

invisible in the energy density, to the linear order at which we are working; the
energy density is nonzero wherever the fluid is compressed. Thus, the Mach cone
is made up of sound modes, as expected. In the bottom panel of Fig. 8.4, we see the
density of fluid momentum induced by the supersonic quark. This figure reveals
the presence of a sizable wake of moving fluid behind the quark, a wake that is
invisible in the energy density and is therefore made up of moving fluid without
any associated compression, meaning that it is made up of diffusion modes. We
conclude that the supersonic quark passing through the strongly coupled plasma
excites both the sound mode and the diffusion mode, meaning that the interaction of
the quark with the plasma is as in what we called Scenario 1 above. Quantitatively,
it turns out that the momentum carried by the sound waves is greater than that
carried by the diffusion wake, but only by a factor of 1 + v2 [408].

Since hydrodynamics describes the long-wavelength limit of the stress tensor
excitation, it is reasonable to find a Mach cone at long distances. And, since
the gravitational equations whose solution we have described are linear, the long
distance behavior of the gauge theory fluid must be described by linearized hydro-
dynamics. It is easy to justify the linearization from the point of view of the field
theory: the background plasma has an energy density that is proportional to N 2

c

while that of the perturbation is proportional to the number of flavors, which is
just N f = 1 in the present case since we are considering only one quark. The
strong coupling computation leads to a perturbation of magnitude N f

√
λ. Thus,
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Figure 8.4 Energy density (top) and momentum flux (bottom) induced by the pas-
sage of a supersonic heavy quark moving through the strongly coupled N = 4
SYM theory plasma in the x‖ direction with speed v = 0.75. (�ε(x) is the differ-
ence between ε(x) and the equilibrium energy density; since S = 0 in equilibrium,
�S(x) is simply S(x).) The flow lines on the surface are flow lines of �S(x).
These disturbances are small compared to the background energy density and
pressure of the plasma (both of which are ∝ N 2

c ). The perturbation is small and
it is well described by linearized hydrodynamics everywhere except within a dis-
tance R ≈ 1.6/T from the quark. Since the perturbation is small, the kinetic
energy contribution of the diffusion mode to the energy density is suppressed
by N 2

c and, thus, it does not contribute in the upper panel. Figure taken from
Ref. [298].
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the energy density of the fluctuations are suppressed by
√
λ/N 2

c with respect to
that of the background plasma, justifying the linearized treatment. Remarkably, it
turns out that disturbances like those in Fig. 8.4 are well described by hydrody-
namics everywhere except within ≈ 1.6/T of the position of the quark [289].
So, the calculation that we have reviewed in this Section is important for two
reasons. First, it demonstrates that a pointlike probe passing through the strongly
coupled plasma does indeed excite hydrodynamic modes. And, second, it demon-
strates that in the strongly coupled plasma, the resulting disturbance relaxes to
a hydrodynamic excitation in local thermal equilibrium surprisingly close to the
probe.

The observation that point particles moving through the strongly coupled fluid
excite sound waves, which are collective excitations, is at odds with intuition
based upon the interaction of, say, electrons with water. In this example, most of
the energy lost by the electron is transferred to photons and not to the medium.
These photons, in turn, have long mean free paths and dissipate their energy far
away from the electron (or escape the medium entirely). Thus, the effective size
of the region where energy is dissipated is very large, given by the photon mean
free path. Hydrodynamics will only describe the physics on longer length scales
than this. The reason that no Mach cone is formed is that the length scale over
which the energy is deposited is long compared to the length scale over which
the electron slows and stops. The situation is similar in weakly coupled gauge
theory plasmas; even though the gauge modes in these theories do interact, they
still have long mean free paths proportional to 1/g4. In sharp contrast, in the
strongly coupled plasma of N = 4 SYM theory there are no long-lived quasi-
particle excitations (let alone photons) that could transport the energy deposited
by the pointlike particle over long distances. Instead, all the energy lost by the
pointlike probe is dumped into collective hydrodynamic modes over a charac-
teristic length scale ∼ 1/T , which is the only length scale in this conformal
plasma.

8.3.3 Implications for heavy ion collisions

The calculation that we have reviewed in this section suggests that a high energy
quark plowing through the strongly coupled plasma produced in heavy ion col-
lisions at RHIC should excite a Mach cone. As we argued just above, this
phenomenon is not expected in a weakly coupled plasma. The Mach cone should
have consequences that are observable in the soft particles on the away-side of
a high energy trigger hadron. However, for a hydrodynamic solution like that in
Fig. 8.4, it turns out that the diffusion wake contains enough momentum flux along
the direction of the energetic particle to “fill in” the center of the Mach cone,
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meaning that the Mach cone is not sufficiently prominent as to result in peaks
in the particle distribution at �φ = π ± "M [245, 657]. As we discussed above,
the observed peaks at �φ = π ± φv receive a significant contribution from the
event-by-event v3 due to event-by-event fluctuations that introduce “triangularity”.
Detecting evidence for Mach cones in heavy ion collisions will require careful sub-
traction of these effects from the data or the design of new observables based upon
multi-particle correlations, as well as careful theoretical analysis of the effects of
the rapid expansion of the fluid produced in heavy ion collisions on the putative
Mach cones.

8.3.4 Disturbance excited by a moving quarkonium meson

Strong coupling calculations like that of the disturbance excited by an energetic
quark moving through the plasma of N = 4 SYM theory can help guide the con-
struction of more phenomenological models of the coupling of energetic particles
to hydrodynamic modes. To further that end, we close with an example which
shows that not all probes behave in the same way.

As we shall describe in Section 8.7, a simple way of modeling a “quarkonium”
meson made from a heavy quark and antiquark embedded in the strongly cou-
pled plasma of N = 4 SYM theory is to consider a string with both ends at the
boundary – the ends representing the quark and antiquark. We shall see in Sec-
tion 8.7 that even when this string is moving through the plasma, it hangs straight
downward into the AdS black hole metric, rather than trailing behind as happens
for the string hanging downward from a single moving quark. The fact that the
“U” of string hangs straight down and does not trail behind the moving quark and
antiquark implies that the heavy quarkonium meson moving through the strongly
coupled plasma does not lose any energy, at least at leading order. The energy loss
of such a meson has been computed and is in fact nonzero but is suppressed by
1/N 2

c [334].
Despite the fact that the leading order quarkonium energy loss vanishes, the

leading order disturbance of the fluid through which the meson is moving does
not vanish [407]. Instead, the meson excites a Mach cone with no diffusion wake,
providing an example of what we called Scenario 2 at the end of Section 8.3.1. It is
as though the moving meson “dresses itself” with a Mach cone, and then the meson
and its Mach cone propagate through the fluid without dissipation, to leading order.
To illustrate this point, the metric fluctuation and consequent boundary stress tensor
induced by a semiclassical string with both ends on the boundary moving with a
velocity v has been calculated [407]. For a string with the two endpoints aligned
along the direction of motion and separated by a distance l the long distance part
(low momentum) part of the associated stress tensor is given by
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δT 00 = �

q2 − 3 (q · v)2

(−q2
(
1 + 2v2σ

) − 3v2 (q · v)2 (1 − 2σ)
)
, (8.114)

δT 0i = �

k2 − 3 (q · v)2 2q · v
(
1 − (1 − v2)σ

)
qi + 2�σ vi , (8.115)

δT i j = �

k2 − 3 (q · v)2 2 (q · v)2
(−1 + (1 − v2)σ

)
δi j − (8.116)

−�

v2

(
1 + 2v2σ

) viv j

v2
,

where σ = σ(l, T ) is a dimensionless function of the length of the meson and the
temperature and the prefactor takes the form

� = √
λ

F(lT )

l
, (8.117)

with F a dimensional function.
The expression (8.114) clearly shows that all the spin zero, one and two com-

ponents of the stress tensor are excited. The spin zero components are multiplied
by the sound propagator, signaling the emission of sound waves. (Note that in the
low-q limit the width of the sound pole vanishes.) The spin one component cor-
responds to the terms proportional to the velocity of the particle vi . These terms
are analytic in q; in particular it seems that there is no pole contribution from the
diffusive mode. More careful analysis shows that the diffusive mode decays faster
than that excited by a quark probe.

The magnitude of the disturbance in the strongly coupled plasma that is excited
by a passing quarkonium meson is no smaller than that excited by a passing quark.
However, the total integral of the energy and momentum deposited is zero, as can
be seen by multiplying the momentum densities by ω = v · q and taking the limit
q → 0. This is consistent with the fact that, to the order at which this calculation
has been done, the meson does not lose any energy. This is an interesting example
since it indicates that the loss of energy and the excitation of hydrodynamic modes
are distinct phenomena, controlled by different physics. This example also illus-
trates the value of computations done at strong coupling in opening one’s eyes to
new possibilities: without these calculations it would have been very hard to guess
or justify that such a separation in magnitude between the strength of the hydrody-
namic fields excited by a probe and the energy lost by that probe could be possible.
It would be interesting to analyze the soft particles in heavy ion collisions in which
a high transverse momentum quarkonium meson is detected, to see whether there is
any hint of a Mach cone around the meson – in this case without the complication
of soft particles from a diffusion wake filling in the cone.
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8.4 Stopping light quarks

As we have discussed extensively in Section 2.3, the dominant energy loss process
for a parton moving through the QCD plasma with energy E in the limit in which
E → ∞ is gluon radiation, and in this limit much (but not all; see Section 8.5) of
the calculation can be done at weak coupling. However, since it is not clear at which
energy the E → ∞ approximation becomes reliable, it is also worth analyzing
the entire problem of parton energy loss and jet quenching at strong coupling to
the degree that is possible. For the case of a heavy quark propagating through the
strongly coupled plasma of N = 4 SYM theory, this approach has been pursued
extensively, yielding the many results that we have reviewed in the previous three
sections. Less work has been done on the energy loss of an energetic light quark
or gluon in the N = 4 SYM plasma, in particular since they do not fragment into
anything like a QCD jet. This was illustrated by Hofman and Maldacena [457], who
considered the following thought experiment. Suppose you did electron–positron
scattering in a world in which the electron and positron coupled to N = 4 SYM
theory through a virtual photon, just as in the real world they couple to QCD. What
would happen in high energy scattering? Would there be any “jetty” events? They
showed that the answer is no. Instead, the final state produced by a virtual photon
in the conformal N = 4 SYM theory is a spherically symmetric outflow of energy.
Similar conclusions were also reached in Refs. [433, 293]. The bottom line is that
there are no jets in strongly coupled N = 4 SYM theory, which would seem to
rule out using this theory to study how jets are modified by propagating through
the strongly coupled plasma of this theory. Many authors have nevertheless used
the strongly coupled plasma of N = 4 SYM theory to gain relevant insights, for
example by studying the energy loss and momentum diffusion of a heavy quark
plowing through the plasma as we have described in Sections 8.1 and 8.2, as well
as the wake it produces, described in Section 8.3. In the present section, we ask
how a light quark or gluon loses energy in the N = 4 SYM plasma in the hope
that, even if this is not a good model for jets and their quenching in QCD, some
qualitative strong coupling benchmarks against which to compare experimental
results may be obtained. This program has been pursued in Refs. [406, 293, 294,
73, 74]. Furthermore, we shall demonstrate in Section 8.6 that even though there
are no jets in strongly coupled N = 4 SYM theory it is still possible to construct
a collimated beam of radiation in this theory and watch how it is quenched by the
plasma.

As we have seen in Section 5.5, and as we will describe extensively in Chap-
ter 9, dynamical quarks can be introduced into N = 4 SYM theory by introducing
a D7-brane that fills the 3 + 1 Minkowski dimensions and fills the fifth dimension
from the boundary at z = 0 down to z = zq . The mass of the (heavy) quarks

https://doi.org/10.1017/9781009403504.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.008


302 Probing strongly coupled plasma

that this procedure introduces in the gauge theory is
√
λ/(2π zq). Light quarks are

obtained by taking zq → ∞, meaning that the D7-brane fills all of the z dimen-
sion. At T 
= 0, what matters is that the D7-brane fills the z dimension all the
way down to, and below, the horizon. While this construction introduces light fun-
damental degrees of freedom into the theory, it does not alter the fact that there
are no true jets. This is the principal origin of the difficulty in using gauge/string
duality to study light quark energy loss: depending on which aspects of real jets
in QCD we wish to mimic, we can make different choices in the way we set-up a
dual gravitational calculation, choices that correspond on the gauge theory side to
different ways of preparing an energetic initial state. This range of possible choices
necessarily introduces ambiguity in the analysis since there can be no single gravi-
tational calculation that encompasses all the relevant aspects of jet physics in QCD.
Nevertheless, there exist common features across all these choices that allow us to
draw some conclusions about the dynamics of energetic light quarks and gluons
moving through strongly coupled plasma.

8.4.1 Back-to-back jets as the endpoints of a string

We begin by focusing on the fact that a light quark jet is initiated by a single
energetic quark, which suggests that a natural approach is to model a light quark-
antiquark pair moving away from each other back-to-back with some initial high
energy (as would become a back-to-back pair of jets in QCD) by the endpoints
of a string located at some depth z in the bulk that are moving apart from each
other in, say, the x-direction [293, 294]. The quark and antiquark must be within
the D7-brane, but since this D7-brane fills all of z there is nothing stopping them
from falling to larger z as they fly apart from each other, and ultimately there is
nothing stopping them from falling into the horizon. It should be evident from this
description that there is an arbitrariness to the initial condition: at what z should
the quark and antiquark be located initially? What should the string profile be
initially? What should the initial profile of the velocity of the string be? These
choices correspond in the gauge theory to choices about the initial quantum state
of the quark–antiquark pair and the gauge fields surrounding them. And, there is
no known way to choose these initial conditions so as to obtain a QCD-like jet so
the choices made end up being arbitrary. (The analogous set up for a back-to-back
pair of high energy gluons [406] involves a doubled loop of string, rather than an
open string with a quark and antiquark at its ends.)

Ambiguities about the initial conditions notwithstanding, several robust qualita-
tive insights have been obtained from these calculations. First, the quark and the
antiquark always fall into the horizon after traveling some finite distance xstopping.
The string between them falls into the horizon also. An example is shown in
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Figure 8.5 A quark–antiquark pair moving away from each other fall into the
horizon after a finite stopping distance. The figure shows the quark–antiquark
pair (green and orange dots) and the string that connects them (in blue) at four
times, starting at an early time when they are close together and the string is near
the boundary and ending just before they have traveled their stopping distance and
they and the string have reached the horizon. See text for further details. Figure
taken from Ref. [294].

Fig. 8.5. In the gauge theory, xstopping corresponds to the stopping distance for
the initially energetic quark, namely the distance that it takes this quark to slow
down, thermalize, and equilibrate with the bulk plasma – the gauge theory analog
of falling into the horizon. This is qualitatively reminiscent of the experimental
finding that there are circumstances in which an energetic parton that would have
become a jet in vacuum is instead quenched by the plasma to such a degree that it
becomes many soft particles with a close-to-thermal momentum distribution.

Second, although xstopping does depend on details of the initial conditions, the
dominant dependence is that it scales like E1/3, where E is the initial energy of
the quark [406, 294]. More precisely, upon analyzing varied initial conditions the
maximum possible stopping distance is given by [294]

xstopping = C

T

(
E

T
√
λ

)1/3

, (8.118)

with C ≈ 0.5. If there is a regime of E and T in which it is reasonable to treat
the entire problem of jet quenching at strong coupling, and if in this regime the
droplet of plasma produced in a heavy ion collision is large enough and lives
long enough that it can stop and thermalize an initial parton with energy E that
would in vacuum have become a jet, then the scaling (8.118) has interesting qual-
itative consequences. For example, if this scaling applies to collisions with two
different collision energies

√
s1 and

√
s2, yielding plasmas that form at different

temperatures T1 and T2, then jets in these two experiments whose energies sat-
isfy E1/E2 ∼ (T1/T2)

4 should have similar observed phenomenology. Turning
this speculation into semi-quantitative expectations for experimental observables
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requires careful study of jet stopping in a realistic model of the dynamics in
space and time of the expanding droplet of plasma produced in a heavy ion
collision.

Third, a light quark with initial energy E that loses this energy over a distance
xstopping loses most of its energy near the end of its trajectory, where it thermal-
izes (falls into the horizon) [294]. This pattern of energy loss is reminiscent of
the “Bragg peak” that characterizes the energy loss of a fast charged particle in
ordinary matter, where the energy loss has a pronounced peak near the stopping
point. It is quite different from the behavior of a heavy quark in strongly coupled
plasma which, as we saw in Section 8.1, loses energy at a rate proportional to its
momentum, making it reasonable to expect that a heavy quark that slows from a
high velocity to a stop loses more energy earlier in its trajectory than later.

8.4.2 A colorless jet sourced by a virtual photon

Although the approach in the previous section is intuitive, it suffers from the inher-
ent ambiguity in defining the initial conditions for the string that joins the quark
and antiquark. This arbitrariness originates from the fact that the precise form of the
gauge theory source dual to a given initial string configuration selected in the grav-
ity theory is not known. One is specifying initial conditions clearly and explicitly
in the gravity theory without knowing in precise terms what those initial conditions
correspond to in the gauge theory. There is, however, a complementary approach
to the physics of energetic light quarks moving through strongly coupled plasma
where one focuses initially on formulating a gauge theory problem which, in QCD,
would lead to the formation of energetic jets and then studies the dual description
of the set-up one has formulated. An interesting example of this approach is the
study of the response of the strongly coupled plasma to an external gauge field
wave-packet characterized by a very large time-like four-momentum (energy E
and three-momentum |�k| comparable and both much greater than virtuality q) and
a small packet width, L [73, 74]. This is the analog of analyzing the decay of an
energetic virtual photon or an electroweak boson. In QCD this excitation decays
into a quark–antiquark pair and, since E � q by construction, the quark and anti-
quark are extremely boosted and are therefore almost collinear with each other,
forming a single jet. Note that this jet is different from those of interest in heavy
ion collisions (or for that matter in elementary particle collisions) since it carries no
net color charge. In this way (and perhaps in others) it is not analogous to a QCD
jet initiated by a single quark or a gluon. Nevertheless, this construction provides a
well-defined way to generate energetic light quarks moving through the plasma in
QCD. In the strongly coupled theory, this external source creates a localized exci-
tation of strongly interacting fields which propagate through the strongly coupled
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plasma with a large initial boost. We will refer to this excitation loosely as a jet.
The advantage of this procedure is that once the gauge theory source has been spec-
ified, which is equivalent to specifying the process of creating the jet, there are no
remaining ambiguities and one can then analyze the dual problem on the gravita-
tional side. In Section 8.6 we shall describe an (apparently) quite different way of
creating a localized high energy excitation of strongly interacting fields which can
also be analyzed via gauge/string duality.

It is natural to ask why we do not consider instead an external gauge theory
wave-packet with E ∼ q � |k|, as in QCD this would produce a back-to-back
quark–antiquark pair and hence a back-to-back pair of jets. Would making this
choice result in a pair of jets that were each more similar to the jets in QCD than the
single jet above? Or, at the least, more similar to the back-to-back jets described by
the quark–antiquark pair connected by a string in Section 8.4.1? The problem with
this line of thought is that in strongly coupled N = 4 SYM theory a source like
this produces a spherically symmetric outward flow of energy, rather than a back-
to-back pair of jets [457]. The single “jet” that we shall analyze can be obtained by
giving this spherically symmetric flow of energy such a large boost that it becomes
a tightly focused flow of energy with E ∼ |k| � q. So, although it sounds artificial
from a QCD perspective to consider a color-singlet jet made by boosting a quark–
antiquark pair to the point that they are almost collinear, this construction has the
virtue that it yields a jet-like object in both QCD and N = 4 SYM theory.

The simplest way to add the external gauge field wave-packet is to modify the
Lagrangian for the strongly coupled gauge theory by adding an external U (1)
gauge field source:

LQFT → LQFT + jμ Aμ

cl , (8.119)

with jμ the U (1) current in the strongly coupled gauge theory and Aμ

cl a classical
external field characterized by a narrow envelop function �(x) of typical size L .
The external gauge field can be parametrized as

Aμ

cl = εμNA
[
eikμxμ + h. c.

]
�(x), (8.120)

with kμ a four momentum with large energy k0 = E and three-momentum |k| ≈ E
and a small virtuality k2 = −q2, with q2 � E2. NA is a normalization factor that
can be arbitrarily small and εμ is a given polarization vector. This parametrization
is chosen to make apparent the large momentum component in the field, k. From
the Fourier analysis of this expression it is clear that all Fourier modes will have
a typical large momentum kμ plus a small momentum of order 1/L introduced by
the spacetime dependence of the envelop function � which, in general, has compo-
nents in all four space-time directions. However, we will see later that the aspects
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of the Fourier transform of the function � that are most relevant for our discus-
sion are its distribution in energy and in the component of momentum along the
k-direction. Since we want � to contribute only momenta that are small compared
to the typical momentum k, we must require E � 1/L .

The presence of this source generates a non-vanishing expectation value for the
U (1) current jμ(x) in the plasma, which characterizes the jet. At early times after
the disappearance of the external field, the current is localized on the same length
scale as the external source was and is propagating with the characteristic momen-
tum kμ. At later times, its interaction with the plasma leads to the attenuation of
the current components and its eventual thermalization. As in the previous analysis
of a quark–antiquark pair connected by a string, a stopping distance can be defined
as the attenuation distance of the expectation value of the current in the presence
of the external source

〈 jμ(t, x)〉Acl
(8.121)

which, for sufficiently small external sources, can be expressed in terms of three-
point correlators in the gauge theory.

As explained in Section 5.1.4, in the gravitational theory the dual of the gauge
theory current is a U (1) gauge field living in the D7-brane, with a boundary value
given precisely by the external source Eq. (8.120). We now see the advantage of
this construction: as soon as we have specified the problem precisely on the gauge
theory side, its specification on the gravitational side of the duality is immediately
in hand.

For the purpose of this discussion, we can also restrict our attention to excita-
tions confined to five out of the eight dimensions of the D7-brane. The computation
of the time evolution of the expectation value of the current demands the determi-
nation of three-point functions on the gravity side, as in the gauge theory. This
makes the calculation rather demanding and we shall not reproduce it here. We
refer the interested reader to Ref. [73], where the calculation is performed in detail.
Although at a technical level the calculation is involved, its main features can be
understood entirely in terms of simple physical considerations, as we now describe.

The dynamics of the expectation value of the current in the boundary gauge
theory, which is what we are after in order to determine the stopping distance for
the pulse of energy density propagating through the plasma that is produced by
the source we have described, is governed in its dual description by the behav-
ior of excitations in the gravity theory that, at least close to the boundary, have
very short wavelengths. This makes it possible to analyze the propagation of these
excitations via a geometric optics approximation, as in electromagnetism, which
reduces the gravitational problem of interest to the determination of the trajectories
of massless particles in the gravitational background. (We shall discuss the range
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of applicability of this geometric optics approach momentarily.) These trajectories
are given by null geodesics in the AdS5 black hole metric, the same trajectories as
those followed by the end points of the strings in Section 8.4.1, which are char-
acterized by a four-vector that is constant along the trajectory. This four-vector
can be interpreted as the initial momentum that the excitation (we shall call it a
“particle”) in the gravitational background has when it is close to the boundary; in
the gauge theory, it coincides with the hard momentum of the gauge field sourced
by the external current. Because the infalling particle follows a null geodesic, its
position is given by

xμ(z) =
∫ z

zq

dz′√gzz
gμνkν(−kαkβgαβ

)1/2 , (8.122)

where gM N is the metric (5.34) for the AdS Schwarzschild blackhole, the Greek
indices denote the gauge theory directions and where zq is the initial position of
the particle, which we shall relate to the virtuality q of the gauge field it describes
in the boundary theory. As in the case of the string endpoints in Section 8.4.1,
the gravitational pull of the black branes makes the particle fall into the horizon,
which corresponds to the thermalization of the jet. From the expression (8.122) the
stopping distance can be estimated by finding the distance travelled by the particle
along the gauge theory direction from its production point near the boundary until
it falls into the horizon. Choosing the direction of motion of the particle as the
x-direction, we find from (8.122) that

xstopping =
∫ z0

zq

dz
1√

z4

z4
0
+ q2

|k|2
, (8.123)

where z0 = 1
πT is the position of the horizon, as in Eq. (5.36). The expression

(8.123) is not yet the result that we are after, because the excitation of the gauge
theory sourced by (8.120) is described initially by a wave-packet with some spread
in virtuality q whereas what we have described so far is the dual description of an
excitation with a single value of q. We shall address this momentarily, but must
first understand the implications of (8.123).

The integral (8.123) is dominated by values of z ∼ z∗ with the characteristic
value z∗ given by

z∗ ≡ z0 q1/2/ |k|1/2 . (8.124)

This is the scale at which the trajectory of the dual particle, which at early times
moves almost parallel to the brane, with its downward velocity in the z-direction
much smaller than its velocity in the x-direction, starts to bend significantly, pick-
ing up a significant velocity downward toward the horizon. Recall that we are
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analyzing the response to a source with q � |k|, meaning that z∗ � z0. The lower
limit of the integration, zq , must be chosen to correspond to the smallest value of
z for which the particle approximation to the wave-packet (i.e. the gravitational
analog of the geometric optics approximation) is valid. An explicit analysis [433]
which we will not reproduce here shows, perhaps not surprisingly, that zq ∼ 1/q.
So, the larger the virtuality of the wave is, the closer the initial position of the dual
particle is to the boundary. We certainly need q � T , to ensure that zq � z0. In
fact, we shall see that we need q to satisfy the stronger condition q � T 2/3|k|1/3,
which ensures that zq � z∗. So, as long as |k| is very much larger than T , we can
proceed with our analysis upon assuming that

T � T 2/3|k|1/3 � q � |k|, meaning that z0 � z∗ � zq . (8.125)

Since zq is the smallest of these scales, in our initial analysis of (8.123) we can
set zq = 0. Upon so doing, we can immediately check that if we integrate (8.123)
from z = 0 to z = z∗ we find that as the particle falls from its starting point to zq it
travels a distance in the x-direction that is proportional to z2

0/z∗. This tells us that
as we make q smaller and smaller, while still keeping it within the range (8.125),
although z∗ moves closer and closer to the boundary (see (8.124)) the distance in
x that the particle travels before it reaches z = z∗ and its trajectory starts to bend
significantly downward toward the horizon gets longer and longer. We can think of
this delay as reflecting the fact that at smaller and smaller q the initial velocity of
the particle in the x-direction is closer and closer to the speed of light, making it
harder and harder for the gravitational field of the black hole to turn its trajectory
downward.

We now turn our attention to the upper limit of the integral (8.123). As long as
|k| � q, meaning that the virtuality of the jet is much smaller than its energy, the
integral is dominated by the region z ∼ z∗ � z0 and is insensitive to the behavior
of the integrand in the region z ∼ z0 near the horizon, which allows us to take the
upper limit of the integrand to infinity. So, upon assuming that (8.125) is satisfied
with zq , z∗ and z0 being well-separated scales, we can safely replace the lower and
upper limits of the integral by zero and infinity, do the integral, and find

xstopping = �
[
1/4

]2

4π3/2

(
E2

q2

)1/4
1

T
, (8.126)

where we have used |k| ≈ E . This is the stopping distance of a jet (a jet in the sense
of this section) with a particular energy E and virtuality q. The virtuality can be
thought of as one of the parameters related to how the jet of energy E is prepared
and we see that, as in the description of Section 8.4.1 in which we modeled the jet
as a falling string, the stopping distance depends on how the jet is prepared. We
should not be concerned about the apparent contradiction between the result here
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that the stopping length of a jet with fixed virtuality is proportional to E1/2 and the
result from Section 8.4.1. What was calculated in Section 8.4.1 was the maximal
stopping distance among all possible jets with some energy E . We will evaluate
this with more care below, but it is already possible to see how the correct scaling
(8.118) will emerge. Clearly, from (8.126) and from our earlier discussion of how
reducing q means that the particle can fly farther before gravity manages to bend
it downward into the horizon, the maximal stopping distance will be found for the
smallest allowed values of q. From (8.125), we see that the smallest allowed values
of q are those for which zq ∼ z∗ and q ∼ E1/3T 2/3. Substituting this into (8.126),
we find

xmaximum stopping ∼ E1/3T −4/3, (8.127)

which is in agreement with the result (8.118) obtained via the analysis of falling
strings up to a factor of

√
λ. We will discuss this factor only after we first rederive

(8.127) in a more careful way.
In our analysis so far we have neglected the fact that the jet-like object that we

wish to study has a wave-packet profile parameterized by (8.120). The character-
istic size of the envelop function � in the parameterization (8.120) introduces an
uncertainty in the momentum of the wave of order 1/L , since the field (8.120) can
be understood as an ensemble of excitations with momenta k̃ distributed around k
with spread 1/L:

k̃ = k +
(
O
(

1

L

)
,O

(
1

L

)
,O

(
1

L

)
,O

(
1

L

))
. (8.128)

These soft components change the virtuality of the different modes, meaning that
the wave-packet is a superposition of modes with different virtuality as well as
different energy. The largest change in the virtuality is due to the soft components
along the direction of k, which yield a typical contribution to the virtuality

q2
L ∼ E/L . (8.129)

The contribution to the virtuality from the fluctuations perpendicular to k is sup-
pressed in comparison and can be neglected. Thus, even if the virtuality −k2 = q2

is small, the production of jets described via the wave-packet (8.120) results in a
jet made from modes whose typical virtuality is qL as in (8.129) meaning that the
stopping distance of a typical mode in the jet is given by

T xtypical stopping ∼ (E L)1/4

T
. (8.130)

Since most of the modes have a virtuality of order qL , the most part of most
wave-packets will be attenuated as they travel this typical stopping distance. Nev-
ertheless, by virtue of Eq. (8.126), those components of the wave packet with
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q2 < q2
L will have a longer propagation length, and it is those components that

we must analyze in order to obtain the maximal stopping distance.
We have already seen from the result (8.126) that for a given jet energy the

longest stopping distances are achieved for the smallest virtualities q2. However,
Eq. (8.126) is not valid for arbitrarily small values of q2 since in this limit the
geometric optics approximation used to derive the stopping distance (8.126) fails.
As in any other context in which a geometric optics approximation is used, its
validity requires that the wavelength of the particle in question does not change
significantly over a distance given by that wavelength itself. The wavelength of the
particle is determined by the particle momentum in the z-direction, which can be
obtained from the null geodesic equation, qM gM N qN = 0, and is

qz(z) = E

f (z)

√
z4/z4

0 + z∗4/z4
0 , (8.131)

with f (z) = 1 − z4/z4
0 as in (4.33). The wavelength of the particle is then

λ = √
gzz/qz . In the region z ∼ z∗ that dominates the calculation of the stopping

distance, the derivative of λ with respect to the proper length in the z direction,
 = ∫ √

gzzdz, must be small. This yields the condition 1/
√

gzz∂zλ � 1. This
condition is satisfied, and the result (8.126) is valid, only if(

π4T 4 E2
)1/3 � q2 . (8.132)

Together with the condition that q2 � E2, required directly from the setup of the
calculation, we find that we have now reproduced the range (8.125) within which
q must lie. Using (8.132) in (8.126), we reproduce the maximal stopping distance
(8.127), which can be phrased as the inequality

T xstopping � (E/T )1/3 . (8.133)

For values of q2 smaller than the lower limit of the range (8.132), the geometric
optic calculation stops being valid. Nevertheless, the explicit calculation in terms of
three-point functions can be applied to any q2 and shows that for those small values
of q2 the gauge field excitations are absorbed very quickly by the black hole, as can
be inferred from the fact that in this circumstance zq > z∗. So, analysis of this case
does not change the conclusion (8.133). We see that the present analysis yields the
same E1/3 dependence of the maximal stopping distance that was also obtained in
Section (8.4.1) via a completely different calculation in which a back-to-back pair
of jets was modeled by a string. However, the two results nevertheless do differ
parametrically since the stopping distance (8.118) is suppressed relative to (8.133)
by a scaling of the energy E by a factor of

√
λ. Both calculations find the same

stopping distance, but they do so for objects whose energy differs by this factor.
At a qualitative level, this factor can be understood as arising from the fact that
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the string in Section 8.4.1 describes a hard parton dressed with a cloud (of fields;
of softer partons) whose energy is thus greater than that of the object we have
analyzed here, it turns out by a factor of

√
λ. Loosely speaking, one can think of

(8.133) as the stopping distance for an object that is initially a single hard parton
with energy E whereas (8.118) is the stopping distance for an object with energy
E that is dressed from the beginning.

The parametric difference between the results (8.118) and (8.133) from these
two different calculations of the maximal stopping distance are yet further evi-
dence that in this strongly coupled theory the behavior of “jets” depends on the
details of how these excitations are prepared. In fact, we could repeat the analysis
that in this section we applied to the energetic excitations sourced by an external
gauge field for the disturbances sourced by the insertion of other operators with
varying scaling dimension �. In QCD, operators with large � will involve many
quark fields, meaning that using them as sources would correspond to injecting
multiple partons into the strongly coupled plasma. If done at large enough energy,
we would always get a collimated beam resembling a jet. (In Section 8.6 we shall
describe a completely different way of creating a collimated beam of many glu-
ons.) In the strongly coupled theory, the treatment of the excitations sourced by
operators with dimension � would be completely analogous to the calculation of
those sourced by the gauge field that we have described except that the mass of
the falling particle obtained in the geometric optics approximation would be larger,
as it would depend on � as in Eq. (5.24). The maximum stopping distance would
therefore scale as [74]

T xstopping �
(

ET

�

)1/3

, (8.134)

which means that the excitations sourced by higher dimensional operators are
easier to stop.

The analysis that leads to Eq. (8.134) was performed only for local operators
with � parametrically of order one and thus is not applicable to the excitations
described by a falling string discussed in Section 8.4.1. Nevertheless, it is tempting
to note that for very massive fields the scaling dimension of the dual operator is
roughly the mass, as in Eq. (5.24), and to note furthermore that the strings con-
sidered in the stopping distance calculations of Section 8.4.1 have a mass of order
M ∼ √

λ/zc, with zc the initial position of the endpoint of the falling string. This
suggests that the falling strings of Section 8.4.1 can, loosely, be thought of in the
language of this section as the insertion of excitations sourced by an operator with
a scaling dimension � ∼ √

λ. The result (8.134) would then have the same para-
metric dependence as the result (8.118) for the falling strings. Or, as we phrased it
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loosely above, the result (8.118) for a falling string with energy E can be under-
stood as the stopping distance for a dressed object with energy E containing many
partons within it.

We caution, however, that attempting to explain a distinction between results that
differ only by a factor of

√
λ is perilous, since this distinction will almost certainly

disappear in QCD itself. At high energies in QCD we expect the relevant coupling
to become small and the difference between the “jets” created as in Section 8.4.1
and in the present section (8.4.2) should disappear. It is therefore not obvious which
of the two calculations describes “jets” that are better caricatures of the jets in
QCD. This observation is yet one more way to see the difficulties of interpreting the
various holographic calculations of the quenching of “jets” made of energetic light
particles, which is to say the difficulties of using calculations done in a strongly
coupled theory that has no real jets to gain qualitative insights into jet quenching
in QCD. That said, the result that the maximal stopping distance is proportional to
E1/3 arises in both calculations, and we shall see it arise in a completely different
third calculation in Section 8.6, making this result seem rather robust.

In summary, the two different approaches to energetic light particles that we
have described have some common features but also some important differences,
differences which ultimately arise from the fact that jets in the QCD sense do
not exist in strongly coupled theories. Nevertheless, the calculations provide many
insights into the physics of energetic light particles propagating through strongly
coupled plasma. It will be very interesting to see how these insights fare when com-
pared with results on jet quenching in heavy ion collisions at RHIC and the LHC,
and in particular to comparisons between how jets of different energies survive
propagation through different lengths of plasma with varying temperatures.

8.5 Calculating the jet quenching parameter

As we have described in Section 2.3, when a parton with large transverse momen-
tum is produced in a hard scattering that occurs within a heavy ion collision,
the presence of the medium in which the energetic parton finds itself has two
significant effects: it causes the parton to lose energy and it changes the direc-
tion of the parton’s momentum. The latter effect is referred to as “transverse
momentum broadening”. In the high parton energy limit, as established first in
Refs. [421, 98, 817], the parton loses energy dominantly by inelastic processes that
are the QCD analogue of bremsstrahlung: the parton radiates gluons as it interacts
with the medium. It is crucial to the calculation of this radiative energy loss pro-
cess that the incident hard parton, the outgoing parton, and the radiated gluons are
all continually being jostled by the medium in which they find themselves: they
are all subject to transverse momentum broadening. The transverse momentum
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broadening of a hard parton is described by P(k⊥), defined as the probability that
after propagating through the medium for a distance L the hard parton has acquired
transverse momentum k⊥. For later convenience, we shall choose to normalize
P(k⊥) as follows: ∫

d2k⊥
(2π)2

P(k⊥) = 1 . (8.135)

From the probability density P(k⊥), it is straightforward to obtain the mean trans-
verse momentum picked up by the hard parton per unit distance travelled (or,
equivalently in the high parton energy limit, per unit time):

q̂ ≡ 〈k2
⊥〉
L

= 1

L

∫
d2k⊥
(2π)2

k2
⊥ P(k⊥) . (8.136)

P(k⊥), and consequently q̂, can be evaluated for a hard quark or a hard gluon. In
the calculation of radiative parton energy loss [98, 817, 797, 420, 414, 795, 76]
that we have reviewed in Section 2.3 and that is also reviewed in Refs. [101, 551,
422, 490, 251, 13, 799, 591], q̂ for the radiated gluon plays a central role, and this
quantity is referred to as the “jet quenching parameter”. Consequently, q̂ should
be thought of as a (or even the) property of the strongly coupled medium that is
“measured” (perhaps constrained is a better phrase) by radiative parton energy loss
and hence jet quenching. But, it is important to note that q̂ is defined via transverse
momentum broadening only. Radiation and energy loss do not arise in its definition,
although they are central to its importance.

The BDMPS calculation of parton energy loss in QCD involves a number of
scales which must be well separated in order for this calculation to be relevant.
The radiated gluons have energy up to ωc ∼ q̂ L2 and transverse momenta of order√

q̂ L . Both these scales must be much less than E and much greater than T . And,
αS evaluated at both these scales must be small enough that physics at these scales
is weakly coupled, even if physics at scales of order T is strongly coupled. In
heavy ion collisions at RHIC, with the highest energy partons having E only of
order many tens of GeV, this separation of scales can be questioned. In heavy ion
collisions at the LHC it is possible to study the interaction of partons with energies
of order a few hundred GeV, which should improve the reliability of the calcula-
tions reviewed in this section. In this section, we shall review the calculation of
q̂ – the property of the plasma that describes transverse momentum broadening
directly and, in the high parton energy limit in which the relevant scales are well
separated, controls the transverse momentum and the energy of the gluon radiation
that dominates parton energy loss.

It has been shown via several different calculations done via conventional field
theoretical methods [251, 576, 317] that the probability for a hard parton in the
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representation R of SU (N ) to obtain transverse momentum k⊥ after it travels a
distance L through a medium is given by the two-dimensional Fourier transform in
x⊥ of the expectation value (8.138) of two light-like Wilson lines separated in the
transverse plane by the vector x⊥,

P(k⊥) =
∫

d2x⊥ e−ik⊥·x⊥ WR(x⊥) (8.137)

with

WR(x⊥) = 1

d (R)

〈
Tr

[
W †

R[0, x⊥] WR[0, 0]
]〉

, (8.138)

where

WR
[
x+, x⊥

] ≡ P

{
exp

[
ig

∫ L−

0
dx− A+

R(x+, x−, x⊥)

]}
(8.139)

is the representation-R Wilson line along the lightcone, L− = √
2L is the distance

along the lightcone corresponding to traveling a distance L through the medium,
and where d (R) is the dimension of the representation R. Note that the require-
ment (8.135) that the probability distribution P(k⊥) be normalized is equivalent to
the requirement that WR(0) = 1. The result (8.137) is similar to (8.51) although
the physical context in which it arises is different as is the path followed by the
Wilson line. One of the derivations [251] of (8.137) is analogous to the derivation
of (8.51) that we reviewed in Section 8.2. Another derivation [317] proceeds via
the use of the optical theorem to relate P(k⊥) to an appropriate forward scattering
matrix element that can then be calculated explicitly via formulating the calculation
of transverse momentum broadening in the language of Soft Collinear Effective
Theory [124, 125, 123, 127, 126]. This derivation in particular makes it clear that
(8.137) is valid whether the plasma through which the energetic quark is propa-
gating, i.e. the plasma which is causing the transverse momentum broadening, is
weakly coupled or strongly coupled.

It is important to notice that the expectation value of the trace of the product of
two light-like Wilson lines that arises in P(k⊥) and hence in q̂, namely WR(x⊥) of
(8.138), has a different operator ordering from that in a standard Wilson loop. Upon
expanding the exponential, each of the A+ that arise can be written as the product
of an operator and a group matrix: A+ = (A+)ata . It is clear (for example, either by
analogy with our discussion around (8.45) in the analysis of momentum broadening
of heavy quarks or from the explicit derivation in Ref. [317]) that in WR(x⊥) both
the operators and the group matrices are path ordered. In contrast, in a conventional
Wilson loop the group matrices are path ordered but the operators are time ordered.
Because the operators in (8.138) are path ordered, the expectation value in (8.138)
should be described by using the Schwinger–Keldysh contour in Fig. 8.6 with one
of the light-like Wilson lines on the Im t = 0 segment of the contour and the other
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ti

ti − iε tf − iε

tf

ti − iβ

Figure 8.6 The Schwinger–Keldysh contour that must be used in the evaluation
of WR(x⊥). It is similar to that in Fig. 8.2. Figure from Ref. [317].

light-like Wilson line on the Im t = −iε segment of the contour. The infinitesimal
displacement of one Wilson line with respect to the other in Fig. 8.6 ensures that
the operators from the two lines are ordered such that all operators from one line
come before any operators from the other. In contrast, the loop C for a standard
Wilson loop operator lies entirely at Im t = 0, and the operators for a standard
Wilson loop are time ordered.

The transverse momentum broadening of a hard parton with energy E is due
to repeated interactions with gluons from the medium which, if the medium is
in equilibrium at temperature T , carry transverse momenta of order T and light-
cone momenta of order T 2/E [480, 317]. The relation (8.137) between P(k⊥)
(and hence q̂) and the expectation value W of (8.138) is valid as long as E � q̂ L2

(which is to say E must be much greater than the characteristic energy of the radi-
ated gluons) even if αS(T ) is in no way small, i.e. it is valid in the large-E limit even
if the hard parton is interacting with a strongly coupled plasma and even if the soft
interactions that generate transverse momentum broadening are not suppressed by
any weak coupling either [317]. However, in this circumstance even though (8.137)
is valid it was not particularly useful until recently because there is no known con-
ventional field theoretical evaluation of W for a strongly coupled plasma. (Since
lattice quantum field theory is formulated in Euclidean space, it is not well-suited
for the evaluation of the expectation value of light-like Wilson lines.) In this sec-
tion we review the evaluation of W , and hence q̂, in the strongly coupled plasma
of N = 4 SYM theory with gauge group SU (Nc) in the large N and strong cou-
pling limit using its gravitational dual, namely the AdS Schwarzschild black hole
at nonzero temperature [582, 208, 225, 579, 87, 66, 645, 584, 418, 468, 317]. The
calculation is not simply an application of results reviewed in Section 5.4 both
because the operators are path ordered and because the Wilson lines are light-like.

We begin by sketching how the standard AdS/CFT procedure for computing a
Wilson loop in the fundamental representation in the large-Nc and strong coupling
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limit, reviewed in Section 5.4, applies to a light-like Wilson loop with standard
operator ordering [582, 584], and then below describe how the calculation (but not
the result) changes when the operator ordering is as in (8.138). Consider a Wilson
loop operator W (C) specified by a closed loop C in the (3 + 1)-dimensional field
theory, and thus on the boundary of the (4 + 1)-dimensional AdS space. 〈W (C)〉
is then given by the exponential of the classical action of an extremized string
worldsheet ! in AdS which ends on C. The contour C lives within the (3 + 1)-
dimensional Minkowski space boundary, but the string worldsheet ! attached to it
hangs “down” into the bulk of the curved five-dimensional AdS5 spacetime. More
explicitly, consider two long parallel light-like Wilson lines separated by a dis-
tance x⊥ in a transverse direction.2 (The string world sheet hanging down into the
bulk from these two Wilson lines can be visualized as in Fig. 8.8 below if one
keeps everything in that figure at Im t = 0, i.e. if one ignores the issue of operator
ordering.) Upon parameterizing the two-dimensional worldsheet by the coordinates
σα = (τ, σ ), the location of the string worldsheet in the five-dimensional spacetime
with coordinates xμ is

xμ = xμ(τ, σ ) (8.140)

and the Nambu–Goto action for the string worldsheet is given by

S = − 1

2πα′

∫
dσdτ

√−detgαβ . (8.141)

Here,

gαβ = Gμν∂αxμ∂βxν (8.142)

is the induced metric on the worldsheet and Gμν is the metric of the (4 +
1)-dimensional AdS5 spacetime. Denoting by S(C) the classical action which
extremizes the Nambu–Goto action (8.141) for the string worldsheet with the
boundary condition that it ends on the curve C, the expectation value of the Wilson
loop operator is then given by

〈W (C)〉 = exp [i {S(C) − S0}] , (8.143)

where the subtraction S0 is the action of two disjoint strings hanging straight down
from the two Wilson lines. In order to obtain the thermal expectation value at
nonzero temperature, one takes the metric Gμν in (8.142) to be that of an AdS
Schwarzschild black hole (5.33) with a horizon at r = r0 and Hawking tempera-
ture T = r0/(π R2). The AdS curvature radius R and the string tension 1/(2πα′)
are related to the ’t Hooft coupling in the Yang–Mills theory λ ≡ g2 Nc by√
λ = R2/α′.

2 Note that for a light-like contour C, the Wilson line (5.68) of N = 4 SYM theory reduces to the familiar
(8.139).
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We shall assume that the length of the two light-like lines L− = √
2L is much

greater than their transverse separation x⊥, which can be justified after the fact by
using the result for W(x⊥) to show that the x⊥-integral in (8.137) is dominated

by values of x⊥ that satisfy x⊥ � 1/
√

q̂ L ∼ 1/
√√

λLT 3. As long as we are
interested in L � 1/T , then x⊥ � 1/(Tλ1/4) � 1/T � L . With L− � x⊥,
we can ignore the ends of the light-like Wilson lines and assume that the shape of
the surface ! is translationally invariant along the light-like direction. The action
(8.141) now takes the form

S = i

√
2r2

0

√
λL−

2π R4

∫ x⊥/2

0
dσ

√
1 + r ′2 R4

r4 − r4
0

, (8.144)

where the shape of the worldsheet ! is described by the function r(σ ) that satisfies
r(± x⊥

2 ) = ∞, which preserves the symmetry r(σ ) = r(−σ), and where r ′ = ∂σr .
The equation of motion for r(σ ) is then

r ′2 = γ 2

R4

(
r4 − r4

0

)
(8.145)

with γ an integration constant. Eq. (8.145) has two solutions. One has γ = 0 and
hence r ′ = 0, meaning that r(σ ) = ∞ for all σ : the surface ! stays at infinity.
Generalizations of this solution have also been studied [62, 63]. We shall see below
that such solutions are not relevant. The other solution has γ > 0. It “descends”
from r(± x⊥

2 ) = ∞ and has a turning point where r ′ = 0 which, by symmetry, must
occur at σ = 0. From (8.145), the turning point must occur at the horizon r = r0.
Integrating (8.145) gives the condition that specifies the value of γ :

x⊥
2

= R2

γ

∫ ∞

r0

dr√
r4 − r4

0

= a R2

γ r0
, (8.146)

where we have defined

a ≡ √
π�(

5

4
)/�(

3

4
) ≈ 1.311 . (8.147)

Putting all the pieces together, we find [582, 584]

S = ia
√
λT L−
√

2

√
1 + π2T 2x2

⊥
4a2

. (8.148)

We see that S is imaginary, because when the contour C at the boundary is light-
like the surface ! hanging down from it is space-like. It is worth noting that S had
to turn out to be imaginary, in order for 〈W 〉 in (8.143) to be real and the transverse
momentum broadening P(k⊥) to be real, as it must be since it is a probability
distribution. The surface ! that we have used in this calculation descends from
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infinity, skims the horizon, and returns to infinity. Note that the surface descends
all the way to the horizon regardless of how small x⊥ is. This is reasonable on
physical grounds, as we expect P(k⊥) to depend on the physics of the thermal
medium [582, 584]. We shall see below that it is also required on mathematical
grounds: when we complete the calculation by taking into account the nonstandard
operator ordering in (8.137), we shall see that only a worldsheet that touches the
horizon is relevant [317].

We now consider the computation of (8.138), with its nonstandard operator
ordering corresponding to putting one of the two light-like Wilson lines on the
Im t = 0 contour in Fig. 8.6 and the other on the Im t = −iε contour. The
procedure we shall describe is a specific example of the more general discus-
sion of Lorentzian AdS/CFT given in Refs. [743, 744, 786, 120]. In order to
compute (8.138) we first need to construct the bulk geometry corresponding to
the Im t = −iε segment of the Schwinger–Keldysh contour in Fig. 8.6. For this
purpose it is natural to consider the black hole geometry with complex time. In
Fig. 8.7, we show two slices of this complexified geometry. The left plot is the
Penrose diagram for the fully extended black hole spacetime with quadrant I and
III corresponding to the slice Im t = 0 and Im t = −β

2 respectively, while the
right plot is for the Euclidean black hole geometry, i.e. corresponding to the slice
Re t = 0. Note that because the black hole has a nonzero temperature, the imag-
inary part of t is periodic with the period given by the inverse temperature β. In
the left plot the imaginary time direction can be considered as a circular direction
coming out of the paper at quadrant I, going a half circle to reach quadrant III and
then going into the paper for a half circle to end back at I. In the right plot the real
time direction can be visualized as the direction perpendicular to the paper.

The first segment of the Schwinger–Keldysh contour in Fig. 8.6, with Im t = 0,
lies at the boundary (r = ∞) of quadrant I in Fig. 8.7, where it is shown as a green
dot. The second segment of the Schwinger–Keldysh contour, with Im t = −iε, is
shown as a red dot at the r = ∞ boundary of a copy of I that in the left plot of
Fig. 8.7 lies infinitesimally outside the paper and in the right plot of Fig. 8.7 lies at
an infinitesimally different angle. We shall denote this copy of I by I′. The geometry
and metric in I′ are identical to those of I. Note that I′ and I are joined together at
the horizon r = r0, namely at the origin in the right plot of Fig. 8.7. Now, the
thermal expectation value (8.138) can be computed by putting the two parallel
light-like Wilson lines at the boundaries of I and I′, and finding the extremized
string world sheet which ends on both of them. Note that since I and I′ meet only
at the horizon, the only way for there to be a non-trivial (i.e. connected) string
worldsheet whose boundary is the two Wilson lines in (8.138) is for such a string
worldsheet (shown as the red and green lines in Fig. 8.7) to touch the horizon.
Happily, this is precisely the feature of the string worldsheet found in the explicit
calculation that we reviewed above. So, we can use that string worldsheet in the
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III

III
Im t

I’

I
r = ∞ r = ∞

r = ∞

t = –iε

t = 0r = r0 rt = –iβ/2

I

Figure 8.7 Penrose diagrams for Lorentzian (Im t = 0 or −β/2; left panel) and
Euclidean (Re t = 0; right panel) sections of an AdS black hole. (Penrose dia-
grams were introduced in Fig. 7.1; a textbook presentation of Penrose diagrams
for black hole spacetimes can be found, for example, in Refs. [619, 683].) In
the left panel, the black hole horizon is represented by the diagonal lines; the
Euclidean section in the right panel touches the horizon only at the point at the
origin. The region of the black hole spacetime inside the horizon, which ends at
the singularity indicated by wavy lines, is only visible in the left panel. The sec-
tions depicted in the left and right panels should be imagined glued together along
the horizontal lines across their midpoints, where Re t = 0 and the two sections
intersect. The Euclidean section, now depicted in the right panel, would then be
sticking out of and into the page from the Re t = 0 line of the Lorentzian section
in the left panel. In the right panel, the two light-like Wilson lines are points at
r = ∞, indicated by the red and green dots. These dots are the boundaries of
a string worldsheet that extends inward to r = r0, which is at the origin of the
Euclidean section of the black hole. In the left panel, the string worldsheet and its
endpoints at r = ∞ are shown at Re t = 0; as Re t runs from −∞ to ∞, the string
worldsheet sweeps out the whole of quadrant I. Figure redrawn after Ref. [317].

present analysis, with the only difference being that half the string worldsheet now
lies on I and half on I′, as illustrated in Fig. 8.8.3

We conclude that the result for the expectation value (8.138), with its nonstan-
dard path ordering of operators, is identical to that obtained in Refs. [582, 584]
for a light-like Wilson loop with standard time ordering of operators [317]. That

3 The calculation of q̂ in N = 4 SYM theory via (8.138) nicely resolves a subtlety. As we saw above, in
addition to the extremized string configuration which touches the horizon, the string action also has another
trivial solution which lies solely at the boundary, at r = ∞. Based on the connection between position
in the r dimension in the gravitational theory and energy scale in the quantum field theory, the authors of
Ref. [582, 584] argued that physical considerations (namely the fact that q̂ should reflect thermal physics
at energy scales of order T ) require selecting the extremized string configuration that touches the horizon.
Although this physical argument remains valid, we now see that it is not necessary. In (8.138), the two Wilson
lines are at the boundaries of I and I ′, with different values of Im t . That means that there are no string
worldsheets that connect the two Wilson lines without touching the horizon. So, once we have understood
how the nonstandard operator ordering in (8.138) modifies the boundary conditions for the string worldsheet,
we see that the trivial worldsheet of Refs. [582, 584] and all of its generalizations in Refs. [62, 63] do not
satisfy the correct boundary conditions. The non-trivial worldsheet illustrated in Fig. 8.8, which is sensitive to
thermal physics [582, 584, 585], is the only extremized worldsheet bounded by the two light-like Wilson lines
in (8.138) [317].
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(r = r0)

Figure 8.8 String configuration for the thermal expectation value of (8.138).
The red and green dots at t = 0 and t = −iε are the red and green dots in
Fig. 8.7; the red and green string world sheet “hanging” from them is shown in
Fig. 8.7 as the red and green lines. Figure from Ref. [317].

is, in strongly coupled N = 4 SYM theory W(x⊥) in the adjoint representation is
given by

WA(x⊥) = exp

⎡
⎣−√

2a
√
λ L−T

⎛
⎝
√

1 + π2T 2x2
⊥

4a2
− 1

⎞
⎠
⎤
⎦ . (8.149)

We have quoted the result for WA(x⊥), which is given by W2
F (x⊥) in the large-Nc

limit, because that is what arises in the analysis of jet quenching, see Section 2.3.2.
(Radiative parton energy loss depends on the medium through the transverse
momentum broadening of the radiated gluons, which are of course in the adjoint
representation.) The x⊥-independent term in the exponent in (8.149), namely “the
−1”, is the finite subtraction of S0, which was identified in Ref. [582] as the action
of two disjoint strings hanging straight down from the two Wilson lines to the hori-
zon of the AdS black hole. Our calculation serves as a check of the value of S0,
since only with the correct S0 do we obtain WA(0) = 1 and a correctly normalized
probability distribution P(k⊥). Note that our field theory set-up requires L−T � 1,
and our supergravity calculation requires λ � 1, meaning that our result (8.149) is
valid only for √

λ L−T � 1. (8.150)
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In this regime, (8.149) is very small unless πx⊥T/(2a) is small. This means that
when we take the Fourier transform of (8.149) to obtain the probability distribution
P(k⊥), in the regime (8.150) where the calculation is valid the Fourier transform
is dominated by small values of x⊥, for which

WA(x⊥) � exp

[
− π2

4
√

2a

√
λL−T 3x2

⊥

]
, (8.151)

and we therefore obtain

P(k⊥) = 4
√

2a

π
√
λT 3L− exp

[
−

√
2ak2

⊥
π2

√
λT 3L−

]
. (8.152)

Thus, the probability distribution P(k⊥) is a Gaussian with a width, by virtue of
(8.150), that is much larger than T and the jet quenching parameter (8.136) can
easily be evaluated, yielding [582]

q̂ = π3/2�( 3
4)

�( 5
4)

√
λT 3 . (8.153)

The probability distribution (8.152) has a simple physical interpretation: the prob-
ability that the quark has gained transverse momentum k⊥ is given by diffusion in
transverse momentum space with a diffusion constant given by q̂ L . This is indeed
consistent with the physical expectation that transverse momentum broadening in
a strongly coupled plasma is due to the accumulated effect of many soft kicks
(by gluons) from the medium: the quark performs Brownian motion in momen-
tum space even though in coordinate space it remains on a light-like trajectory.
It is interesting that the result can be interpreted in this way even though, as we
have seen in Section 6.3, the strongly coupled plasma of N = 4 SYM theory con-
tains no quasiparticles off which the hard quark could scatter. The presence of such
quasiparticles at short length scales would give the probability distribution P(k⊥)
a power-law tail at large k⊥; the plasma of N = 4 SYM theory is a strongly cou-
pled liquid at all length scales, making (8.152) Gaussian even at large k⊥ [318].
Although there are no pointlike scattering centers present, the hard quark is never-
theless kicked softly many times by the strongly coupled liquid through which it
propagates.

If we attempt to plug RHIC-motivated numbers into the result (8.153), taking
T = 300 MeV, Nc = 3, αSYM = 1

2 and therefore λ = 6π yields q̂ = 4.5 GeV2/fm,
which turns out to be in the same ballpark as the values of q̂ inferred from RHIC
data on the suppression of high momentum partons in heavy ion collisions [582,
584].4 To see this, we can write the result (8.153) as

4 Data from the LHC exhibit somewhat stronger quenching that corresponds to a larger value of q̂. This is
consistent with the expectation that the plasma produced at the LHC should have a higher initial temperature.
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q̂ � 57

√
αSYM

Nc

3
T 3 , (8.154)

which can be compared to the result given in Eqs. (2.43) and (2.44) that was
extracted via comparison to RHIC data in Ref. [68]. To make the comparison,
we need to relate the QCD energy density ε appearing in (2.43) to T . Lattice cal-
culations of QCD thermodynamics indicate ε ∼ (9 − 11) T 4 in the temperature
regime that is relevant at RHIC [179]. This then means that if in (8.154) we take
αSYM within the range αSYM = 0.66+.34

−.25, the result (8.154) for the strongly coupled
N = 4 SYM plasma is consistent with the result (2.44) obtained via comparing
QCD jet quenching calculations to RHIC data.

We have described the N = 4 SYM calculation, but the jet quenching parameter
can be calculated in any conformal theory with a gravity dual [584]. In a large
class of such theories in which the spacetime for the gravity dual is AdS5× M5 for
some internal manifold M5 other than the five-sphere S5 which gives N = 4 SYM
theory [584],

q̂CFT

q̂N=4
=

√
sCFT

sN=4
, (8.155)

with s the entropy density. This result makes a central qualitative lesson from
(8.153) clear: in a strongly coupled plasma, the jet quenching parameter is not
proportional to the entropy density or to some number density of distinct scatter-
ers. This qualitative lesson is more robust than any attempt to make a quantitative
comparison to QCD. But, we note that if QCD were conformal, (8.155) would
suggest

q̂QCD

q̂N=4
≈ 0.63 . (8.156)

And, analysis of how q̂ changes in a particular toy model in which nonconfor-
mality can be introduced by hand then suggests that introducing the degree of
nonconformality seen in QCD thermodynamics may increase q̂ by a few tens of
percent [585]; q̂ also increases with increasing nonconformality in strongly cou-
pled N = 2∗ gauge theory [418, 468]. Putting together these observations that
suggest that neither the nonconformality of QCD nor the fact that it has fewer
degrees of freedom than N = 4 SYM theory modify q̂ dramatically together with
the fact that they seem to push q̂ in opposite directions, perhaps it is not surprising
that the q̂ for the strongly coupled plasma of N = 4 SYM theory is in the same
ballpark as that extracted by comparison with RHIC data.

8.6 Quenching a beam of strongly coupled gluons

In Section 8.5 we have analyzed jet quenching via the strategy of working as far
as possible within weakly coupled QCD and only using a holographic calculation

https://doi.org/10.1017/9781009403504.008 Published online by Cambridge University Press

https://doi.org/10.1017/9781009403504.008


8.6 Quenching a beam of strongly coupled gluons 323

within N = 4 SYM theory for one small part of the story, namely the calcula-
tion of the jet quenching parameter q̂ through which the physics of the strongly
coupled medium enters the calculation. This approach has been justified in the
high jet energy limit, where the dominant energy loss process for an energetic par-
ton plowing through quark–gluon plasma with temperature T is medium-induced
gluon bremsstrahlung [421, 98, 817], radiating gluons with energy ω and momen-
tum transverse to the jet direction k⊥ that satisfy E � ω � k⊥ � πT [98, 817,
797, 414, 420]. This set of approximations, i.e. the assumption that all these scales
are well separated, is the basis of the approach in Section 8.5, and indeed of all ana-
lytic perturbative calculations of radiative energy loss to date. The (perhaps naive)
expectation based upon these considerations is that at least some of the energy
lost by the high energy parton should emerge as relatively hard particles (since
ω �� πT ) near the jet direction (since ω � k⊥), resulting in a jet whose angular
distribution has been broadened and whose fragmentation function has been soft-
ened. Stimulated by the data from the LHC, several groups have developed more
sophisticated implementations of these considerations, formulating an essentially
perturbative approach to jet quenching that compares well with the jet quenching
measurements published to date for jets with sufficiently high transverse momen-
tum [257, 699, 815, 820, 243, 698, 247, 816, 69, 613, 139, 258, 140, 612, 71, 819].
One still expects that any such perturbative approach must have limitations, even
for the hardest processes accessible in heavy ion collisions, since it is based upon
the premise that the QCD coupling evaluated at the scale k⊥ (which, recall, is
�� E but � πT ) is weak even if the physics at scales ∼ πT is strongly coupled.
This makes it important to analyze models of jet quenching in strongly coupled
plasmas in contexts where reliable analyses are possible. Even if such analyses
yield only qualitative insight, they can be useful as benchmarks and as guides to
how to think about the physics. By pursuing such approaches and the perturba-
tive approach, we expect to bracket the experimentally accessible regime and to
gain insight into the extent to which the strongly coupled physics that governs the
medium itself is also relevant for hard processes.

With these motivations in mind, in this section we return to assuming that the
physics at all relevant scales is strongly coupled, as in Section 8.4. We saw in that
section that there is no way to analyze how an actual jet is modified by the strongly
coupled plasma of N = 4 SYM theory, relative to how it would have developed in
the vacuum of that theory, because hard scattering in strongly coupled N = 4 SYM
theory does not produce jets. The results described in Section 8.4, although sensi-
tive to details of the initial conditions, addressed the question of how single partons
are stopped and thermalized in the plasma and in particular how far they can travel
before they are stopped. However, a reasonable framework for understanding the
quenching of jets cannot be based solely on discussing single partons that lose
energy in the medium and then are either stopped in the medium or emerge in
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isolation and fragment into ordinary-looking jets. The problem with this picture is
that what would emerge is a nearly on-shell quark, which would then not fragment
into a jet in the usual way. A phenomenologically more meaningful picture is that
of a hard parent parton that fragments rapidly into a protojet (a perturbative process
that we do not expect to describe by strong coupling methods) with this protojet
then propagating through the strongly coupled plasma, interacting strongly with it,
and losing energy.

If we are to gain insight into jets in heavy ion collisions from a strongly coupled
perspective, it would be useful to have a thought experiment in which we could
construct a closely collimated beam of partons that is either propagating through
the vacuum or through the strongly coupled plasma. In this section, we shall start
by describing a thought experiment [85, 295] by which such a beam of gluons is
produced with an angular distribution and a distribution of momenta that is well
understood in vacuum. We shall then watch what happens as this beam of gluons
shines through the strongly coupled plasma at nonzero temperature and gets rapidly
attenuated – with no apparent broadening of its angular distribution or softening of
the momenta of the gluons that it is made of – while the lost energy appears as
soft collective excitations, sound waves that subsequently dissipate. From a purely
theoretical perspective it is instructive to have a thought experiment in which we
can see an excitation that is moving at the speed of light and that is made of quanta
with momenta � πT that couple to, and lose energy to, the soft hydrodynamic
modes of the strongly coupled plasma. From this perspective, the thought exper-
iment in this section serves as a worked example fitting within the more general
discussion of equilibration processes found in Chapter 7. We shall close this sec-
tion with a phenomenological perspective, however, by noting the ways in which
the results of the thought experiment bear qualitative resemblance to results from
real experiments on jets in heavy ion collisions.

8.6.1 A beam of strongly coupled synchrotron radiation in vacuum

The trick by which a beam of gluons can be produced in N = 4 SYM theory is
to consider a test quark undergoing circular motion with radius R0 and velocity v

(and hence angular velocity � ≡ v/R0) in the vacuum of this theory [85, 471].
At both weak coupling (where the calculation is done conventionally) and strong
coupling (where the calculation is done via gauge/gravity duality) the radiation that
results is remarkably similar to the synchrotron radiation of classical electrodynam-
ics, produced by an electron in circular motion [85]. In particular, as the limit of
ultra-relativistic motion is taken (γ → ∞ where γ ≡ 1/

√
1 − v2) the lighthouse-

like beam of radiation becomes more and more tightly collimated in angle (it
is focused in a cone of angular extent ∼ 1/γ ) and is composed of gluons and
scalars with shorter and shorter wavelengths (the pulse of gluons in the beam has a
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AdS5 radial
direction

Boundary stress

Figure 8.9 Cartoon from Ref. [85] of the gravitational description of synchrotron
radiation at strong coupling: the quark rotating at the boundary trails a rotat-
ing string behind it which hangs down into the bulk AdS5 space. This string
acts as a source of gravitational waves in the bulk, and this gravitational radia-
tion induces a stress tensor on the four-dimensional boundary. By computing the
bulk-to-boundary propagator one obtains the boundary theory stress tensor that
describes the radiated energy. The entire calculation can be done analytically [85].

width ∼ R0/γ
3 in the radial direction in which it is moving). The emitted radiation

was found to propagate outward at the speed of light forever without broadening
either in angle or in pulse width, just as in classical electrodynamics [85, 434,
471, 435, 284, 104, 285]. At weak coupling, the slight differences in the angular
distribution of the power radiated to infinity relative to that in classical electrody-
namics can be attributed to the fact that scalars are radiated as well as gluons [85].
And, at strong coupling the angular distribution is identical to that at weak cou-
pling [85, 435, 104]. The way the calculation is done at strong coupling is sketched
in Fig. 8.9. The logic of the calculation is as we described in Section 8.3, and so
we shall not present it in detail. It turns out, however, that in vacuum the shape of
the rotating string in the bulk and the corresponding form of the energy density of
the outward-propagating radiation on the boundary can both be determined analyt-
ically [85]. This beam is not literally a jet, since it is not produced far off shell. But,
we know from Hofman and Maldacena that a far off shell “photon” does not result
in jets in this theory. And, this beam of non-Abelian radiation yields a different
cartoon of a jet than those we have described in Section 8.4 and, as we shall see,
allows us to answer questions about its propagation through the medium that have
not yet been posed in the formalism of Section 8.4.

Although it has recently been explained from the gravitational point of view in
beautifully geometric terms [470], from the point of view of the non-Abelian gauge
theory it is surprising that the angular distribution of the radiation at strong cou-
pling seen in Fig. 8.10 is so similar (see Ref. [85] for quantitative comparisons) to
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Figure 8.10 Cutaway plots of r2E/P for a test quark in circular motion with v =
1/2 and v = 3/4. Here, E is the energy density and P is the total power radiated
per unit time. We see a spiral of radiation, propagating radially outwards at the
speed of light, without any spreading. The spiral is localized about θ = π/2 with
a characteristic width δθ ∝ 1/γ . The radial thickness of the spiral is proportional
to 1/γ 3. Figure taken from Ref. [85].

that at weak coupling, where what is radiated is a mixture of colored – and therefore
interacting – gluons and scalars. The fact that, even when the coupling is arbitrarily
strong, as the pulses of radiation propagate outwards they do not spread at all and
never isotropize indicates that intuition based upon parton branching [433] (namely
that the non-Abelian character of the radiation should result in energy flowing
from short to long wavelengths as the pulses propagate outwards and should yield
isotropization at large distances) is invalid in this context.5

8.6.2 Shining a gluon beam through strongly coupled plasma

For our purposes, the result that the “beam” of radiated gluons (and scalars) pro-
duced by a quark in circular motion propagates outward with a fixed angular width
that we can select by picking γ is fortuitous. It means that this roundabout method

5 Reference [434] shows that isotropization via some analog of parton branching is also not the correct picture
for the radiation studied in Ref. [457] by Hofman and Maldacena: this radiation also propagates outward as
a pulse without any spreading, but this pulse is spherically symmetric at all radii. So, in the case studied by
Hofman and Maldacena there is no process of isotropization because the radiation is isotropic at all times while
in the case illustrated in Fig. 8.10 there is no isotropization because the radiation never becomes isotropic.
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yields a state that looks something like a jet. It is not a jet in that it is not produced
via the fragmentation of an initially far offshell parton. But, it is a collimated
beam of gluons of known, and controllable, angular width. For this reason, results
obtained in the formal setting of a test quark moving in a circle open the way to
new means of modeling jet quenching in heavy ion collisions [295]. We shall see
that when this beam of gluons shines through the strongly coupled plasma it is
attenuated over a length scale that can be understood analytically and we shall see
that as the beam is attenuated it does not broaden in angle or redden in wavelength.

The first step in the analysis of how the collimated beam of gluons is quenched
by the strongly coupled plasma is to determine the shape of the spiraling string
(see the cartoon in Fig. 8.9) in the case where the bulk metric is the AdS-black
hole (AdS-BH) metric that describes the plasma, rather than the AdS metric that
describes only the vacuum [346, 295]. The rotating string in the AdS-BH geometry,
spiraling “downward” from the quark in circular motion at the AdS-BH boundary
toward its horizon, spiraling around and around infinitely many times just above
the horizon, perturbs the AdS-BH geometry via Einstein’s equations. The second
step in the analysis is to solve Einstein’s equations, linearized in the perturbation,
and use the perturbations of the bulk metric at the boundary to determine the energy
density in the boundary N = 4 SYM plasma, including the beam of gluons that
this spiraling string describes. This calculation was performed in Ref. [295] and
although it introduces new technical elements its logic is the same as that in the
simpler calculation that we have reviewed in Section 8.3, and we shall therefore not
describe the calculation here. Below we shall describe the results, as well as ana-
lytic arguments that explain all their qualitative features, but first we must establish
some further notation and expectations.

To discuss the rate at which a quark undergoing circular motion through the
plasma of strongly coupled N = 4 SYM theory loses energy, it is useful to
distinguish two regimes [346], depending on whether

# ≡ �2γ 3

(πT 2)
(8.157)

is � 1 or � 1. For # � 1, the energy loss rate is given by the generalized Larmor
formula

d E

dt

∣∣∣∣
rad

=
√
λ

2π
aμaμ, (8.158)

where aμ is the quark’s proper acceleration. As we mentioned in Section 8.1, it
was shown many years ago by Mikhailov that the energy loss rate of a quark in
circular motion in the vacuum of strongly coupled N = 4 SYM theory is given
by (8.158) [618] and so in the strongly coupled plasma at T 
= 0, in the # � 1
regime we expect to see the radiation of beam of synchrotron-like radiation as in
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vacuum [85], and the subsequent attenuation of this beam. When # � 1, on the
other hand, acceleration becomes unimportant and the energy loss rate is that due
to the drag force exerted by the strongly coupled hydrodynamic fluid on a quark
moving in a straight line with velocity v [346], namely [394, 452]

d E

dt

∣∣∣∣
drag

=
√
λ

2π
(πT )2 v2γ . (8.159)

Notice that the parameter # which governs which expression for the energy loss
rate is valid is simply the ratio of the rates appearing in Eqs. (8.158) and (8.159). In
this respect it is as if both hydrodynamic drag and Larmor radiation are in play with
the larger of the two effects dominating the energy loss, but this simplified picture
is not quantitatively correct because where # ∼ 1 the energy loss rate is less than
the sum of Eqs. (8.158) and (8.159) [346]. Although our principal interest is in
the # > 1 regime, where we can study the quenching of a beam of synchrotron
gluons, it is also instructive to look at # < 1 and # ∼ 1 as in these regimes the
hydrodynamic response of the plasma – i.e. the production of sound waves – is
more readily apparent.

Unlike in vacuum, in the plasma at nonzero temperature the energy disturbance
created by the rotating quark can excite two qualitatively distinct modes in the
energy density; a sound mode which at long wavelengths travels at speed cs =
1/

√
3, and a light-like mode which propagates at the speed of light. The relative

amplitude of each mode depends on the trajectory of the quark: when # < 1 the
dominant modes that are excited are sound waves; when # > 1 the dominant
modes that are excited propagate at the speed of light. Interestingly, in the # ∼ 1
regime as the pulse of radiation moving at the speed of light is attenuated in energy,
it sheds a sound wave [295].

Figure 8.11 shows three different plots of r2�E/P for quarks in circular motion
with each of three different velocities: v = 0.15, v = 0.3 and v = 0.5. Here, �E
is the total energy density minus that of the undisturbed plasma and P ≡ d E/dt
is the energy lost by the circulating quark (and hence dumped into the plasma) per
unit time. In all plots, the quark’s trajectory lies in the equatorial plane θ = π/2,
the quark is rotating counter-clockwise. And, in all plots the temperature of the
plasma is given by πT = 0.15/R0 and the units are chosen such that the radius
of the quark’s trajectory is R0 = 1. This means that # defined in (8.157) is given
by 1.0, 4.6 and 17.1 in the left, middle and right columns respectively. At the time
shown, the quark is located at x = R0, y = 0 and the quark is rotating counter-
clockwise in the plane z = 0. The three plots in the top row are cutaway plots with
the cutaways coinciding with the planes z = 0, φ = 0 and φ = 7π/5. The three
plots in the middle row show the energy density on the plane z = 0 and the bottom
three plots give the energy density at z = 0, φ = π/2, namely a slice through the
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Figure 8.11 Plots from Ref. [295] illustrating the energy density of strongly cou-
pled N = 4 SYM plasma in which a test quark is rotating on a circle with radius
R0 with angular velocity � = v/R0 for v = 0.15 (left column), v = 0.3 (middle
column) and v = 0.5 (right column). Top: cutaway plots of r2�E/P where P is
the power radiated by the quark. Middle: plots of r2�E/P on the equatorial plane
θ = π/2 (i.e. z = 0). Bottom: solid blue curves are plots of r2�E/P at θ = π/2
and φ = π/2. The dashed red curves in the bottom plots show r2E/P for the
strongly coupled synchrotron radiation emitted by a quark in circular motion in
vacuum [85], pulses of radiation that propagate outward to r → ∞ at the speed
of light without spreading.

middle row plot along one radial line. For reference, the dashed red curves in these
bottom plots show r2E for the strongly coupled synchrotron radiation that a quark
moving along the same circular trajectory would emit in vacuum [85]. In each of
the bottom plots, we use the same P to normalize the dashed red curve as for the
solid blue curve. All nine panels in Fig. 8.11 show the energy density at one instant
of time, but the time-dependence is easily restored by replacing the azimuthal angle
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φ by φ − �t , where � = v/R0 is the angular velocity. As a function of increas-
ing time, the entire patterns in the upper and middle rows rotate with angular
velocity �, as the spirals of radiation move outwards. As a function of increasing
time, the patterns in the lower rows move outwards, repeating themselves after a
time 2π/�.

As is evident from Fig. 8.11, as the quark accelerates along its circular trajectory,
energy is radiated outwards in a spiral pattern which is attenuated as the radiation
propagates outwards through the plasma to increasing r . However, the qualitative
features of the spiral patterns differ greatly at the three different quark velocities
shown. For v = 0.15, the spiral arms are very broad in r , as broad as their sep-
aration, and the spiral pattern propagates outwards at the speed of sound, while
being attenuated with increasing r . Second order hydrodynamics for a confor-
mal fluid with a gravity dual like N = 4 SYM theory predicts a sound velocity
1/

√
3 + 0.116 q2/(πT )2 + · · · [107] for sound waves with wave-vector q. The

sound waves in the left column of Fig. 8.11 do not actually have only a single wave-
vector but, roughly, they have q ∼ 1.3πT and are moving outward with a velocity
∼ 0.74, quite close to the O(q2) prediction for the sound velocity. The dashed red
curve in the lower-left panel shows the energy density of the synchrotron radiation
that this quark would have emitted if it were in vacuum, and we see that there is
no sign of this in the results. So, at this v, corresponding to # = 1.0, the rotating
quark is emitting sound waves.

The results in the right column of Fig. 8.11, for v = 0.5, are strikingly different.
The spiral arms are very narrow in r , much narrower than their separation, and they
propagate outwards at the speed of light, as can be seen immediately in the bottom-
right panel by comparing the results of the calculation, the solid blue curve, to the
energy density of the synchrotron radiation that this quark would have emitted if
it were in vacuum, shown by the dashed red curve. We see that at this v, corre-
sponding to # = 17.1, the rotating quark is emitting strongly coupled synchrotron
radiation, as in vacuum [85], and we see that the radiation is being attenuated as it
propagates outward in r , through the strongly coupled plasma. Remarkably, even as
the outgoing pulses of energy are very significantly attenuated by the medium we
see no sign of their broadening in either the θ or the φ or the r directions. Looking
at the vertical sections in the upper-right panel, we see that if anything the spread
of the beam of radiation in θ is becoming less as it propagates and gets attenuated.
This conclusion is further strengthened by careful comparison of the upper-right
panel of Fig. 8.11 to the analogous results for a quark in circular motion in vac-
uum [295]. It is certainly clear that the presence of the medium does not result in
the spreading of energy away from the center of the beam at the equator out toward
large polar angles. Just the opposite, in fact: at large polar angles the beam gets
attenuated more rapidly than near θ = π/2. Broadening in either the φ or the r
directions would be manifest as widening of the pulses in the bottom-right panel,
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and this is also certainly not seen. In fact, extending the plot in the bottom-right
panel out to larger r , for several more turns of the spiral, shows continued rapid
attenuation with no visible broadening [295].

We turn our attention now to the center column of Fig. 8.11. Here, with a rota-
tion velocity of v = 0.3 corresponding to # = 4.6, we clearly see both synchrotron
radiation and sound waves. The synchrotron radiation is most easily identified with
reference to the results for a quark with this rotation velocity in vacuum, shown in
the dashed red curve in the bottom-center panel. In our results with T 
= 0, we see
the emission of a pulse of synchrotron radiation whose amplitude is very rapidly
attenuated, much more rapidly than in the right column. In part guided by our
inspection of the results at large # in the right column, we see that as the pulse of
synchrotron radiation is attenuated, it too does not broaden. What we see here that
is not so easily seen in the right column is that as the pulse of synchrotron radiation
is attenuated it “sheds” a sound wave, leaving behind it a broad wave, reminiscent
of the sound waves in the left column. Behind each pulse of synchrotron radiation
we see the “compression half” of a sound wave, and behind that a deeper rarefac-
tion, and then the next pulse of synchrotron radiation arrives. Once seen in the
middle column, this phenomenon can perhaps also be discerned to a much lesser
degree in the right column, with each pulse of synchrotron radiation trailed first
by a region of slight compression and then by a region of some rarefaction. It is
not really clear in the right column whether these can be called sound waves, both
because of their smaller amplitude and because the next pulse of synchrotron radi-
ation overwhelms them sooner than in the middle column. In the middle column,
though, the interpretation is clear: the beam of synchrotron gluons is exciting sound
waves in the plasma.

The results of Ref. [295], for example those in Fig. 8.11, demonstrate that at
small # the rotating quark emits only sound waves while at large # it emits
strongly coupled synchrotron radiation as in vacuum, with that beam of gluons
subsequently being quenched by the plasma. The calculation has also been done
at v = 0.65 [295], corresponding to # = 42.8. In this case, the beam of gluons
travels out to larger r as it is attenuated. Even so, as the beam is being almost com-
pletely attenuated by the plasma it continues to propagate at the speed of light and
it does not broaden.

There are several (related) obstacles to obtaining definitive answers to the ques-
tion of where the energy that is initially in the gluon beam goes as the gluon beam
gets attenuated [295]. The first we have discussed above: we cannot watch the
plasma behind one of the pulses of radiation very long before the next pulse comes
along and obliterates whatever the previous pulse has left behind. A further obsta-
cle arises because the analysis concerns a scenario in which the quark has been
moving in a circle for an infinitely long time meaning that a steady-state in which
the energy density at any position is a periodic function of time has been achieved.
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We see in Fig. 8.11 that the energy density in the beam falls off faster than 1/r2

at large r . So, the natural expectation is that the beam heats the plasma up in the
range of r over which it gets attenuated – perhaps it first makes sound waves, but
ultimately these too will damp, leaving just a heated region of plasma. This expec-
tation cannot be correct in a steady-state calculation, since a continual heating up
of some region of space blatantly contradicts the steady-state assumption. So, what
actually happens to the energy in this calculation? At sufficiently large r the energy
density �E is zero. This means that at sufficiently large r , there is an outward flux
of energy whose magnitude, averaged over angles, is P/(4πr2) with P the energy
lost by the rotating quark per unit time. This energy flux corresponds to a collective
outward flow of the plasma with a velocity, averaged over angles, given by [295]

vplasma = P

4πr2(E + p)
= π

2N 2
c

P

(πT )2

1

(r πT )2
, (8.160)

where we have used the fact that the sum of the energy density and pressure of the
plasma in equilibrium is E + p = π2 N 2

c T 4/2. We see that in the large-Nc limit,
the velocity vplasma is infinitesimal. So, in the steady-state calculation whose results
we have presented, the energy from the gluon beam ultimately finds its way into an
infinite wavelength mode with infinitesimal amplitude [295]. A mode like this can
be thought of as a sound wave with infinite wavelength and infinitesimal amplitude
(i.e. infinitesimal longitudinal velocity). In a sense, this energy flux corresponding
to an infinitesimal-velocity outward flow of the plasma is the closest that a steady-
state calculation can come to describing the heating up of a region of the plasma.

8.6.3 Qualitative features, analytically

Much can be understood about the qualitative features of the results illustrated
in Fig. 8.11 by studying the quasinormal modes of the AdS-BH spacetime that
provide the dual gravitational description of the physics and that we introduced
in Section 6.4. In the dual gravitational picture, the moving string excites a full
spectrum of gravitational quasinormal modes, which propagate outwards and even-
tually get absorbed by the black hole. The propagation and absorption of these
quasinormal modes manifests itself on the boundary as the propagation and atten-
uation of the spirals of energy density shown in Fig. 8.11. The dispersion relations
ω(q) of the lowest quasinormal mode were obtained in Ref. [295] using methods
developed previously [555].

Figure 8.12 shows the dispersion relation for the lowest quasinormal mode (i.e.
the one with the smallest imaginary part). As we saw in Section 6.4, for q � πT
this dispersion relation has the asymptotic form expected for the hydrodynamics of
any conformal fluid [107]
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Figure 8.12 A plot of the real and imaginary parts of the dispersion relation of the
lowest quasinormal mode taken from Ref. [295]. We plot Reω/q and Imω/(πT )
since these ratios are both of order 1. For q � πT the dispersion relation is that
of sound waves whose dispersion relation is given up to order q3 by Eq. (8.161),
plotted as dashed lines in the figure. For q � πT the dispersion relation is that of
waves which propagate at the speed of light. The large-q asymptotic expression
(8.163) that we have obtained by fitting the results in this figure is plotted as the
dotted lines.

ωs(q) = csq − i�q2 + �

cs

(
c2

s τ� − �

2

)
q3 + O(q4) , (8.161)

where in N = 4 SYM theory, with its classical gravity dual, all the constants are
known analytically: the low-q speed of sound is cs = 1/

√
3, the sound attenuation

constant � is given by πT � = 1/6, and the relaxation time τ� is given by πT τ� =
(2 − log 2)/2. These modes represent propagating sound waves which attenuate
over a time scale

tdamping
s ∼ 1

�q2
. (8.162)

The dispersion relation (8.161) is plotted as the red and black dashed curves in
Fig. 8.12; it describes the full dispersion relation very well for q � 2πT . This
supports the observation that the waves in the left column of Fig. 8.11 are sound
waves. Since these waves are not monochromatic (and since in the dual gravita-
tional description they are not described solely by the lowest quasinormal mode)
they cannot be compared quantitatively to (8.161), but their velocity is as (8.161)
predicts for q ∼ 1.2πT , which is comparable to the q ∼ 1.3πT obtained from
their peak-to-peak wavelength. Using q ∼ 1.2πT in (8.162) predicts a sound
attenuation timescale (�t)sound ∼ 4.5/(πT ) ∼ 30 R0, which is comparable to but
a little shorter than the exponential decay time for the amplitude of the waves in
the left column of Fig. 8.11, which is closer to 40 R0. So, the low-q regime of
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the dispersion relation in Fig. 8.12 that describes sound waves does a reasonable
job of capturing the qualitative features of the waves seen in the left column of
Fig. 8.11.

The dispersion relations of the higher quasinormal modes (those with more neg-
ative imaginary parts) can also be determined [295]. At q � πT they approach
the asymptotic form ω = (ã − i b̃)πT where ã and b̃ are mode-dependent O(1)
constants, with values that are larger and larger for higher and higher modes.
(For the lowest quasinormal mode, ã = b̃ = 0.) At low q, disturbances of the
plasma described by higher quasinormal modes attenuate on a time scale of order
1/(b̃ πT ) that is much shorter than that for the sound waves described by the lowest
quasinormal mode, namely (8.162).

Let us turn now to q � πT . As we noted in Section 6.4, in this regime the
dispersion relation for the lowest quasinormal mode takes the asymptotic form

ωrad = q + πT (a − ib)

(
πT

q

)1/3

+ · · · , (8.163)

as argued for on general grounds in Ref. [349], with a ≈ 0.58 and b ≈ 1.022 [295].
At q � πT the dispersion relations of all quasinormal modes approach the asymp-
totic form (8.163), with a and b mode-dependent O(1) constants, again with values
that are larger and larger for higher and higher modes. Therefore, generically the
high q modes propagate at close to the speed of light and attenuate over a time
scale

tdamping
rad ∼ 1

πT b

( q

πT

)1/3
, (8.164)

where we shall use the value b ≈ 1.022 from the lowest quasinormal mode in
making estimates, keeping in mind that if the contribution of higher quasinormal
modes were important this would increase the effective b somewhat. The fact that
the pulses of energy in Fig. 8.11 are far from being monochromatic waves intro-
duces a larger uncertainty than does not knowing how much the higher quasinormal
modes contribute.

We have plotted the large-q asymptotic expression (8.163) for the dispersion
relation for the lowest quasinormal mode as the dotted red and black curves in
Fig. 8.12, and we see that it describes the full result very well for q � 20πT ,
and has the right shape at a qualitative level down to about q ∼ 5πT . This is
consistent with our observation that the narrow pulses of synchrotron radiation in
the middle column, where the pulses have a full width at half maximum (FWHM)
∼ 2.5 R0 corresponding very roughly to q ∼ 6πT , and the right column, where the
pulses have a FWHM ∼ R0 corresponding very roughly to q ∼ 15πT , propagate
outwards at the speed of light. Converting the widths of these pulses into esti-
mates of q is very rough because the pulses are neither sinusoidal nor Gaussian.
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If we nevertheless try substituting q ∼ 15πT into (8.164) we find that it pre-
dicts tdamping

rad ∼ 16 R0, which is roughly half the exponential decay time for the
amplitude of the waves in the lower-right panel of Fig. 8.11. Again, quantitative
comparison is not possible, but inferences drawn from the large-q dispersion rela-
tion for the lowest quasinormal mode (8.163) is at least in the right ballpark. The
qualitative prediction from (8.164) is that narrower pulses, with higher q, can pen-
etrate farther into the strongly coupled plasma, and this is also apparent in the
numerical results.

It is interesting to note that the distance scale (8.164) over which the beam of
gluons is quenched has the same parametric dependence as the maximal stopping
distance (8.133) or (8.134). Both the present calculation and that in Section 8.4.2
describe the propagation of an energetic excitation injected into the plasma, but
the means by which this injection is accomplished are completely different. It is
therefore a pleasing sign of the robustness of the result that the same parametric
dependence of the stopping distance is obtained.

The quasinormal mode analysis also has interesting qualitative implications
for understanding the formation of quark–gluon plasma via the thermalization
of some initially far-from-equilibrium state, as discussed in Chapter 7. If short
wavelength excitations present in the initial conditions or created during the
far-from-equilibrium evolution are sufficiently long lived, they can spend much
of their lifetime propagating through nearly-equilibrated quark–gluon plasma,
where their evolution can be understood via the quasinormal mode dispersion
relations. Equation (8.164) indicates that the maximum thermalization time for
modes of momentum q � πT is ∼ q1/3(πT )−4/3. This means that short wave-
length modes thermalize more slowly than modes with momenta of order πT ,
a conclusion that has also been reached via a rather different analysis of the
away-from-equilibrium correlation functions that govern Hawking radiation in a
time-dependent spacetime [286].

We can also use the quasinormal mode dispersion relation to understand why the
pulses do not broaden significantly in the radial direction as they propagate. The
increase in the width of a pulse as it propagates for a time t is ∼ t �q d2ω/dq2,
where �q is the width of the pulse in q-space. Taking �q ∼ q and using the
large-q dispersion relation (8.163), we find that after the radiation damping time
given by (8.164) the pulse should have broadened by ∼ 4a/(9bq). If the pulse had a
Gaussian profile, this would correspond to broadening by about 10% of the original
FWHM of the pulse. So, the quasinormal mode dispersion relation predicts that by
the time the pulses have been significantly attenuated, they should have broadened
by an amount that is parametrically of order their initial width, but smaller by a
significant numerical factor. It is therefore not surprising that we see no significant
broadening in Fig. 8.11.
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Having understood many of the most interesting features of Fig. 8.11 qualita-
tively, and even semi-quantitatively, by analyzing the quasinormal mode dispersion
relations gives us confidence that no new qualitative phenomena emerge for nar-
rower pulses (higher q; e.g. from a rotating quark with larger γ ), since it is clear
that the results at v = 0.5 and v = 0.65 are already exploring the high-q regime of
the dispersion relation in Fig. 8.12, where the asymptotic expression (8.163) is a
good guide. It is also important to stress that the quasinormal mode frequencies are
determined entirely by the AdS-BH metric, meaning that they reflect properties of
the strongly coupled plasma itself and have nothing to do with the details of how
the beam of gluons shining through it was made by the rotating quark. Given that
we have been able to use the quasinormal mode dispersion relations so successfully
to understand the propagation, the rate of attenuation and the lack of broadening of
a beam of gluons, we are confident that these phenomena are independent of how
the beam of gluons is created.

Now that we understand the steady-state results in terms of quasinormal modes,
we can use the fact that the phenomena we have found are independent of how the
beam of gluons is created to answer the following question: suppose that we could
engineer a single pulse of strongly coupled synchrotron radiation; what would hap-
pen to this pulse as it propagates through the strongly coupled plasma? The dual
gravitational description of this radiation would be governed by the same quasinor-
mal modes we have analyzed, just sourced by a different string worldsheet. As long
as we look only at distances greater than of order 1/(πT ) away from the source,
the disturbance of the plasma must be described by a pulse of short wavelength
radiation with the dispersion relation (8.163) that moves at the speed of light, that
does not broaden, and that is attenuated on timescales (8.164) as well as long wave-
length sound waves with the dispersion relation (8.161) that propagate outward at
the speed of sound and that are attenuated on timescales (8.162). Since these sound
waves move more slowly, the pulse of radiation leaves them behind – shedding
them as we see in the middle column of Fig. 8.11. (The same would happen for
shorter wavelength pulses as in the right column of the figure, but in such cases in
our steady-state calculation the next pulse of synchrotron radiation arrives before
we can see the sound waves being left behind. As we described in Section 8.6.2,
it is difficult to use a steady-state calculation to draw conclusions about what the
pulse of radiation leaves behind.) In the case of a single, isolated, short wavelength
pulse, the short wavelength pulse itself will get far ahead of the sound waves it has
left behind as it is attenuated only on the long time-scale (8.164). By the time the
short wavelength pulse has damped away, the sound waves that it shed will be far
behind and according to (8.162) all but those with the very smallest q will have
dissipated away as heat. Only hydrodynamic modes with very small q (i.e. heat
accompanied by almost no fluid motion) will remain. (These are represented in the
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steady-state calculation by the outward-going energy flux with infinite wavelength
and infinitesimal amplitude that we found at the end of Section 8.6.2.) We now
see that the distinction between the middle and right columns of Fig. 8.11 is that
in the former case the pulse of radiation is never well separated from the sound
waves that it leaves behind, because the radiation does not have a large enough q
for its damping time scale (8.164) to be very much longer than 1/(πT ). So, by the
time the radiation has been damped the sound waves are not far behind it and have
themselves not yet thermalized.

8.6.4 From quenching a beam of strongly coupled gluons to jet quenching

There are many qualitative similarities between the quenching of the beam of
strongly coupled synchrotron radiation in the strongly coupled N = 4 SYM
plasma that we have described in this section and jet quenching in heavy ion
collisions, which we introduced in Section 2.3.

The highest energy jets that have been studied to date in heavy ion collisions at
the LHC [2, 264, 266, 273, 268, 3] lose significant energy but emerge as jets that
(within current experimental resolution) have not been deflected in angle [273] and
whose moderate and high momentum fragments are distributed in angle and in
momentum quite similarly to what is seen in ordinary jets in vacuum. The energy
lost from the jets does not stay in or near the jet cone, and does not emerge in the
form of moderate or high momentum fragments. Instead, the lost energy becomes
an excess of soft particles (momenta � 1 GeV [264]) at large angles (> 45◦ [264])
relative to the jet direction.

At a qualitative level, the behavior of the beam of gluons that we have described
in this section is similar. As it propagates through the strongly coupled plasma,
losing significant energy, the beam of gluons moving at the speed of light does
not spread in angle or get deflected in its direction. And, even as it is significantly
attenuated, it does not spread in the direction along which it propagates which
means that the way in which momentum is shared among the gluons in the beam
is not much changed. The beam is quenched completely after traveling a distance
proportional to q1/3/(πT )4/3, where q is the typical wave vector of the gluons in
the beam. Finally, the lost energy ends up in soft, collective modes of the plasma
that initially take the form of sound waves following behind the beam and that
subsequently thermalize, heating the plasma.

As we saw in Section 8.6.3, the fact that we can describe all these phenomena
in terms of quasinormal modes, independently of the details of how these quasi-
normal modes are excited, indicates that they will characterize the quenching of
any excitation that is initially made of the high momentum modes which propagate
through the strongly coupled plasma at the speed of light. To the degree that it has
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been possible to investigate them to date, these qualitative features are also seen in
the quenching of the energetic heavy (and light) quarks introduced into the strongly
coupled plasma in Sections 8.1, 8.2 and 8.3 (and Section 8.4).

If in a heavy ion collision a jet loses energy by heating the plasma the lost energy
would be manifest as an excess of soft particles moving in all directions. If the lost
energy is in the form of sound waves following the jet, that would correspond to
an excess of soft particles near the jet direction that may be more easily visible in
the case of jets with lower energies or jets that did not travel far through the plasma
(meaning that the sound waves they shed did not have time to thermalize) or both.
There are preliminary indications of such jet broadening in the analysis of lower
energy (20–40 GeV) jets produced in heavy ion collisions at both RHIC [660, 230,
21] and the LHC [629, 389], but at the time of writing the interpretation of these
data is not yet settled.

Comparisons along these lines will never be more than qualitative, since the
beam of strongly coupled radiation whose propagation through strongly coupled
plasma we have described in this section is not a jet. However, the multiple qualita-
tive resonances between jet quenching in heavy ion collisions and the quenching of
a beam of strongly coupled radiation suggest that some of the phenomena observed
in jet quenching are intrinsically strongly coupled. At the same time, the very fact
that the hard fragments of the highest energy jets seen in heavy ion collisions do
look so similar to those of jets produced in vacuum suggests that at least some
of the phenomena observed in jet quenching must be described by perturbative
QCD. One of the goals of research at the current frontier is to find the best ways to
describe the whole story.

8.7 Velocity scaling of the screening length and quarkonium suppression

We saw in Section 2.4 that, because they are smaller than typical hadrons in QCD,
heavy quarkonium mesons survive as bound states even at temperatures above
the crossover from a hadron gas to quark–gluon plasma. However, if the tem-
perature of the quark–gluon plasma is high enough, they eventually dissociate.
An important physical mechanism underlying the dissociation is the weakening
attraction between the heavy quark and antiquark in the bound state because the
force between their color charges is screened by the medium. The dissociation
of charmonium and bottomonium bound states has been proposed as a signal
for the formation of a hot and deconfined quark-gluon plasma in heavy ion col-
lisions [609], and as a means of gauging the temperatures reached during the
collisions.

In the limit of large quark mass, the interaction between the quark and the anti-
quark in a bound state in the thermal medium can be extracted from the thermal
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expectation value of the Wilson loop operator 〈W F(Cstatic)〉, with Cstatic a rectangu-
lar loop with a short side of length L in a spatial direction (say x1) and a long side
of length T along the time direction. This expectation value takes the form

〈W F(Cstatic)〉 = exp [−i T E(L)] , (8.165)

where E(L) is the (renormalized) free energy of the quark–antiquark pair with the
self-energy of each quark subtracted. E(L) defines an effective potential between
the quark–antiquark pair. The screening of the force between color charges due to
the presence of the medium manifests itself in the flattening of E(L) for L greater
than some characteristic length scale Ls called the screening length. In QCD, the
flattening of the potential occurs smoothly, as seen in the lattice calculations illus-
trated in Fig. 3.5 in Section 3.3, and one must make an operational definition of
Ls . For example, in the parametrization of (2.45), Ls can be set equal to 1/μ. Ls

decreases with increasing temperature and can be used to estimate the scale of the
dissociation temperature Tdiss as

Ls(Tdiss) ∼ d , (8.166)

where d is the size of a particular mesonic bound state at zero temperature. The idea
here is that once the temperature of the quark–gluon plasma is high enough that the
potential between a quark and an antiquark separated by a distance corresponding
to the size of a particular meson has been fully screened, that meson can no longer
exist as a bound state in the plasma. This means that larger quarkonium states
dissociate at lower temperatures, and means that the ground-state bottomonium
meson survives to the highest temperatures of all. As we discussed at length in
Section 2.4, there are many important confounding effects that must be taken into
account in order to realize the goal of using data on charmonium and bottomonium
production in heavy ion collisions to provide evidence for this sequential pattern of
quarkonium dissociation as a function of increasing temperature. In this Section,
we shall focus only on one of these physical effects, one on which calculations
done via gauge/gravity duality have shed some light [674, 583, 281, 226, 61, 88,
362, 772, 279, 584, 89, 608, 646, 90, 336, 84, 585, 636, 347].

In heavy ion collisions, quarkonium mesons are produced moving with some
velocity �v with respect to the medium. It is thus important to understand the effects
of nonzero quarkonium velocity on the screening length and consequent dissoci-
ation of bound states. To describe the interaction between a quark–antiquark pair
that is moving relative to the medium, it is convenient to boost into a frame in
which the quark–antiquark pair is at rest, but feels a hot wind of QGP blowing
past it. The effective quark potential can again be extracted from (8.165) evalu-
ated in the boosted frame with T now interpreted as the proper time of the dipole.
While much progress has been made in using lattice QCD calculations to extract
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the effective potential between a quark–antiquark pair at rest in the QGP, there are
significant difficulties in using Euclidean lattice techniques to address the (dynami-
cal as opposed to thermodynamic) problem of a quark–antiquark pair in a hot wind.
In the strongly coupled plasma of N = 4 SYM theory with large-Nc, however, the
calculation can be done using gauge/gravity duality [583, 584, 281], and requires
only a modest extension of the standard methods reviewed in Section 5.4. Here, we
sketch the derivation from Ref. [584].

We start with a rectangular Wilson loop whose short transverse space-like side

σ = x1 ∈ [− L

2
,

L

2
] (8.167)

defines the separation L between the quark–antiquark pair and whose long time-
like sides extend along the x3 = v t direction, describing a pair moving with speed
v in the x3 direction. In this frame, the plasma is at rest and the spacetime metric in
the gravitational description is the familiar AdS black hole (5.33). We then apply
a Lorentz boost that rotates this Wilson loop into the rest frame (t ′, x ′

3) of the
quark–antiquark pair:

dt = dt ′ cosh η − dx ′
3 sinh η , (8.168)

dx3 = −dt ′ sinh η + dx ′
3 cosh η , (8.169)

where the rapidity η is given by tanh η = v, meaning that cosh η = γ . After the
AdS black hole metric has been transformed according to this boost, it describes
the moving hot wind of plasma felt by the quark–antiquark pair in its rest frame.

In order to extract E(L) it suffices to work in the limit in which the time-like
extent of the Wilson loop T is much greater than its transverse extent L , meaning
that the corresponding string worldsheet “suspended” from this Wilson loop and
“hanging down” into the bulk is invariant under translations along the long direc-
tion of the Wilson loop. Parametrizing the two-dimensional worldsheet with the
coordinates σ and τ = t , the dependence on τ is then trivial. The task is reduced to
calculating the curve r(σ ) along which the worldsheet descends into the bulk from
positions on the boundary brane which we take to be located at r = r0�, with � a
dimensionless UV cut-off that we shall take to infinity at the end of the calculation.
That is, the boundary conditions on r(σ ) are

r

(
± L

2

)
= r0� . (8.170)

It is then helpful to introduce dimensionless variables

r = r0 y, σ̃ = σ
r0

R2
, l = Lr0

R2
= πLT, (8.171)
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where T = r0
π R2 is the temperature. Upon dropping the tilde, one is then seeking

to determine the shape y(σ ) of the string worldsheet satisfying the boundary con-
ditions y

(± l
2

) = �. From the boosted AdS black hole metric, one finds that the
Nambu–Goto action, which must be extremized, takes the form

S(C) = −√
λ T T

∫ l/2

0
dσ L , (8.172)

with a Lagrangian that reads (y′ = ∂σ y)

L =
√(

y4 − cosh2 η
) (

1 + y′2

y4 − 1

)
. (8.173)

We must now determine y(σ ) by extremizing (8.173). This can be thought of as a
classical mechanics problem, with σ the analog of time. Since L does not depend
on σ explicitly, the corresponding Hamiltonian

H ≡ L − y′ ∂L
∂y′ = y4 − cosh2 η

L = q (8.174)

is a constant of the motion, which we denote by q. In the calculation we are pre-
senting in this section, we take � → ∞ at fixed, finite, rapidity η. In this limit,
the string worldsheet in the bulk is time-like, and E(L) turns out to be real. (The
string worldsheet bounded by the rectangular Wilson loop that we are considering
becomes space-like if

√
cosh η > �. In order to recover the light-like Wilson loop

used in the calculation of the jet quenching parameter in Section 8.5, one must first
take η → ∞ and only then take � → ∞.)

It follows from the Hamiltonian (8.174) that solutions y(σ ) with � >
√

cosh η

satisfy the equation of motion

y′ = 1

q

√
(y4 − 1)(y4 − y4

c ) (8.175)

with

y4
c ≡ cosh2 η + q2. (8.176)

Note that y4
c > cosh2 η ≥ 1. The extremal string worldsheet begins at σ = − /2

where y = �, and “descends” in y until it reaches a turning point, namely the
largest value of y at which y′ = 0. It then “ascends” from the turning point to its
endpoint at σ = + /2 where y = �. By symmetry, the turning point must occur
at σ = 0. We see from (8.175) that in this case, the turning point occurs at y = yc

meaning that the extremal surface stretches between yc and �. The integration

constant q can then be determined from the equation l
2 = ∫ l

2
0 dσ which, upon

using (8.175), becomes
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l = 2q
∫ �

yc

dy
1√

(y4 − y4
c )(y4 − 1)

. (8.177)

The action for the extremal surface can be found by substituting (8.175) into
(8.172) and (8.173), yielding

S(l) = −√
λT T

∫ �

yc

dy
y4 − cosh2 η√

(y4 − 1)(y4 − y4
c )

. (8.178)

Equation (8.178) contains not only the potential between the quark–antiquark
pair but also the static mass of the quark and antiquark considered separately in
the moving medium. (Recall that we have boosted to the rest frame of the quark
and antiquark, meaning that the quark–gluon plasma is moving.) Since we are only
interested in the quark–antiquark potential, we need to subtract the action S0 of two
independent quarks from (8.178) in order to obtain the quark–antiquark potential
in the dipole rest frame:

E(L)T = −S(l) + S0 . (8.179)

The string configuration corresponding to a single quark at rest in a moving N = 4
SYM plasma was obtained in Refs. [452, 394], as we have described in Section 8.1.
From this configuration one finds that

S0 = −√
λ T T

∫ �

1
dy . (8.180)

To extract the quark–antiquark potential, we use (8.177) to solve for q in terms of
l and then plug the corresponding q(l) into (8.178) and (8.179) to obtain E(L).
Note that (8.177) is manifestly finite as � → ∞ and the limit can be taken
directly. (8.178) and (8.180) are divergent separately when taking � → ∞, but
the difference (8.179) is finite.

We now describe general features of (8.177) and (8.179). Denoting the right-
hand side of (8.177) (with � = ∞) as function l(q), one finds that for a given η,
l(q) has a maximum lmax(η) and Eq. (8.177) has no solution when l > lmax(η).
Thus for l > lmax, the only string worldsheet configuration is two disjoint strings
and from (8.179), E(L) = 0, i.e. the quark and antiquark are completely screened
to the order of the approximation we are considering. We can define the screening
length as

Ls ≡ lmax(η)

πT
. (8.181)

At η = 0, i.e. the dipole at rest with the medium, one finds that

Ls(0) ≈ 0.87

πT
≈ 0.28

T
. (8.182)
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Figure 8.13 The screening length lmax times its leading large-η dependence√
cosh(η). The two curves are for a dipole oriented perpendicular to the wind

(θ = π/2) and parallel to the wind (θ = 0), respectively. Figure adapted from
Ref. [584].

Similar criteria are used in the definition of screening length in QCD [522],
although in QCD there is no sharply defined length scale at which screening sets
in. Lattice calculations of the static potential between a heavy quark and antiquark
in QCD indicate a screening length Ls ∼ 0.5/T in hot QCD with two flavors of
light quarks [506] and Ls ∼ 0.7/T in hot QCD with no dynamical quarks [504].
The fact that there is a sharply defined Ls is an artifact of the limit in which we are
working, in which E(L) = 0 for L > Ls .6

The screening length Ls(η) can be obtained numerically, as illustrated in
Fig. 8.13. One sees that the screening length decreases with increasing velocity
to a good approximation according to the scaling [674, 583, 281]

Ls(v) � Ls(0)

cosh1/2 η
= Ls(0)√

γ
, (8.183)

with γ = 1/
√

1 − v2. We have only discussed the case in which the direction of
the hot wind is perpendicular to the dipole (θ = π/2; the red curve in Fig. 8.13),
but this discussion can be generalized to arbitrary angles θ . One finds [584] that
6 We are considering the contribution to E(L) that is proportional to

√
λ. For l � lmax, the leading contribution

to E(L) is proportional to λ0 and is determined by the exchange of the lightest supergravity mode between
the two disjoint strings [108].
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the dependences of Ls and E(L) on the angle between the dipole and the wind is
very weak. For example, the black curve in Fig. 8.13 gives the η dependence of
the screening length when the wind direction is parallel to the dipole. We see the
difference from the perpendicular case is only about 12%.

The velocity dependence (8.183) suggests that Ls should be thought of as, to a
good approximation, proportional to (energy density)−1/4, since the energy density
increases like γ 2 as the wind velocity is boosted. The velocity scaling of Ls has
proved robust in the sense that it applies in various strongly coupled plasmas other
than N = 4 SYM [88, 226, 646, 585] and in the sense that it applies to baryons
made of heavy quarks also [84].

If the velocity scaling of Ls (8.183) holds for QCD, it will have qualitative
consequences for quarkonium suppression in heavy ion collisions [583, 584].
From (8.166), the dissociation temperature Tdiss(v), defined as the temperature
above which J/ψ or ϒ mesons with a given velocity do not exist, should scale
with velocity as

Tdiss(v) ∼ Tdiss(v = 0)(1 − v2)1/4 , (8.184)

since Tdiss(v) should be the temperature at which the screening length Ls(v) is
comparable to the size of the meson bound state. The scaling (8.184) indicates
that slower mesons can exist up to higher temperatures than faster ones. As illus-
trated schematically in Fig. 8.14, this scaling indicates that J/ψ suppression (and
ϒ suppression) may increase markedly for J/ψs (ϒs) with transverse momentum
pT above some threshold, on the assumption that the temperature in the plasma
does not reach the dissociation temperature of J/ψ (ϒ) mesons at zero veloc-
ity [521, 728]. The threshold pT above which the production of quarkonium falls
off due to their motion through the quark–gluon plasma depends sensitively on the
difference between Tdiss(v = 0) and the temperature reached in the collision [413].
Modeling this effect requires embedding results for quarkonium production in hard
scatterings in nuclear collisions into a hydrodynamic code that describes the motion
of the quark–gluon fluid produced in the collision, in order to evaluate the velocity
of the hot wind felt by each putative quarkonium meson. Such an analysis indi-
cates that once pT is above the threshold at which Tdiss(v) has dropped below
the temperature reached in the collision, the decline in the J/ψ survival prob-
ability is significant, by more than a factor of four (two) in central (peripheral)
collisions [412, 413]. We should caution that, as we discussed in Section 2.4, in
modelling quarkonium production and suppression versus pT in heavy ion colli-
sions, various other effects like secondary production or formation of J/ψ mesons
outside the hot medium at high pT [519] remain to be quantified. The quantitative
importance of these and other effects may vary significantly, depending on details
of their model implementation. In contrast, Eq. (8.184) was obtained directly from
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Figure 8.14 A 1/
√
γ -velocity scaling of the screening length in QCD would

imply a J/ψ dissociation temperature Tdiss(pT ) that decreases significantly with
pT , while that for the heavier ϒ is affected less at a given pT . The curves are
schematic, in that we have arbitrarily taken Tdiss(0) for the J/ψ to be 2.1 Tc and
we have increased Tdiss(0) for the ϒ over that for the J/ψ by a factor corre-
sponding to its smaller size in vacuum. At a qualitative level, we expect to see
fewer J/ψ (ϒ) mesons at pT s above that at which their dissociation temperature
is comparable to the temperatures reached in heavy ion collisions at RHIC (at the
LHC). Figure taken from Ref. [583].

a field-theoretical calculation and its implementation will not introduce additional
model-dependent uncertainties.

The analysis of this section is built upon the calculation of the potential between
a test quark and antiquark in the strongly coupled plasma of N = 4 SYM theory,
a theory which in and of itself has no mesons. Gaining insight into the physics
of quarkonium mesons from calculations of the screening of the static quark–
antiquark potential has a long history in QCD, as we have seen in Section 3.3.
But, we have also seen in that section that these approaches are gradually being
superseded as lattice QCD calculations of quarkonium spectral functions them-
selves are becoming available. In the present context also, we would like to move
beyond drawing inferences about mesons from analyses of the potential E(L) and
the screening length Ls to analyses of mesons themselves. This is the subject of
Chapter 9, in which we shall carefully describe how once we have added heavy
quarks to N = 4 SYM by adding a D7-brane in the gravity dual [513], as in Sec-
tion 5.5, the fluctuations of the D7-brane then describe the quarkonium mesons
of this theory. We shall review the construction first in vacuum and then in the
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presence of the strongly coupled plasma at nonzero temperature. We shall find
that the results of this section prove robust, in that the velocity scaling (8.184) has
also been obtained [336] by direct analysis of the dispersion relations of mesons
in the plasma [608, 336]. These mesons have a limiting velocity that is less than
the speed of light and that decreases with increasing temperature [608], and whose
temperature dependence is equivalent to (8.184) up to few percent corrections that
have been computed [336] and that we shall show. This is a key part of the story,
with the velocity-dependent dissociation temperature of this section becoming
a temperature dependent limiting velocity for explicitly constructed quarkonium
mesons in Chapter 9. However, this cannot be the whole story since the dispersion
relations seem to allow for mesons with arbitrarily large momentum even though
they limit their velocity. The final piece of the story is described in Section 9.4.2,
where we review the calculation of the leading contribution to the widths of these
mesons [347], which was neglected in the earlier calculations of their dispersion
relations. Above some momentum, the width grows rapidly, increasing like p2

⊥.
And, the momentum above which this rapid growth of the meson width sets in is
just the momentum at which the meson velocity first approaches its limiting value.
The physical picture that emerges is that at the momentum at which the mesons
reach a velocity such that the hot wind they are feeling has a temperature suffi-
cient to dissociate them, according to the analysis of this section built upon the
calculation of Ls , their widths in fact grow rapidly [347].
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