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Abstract

In this paper we prove several random fixed point theorems for multifunctions with a stochastic
domain. Then those techniques are used to establish the existence of solutions for random
differential inclusions. A useful tool in this process is a stochastic version of the Tietze extension
theorems that we prove. Finally we present a stochastic version of the Riesz representation
theorem for Hilbert spaces.

1980 Mathematics subject classification (Amer. Math. Soc): primary 60 H 25; secondary 34 G
05.

1. Introduction

In this paper we examine single valued and multivalued functions with a stochas-
tic domain. We prove some random fixed point theorems that generalize results
existing in the literature. A useful tool in this process is a stochastic version
of the Tietze extension theorem. Then, in Section 4, we use the random fixed
point theorem to obtain solutions for a random differential inclusion. Finally
in Section 5 we examine random linear operators with stochastic domain and
we prove a random version of the classical Riesz representation theorem. Our
work was motivated from control theory, differential equations and inclusions
and mathematical economics, where our results can find useful applications.
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2. Preliminaries

Let (fi,£,/i) be a complete <r-finite measure space and X a Polish space
(that is, a complete, separable, metrizable space). We will denote by d(-, •) a
metric compatible with the topology of X. Recall (see Castaing-Valadier [12]
or Himmelberg [4]) that a multifunction F: 2X\{0} is said to be measurable if
either of the following two equivalent statements hold:

(1) for all [/ C AT open, {w G fi: F{u) n U ? 0} e E,
(2) for all y G X, u -> d{y, F(w)) = inf [d(y, x): x G F(w)] is measurable.

If f (•) is closed valued, then (1) and (2) above are equivalent to (3) GTF —
{u,x) G I* x X: x € F(w)} G £ x B(X), 5(X) being the Borel a-field of X
(graph measurability).

Following Engl [11] and Schal [23] we will say that a measurable F ( ) is sep-
arable if there exists a countable set D C X such that F(u) — F(UJ) D D for all
w G fi. It is not difficult to see that if F(.) is measurable and F(u) = int F(w),
then it is separable. Also a multifunction T: GrF —• 2X\{0} is said to be
an "adjective" random map with stochastic domain F(-), if for all x G X and
all U C X open, {w G fi: T(w,z) D C/ # 0 , x G F(w)} G E and for every
w G fi, i —» T(w,i) is "adjective" on F(w). Random operators with stochastic
domain were first introduced and studied by Engl [8] (single valued case) and
[11] (multivalued case).

Recall (see Klein-Thompson [17]), that if Y, Z are Hausdorff topological spaces
and G: Y —• 2Z\{0}, then we say that F(-) is upper semicontinuous (u.s.c.)
(resp. lower semicontinuous (l.s.c)) if for all U C Z open {y G Y: G(y) C U}
(resp. {y G Y: G{y)f\U ^ 0}) is open in Y. If G(-) is both u.s.c. and l.s.c, then
we say that it is continuous. Also if Z is a metric space and G(-) is closed valued,
we say that G(-) is ft-continuous, if it is continuous from Y into the closed subsets
of Z with the Hausdorff (generalized) metric h(-, •). Those two concepts of set
valued continuity are equivalent when G() is compact valued. Finally for Z a
metric space, we will say that G(-) is d-continuous if y —• d(z, G{y)) is continuous
for all z G X. Here d(-, •) is the metric on Z. Note that an A-continuous
multifunction is d-continuous and if Z is a reflexive Banach space, then the
same is true for closed, convex valued multifunctions that are continuous in the
Kuratowski-Mosco convergence (see Tsukada [26]). This last type of continuity
is useful in differential inclusions and variational inequalities.

Let X be a Banach space. We will be using the following notations:

Pf(c){X) = {A C X: nonempty, closed, (convex)},

Pk(c){X) = {A C X: nonempty, compact, (convex)}.
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Also by if(-) we will denote the Kuratowski measure of noncompactness, tha t

is, if A c X is nonempty and bounded then

= inf{e > 0: A admits a finite covering of sets of diameter < e}.

Recall that a map T: X —* 2X\{0} is said to be condensing if for all A C X
nonempty, bounded with i(A) > 0, we have *i(T(A)) < ~/(A).

3. Random fixed point theorems

In this section we prove the existence of random fixed points for multifunctions
with stochastic domain. Throughout this section (fi, E, /i) is a complete a-finite
measure space and X a Polish space. Additional hypotheses will be introduced
as needed.

We will start with a powerful and general result, that extends to a probabilis-
tic setting a large class of deterministic fixed point theorems. Already such a
"general random fixed point theorem" (of the type that a.e. existence of a de-
terministic fixed point implies existence of a random fixed point) was proved by
Engl [9] (Theorem 13) for single valued mappings and X a separable, reflexive
Banach space. Then it was extended by Engl [11] (Theorem 13) and [10] (The-
orem 6) to multivalued /i-continuous mappings defined on a separable Banach
space. Here we relax the /i-continuity to d-continuity and the space X can be any
Polish space. Also our result extends Theorem 4.2 of Cuong [5] and the results
of Nowak [19], where a stronger continuity hypothesis was made and Theorem 1
of [21], where the multifunction had a deterministic domain, but the continuity
hypotheses were weaker.

THEOREM 3 . 1 . If F: fi —> P/(X) is a separable measurable multifunction,

T: GTF —> Pf(X) is a d-continuous random map with stochastic domain F(-)

and for all w e n there exist x € F(u) such that x G T(w, x) then there exists

x: fi —> X measureable, and such that for all w € fi, x(w) € F(UJ), and x(ui) G

PROOF. Let G(w) = F(w) x X. Since F(-) is separable, measurable, so is
G(). Let ip: GrG -> R+ be defined by <p(u,x,y) = d(y,T(w,x)). Note that for
{x,y) eX x X and for A > 0 we have: {w € fi: ip{u, x, y) < A, (a;, y) e G(w} =
{w e fi: T(w, x) D [z e X: d(z, y) < A] ̂  0 , (x, y) e G(w)} G E. Also note that
for fixed w 6 fi, if (xn,yn) —<• (x,y), then

\d{yn,T{u,xn))-d(y,T{u,x))\
< \d(yn, T{u, xn)) - d{y, T{u, xn))| + \d{y, T(u, xn)) - d{y, T{u, x))|

< d(yn,y) + \d{y,T(u,xn)) - d{y,T{u,x))\ - 0,
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the summand tending to zero because of the d-continuity hypothesis. So (x, y) —•

<p(uj,x,y) is continuous. Thus <p{-,-i') is a continuous random operator with

stochastic domain the separable, measurable multifunction G(-). Using Corollary

3.2. of Jdanok [15] we can find <p: QxXxX—*R& Carathe"odory extension of

Next let f: fi x X -> P/(X) be the multifunction defined by

(T(w,x) iorw,x)eGrF,
{U)'X) \C for(u;,z)£GrF,

where C G Pf{X) is arbitrary. Consider the multifunction R: fi —> 2X defined
by R{UJ) = {x G F(u)): x G T(w,x)}. Note that because of our hypothesis,
R(u) £ 0 for all u G fi.

Also GTR = {{u,x) € GrF : z € T(w,x)} = {(w,x) e GrF: <p(u,x,x) -
0} € E x B(X). So we can apply Aumann's selection theorem (see Saint-Beuve
[22], Theorem 3) to find x: Q -* X measurable s.t. x(w) G R(u) for all w G H.
Then x(w) G F{u) and x(w) G T(w, x{w)) for all w G Q.

REMARK. The function i(-) obtained in the above theorem is called a random
fixed point for T(-, •).

We will give a small sample of the many useful applications that Theorem 3.1
can have. For the next result assume that X is a reflexive, separable Banach
space. By Xw we will denote the space X with the weak topology.

THEOREM 3.2. //F: fi —• P/(X) is a separable measurable multifunction,
T: GrF —> Pfc(X) is a continuous, condensing random multifunction, with
stochastic domain F(-) and for allu G fi, T(w,F(w)) C F(w) andT(u,F(uj)) is
bounded, then T(-, •) admits a random fixed point.

PROOF. Since T{u), •) is continuous from F(w) into X, it is u.s.c. from F(w)
into Xm and so for xn -^ a; in F(o;), we have iy-limn_oo T"(u;, xn) c T(u, x) (see
Delahaye-Denel [6]). Also T(-, •) is l.s.c. from F(w) into X and so T(u,x) C s-
limr(w,zn). Then using Theorem 2.2. of Tsukada [26] we get that T(w,) is
d-continuous on F(w). Finally Theorem 1 of Himmelberg, Porter and Van Vleck
[13], together with Theorem 3.1. produce the desired random fixed point.

REMARK. This result extends Theorem 3.1. of Itoh [14], where the multi-
function T(-, •) had a deterministic domain and its values were compact, convex
sets in X.

For the next result assume that X is a separable Banach space. Recall that a
multifunction G: X -> Pf{X) is ft-contractive, if h(G(x'),G(x)) < \\x' - x\\ for
all x', x G X. Our result can be viewed as a stochastic version of the fixed point
theorem of Assad [1].
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THEOREM 3.3. If F: fi —> Pk[X) is a separable, measurable multifunction,
T: GTF —> Pf (X) is an h-contractive, random operator with stochastic domain
F{-) and with bounded values, and for all (u,x) € Gr(bdF(-)), T(u,x) C F(u),
then T(-, •) admits a random fixed point.

PROOF. This follows from Theorem 1.1 of Assad [1] and Theorem 3.1.

REMARK. The above theorem extends Corollary 15 of Engl [11], where T(CJ, •)
was a strict contraction, that is, fc(<j)-Lipschitz with fc(w) < 1 for all w € fi.

So the strategy is clear. Combine a well known deterministic result with
Theorem 3.1. This way we can get several other theorems. In the rest of this
section we are going to use a particular version of this method, based on the
following interesting extension theorem. The same result was also proved by
Bocsan, Constantin and Radu [3]. This theorem is an interesting application of
an important extension principle for .R-valued functions proved by Jdanok [15]
under very general hypotheses.

Asume that X, Y are Polish spaces.

THEOREM 3.4. //F: fi —> P/{X) is a separable measurable multifunction,
andT: GTF —• Y is a continuous random operator with stochastic domain F(-),
then there exists T: fix X —• Y o Caratheodory map such that T\GIF = T.

PROOF. From Urysohn's theorem (see Dugundji [7], page 195, Corollary
9.2) we know that there exists a homeomorphism u: Y —> V C IN where
/ = [0,1]. So we can view T as a map from GTF into V, that is, T(w,x) =
{T1{w,x),T2(u,x),...,Tn{w,x),...).

We claim that for all n > 1, Tn(-,-) is a continuous random function with
stochastic domain F(-). The continuity is clear from the continuity of T(u, •).
To show measurability, lelt pn: I

N —* I be the projection on the nth factor. We
know that pn() is a continuous, open surjection. Then for every x € F(u) and
for every U C I open we have {w € fi: Tn(w, x) € U} — {w € fi: (pn oT)(w, x) €
U,x e F(OJ)} e E. For each n > 1, let Tn: fi x X -> / be the CaratModory
extension of Tn, existing by Corollary 3.2 of Jdanok [15]. Let f: fi x X -> Y be
denned by f(w, x) = (T1(u,x),f2{u,x),... ,fn{u,x),...). Clearly f(-, •) is the
desired extension of T(-, •).

This result leads us to some other interesting random fixed point theorems
for measurable multifunctions with stochastic domain. So let X be a separable
Banach space.

THEOREM 3.5. IfF:n^Pf{X)isa separable multifunction, andT: GTF
—» Pkc(X) is a continuous, bounded, condensing random multifunction with
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stochastic domain F(-) such that for all w € Q, T(u,bdF(u})) C F(ui), then
T(-, •) admits a random fixed point.

PROOF. From Theorem 11-14, page 47, of Castaing-Valadier [4], we know that
{Pkc{Y), h) is a Polish space. Then Theorem III-2 of [4] tells us that T(-, •) is a
continuous, random operator with stochastic domain F(-). Using Theorem 3.4.
we can find T: Q x K —* Pkc, a Carath6odory extension of T(-, •). Let R{w) =
{x e F(u): x e f(w, x)}. From Corollary 3 of Su-Seghal [25] we know that for all
wefl , R(u) ^ 0. Note that Gr R = {(w, x) e ft x X: d(x, f(w, x)) = 0} n Gr F.
Since measurablity of T(-,z) as a function in the metric space (Pkc{X),h) is
equivalent to measurablity of T(-,x) as a multifunction (see Theorem III-2 in
Castaing-Valadier [4]), we see that (u,x) -+ d(x, T(w, x)) is a Carathe"odory
function, that is, is measurable in u and continuous in x. Hence from Lemma
111-14 of [4] we get that (w,i) —> d(x, T(u, x)) is measurable, and thus Gri? €
E x B(X). So we can apply Aumann's selection theorem and get x: U —> X,
measurable, such that for all w € fi, X(LJ) € R{u)- This is the desired random
fixed point.

REMARK. The result remains true if instead we assume "T: Gr F —» P/C(X) is
a continuous, bounded, condensing random multifunction with stochastic domain
F(-) and with values in a separable subset C of the space of nonempty, bounded,
closed, convex subsets of X with the Hausdorff metric".

The proof is the same, if we consider the Polish space (C, h). Similarly, using
Theorem 1 of Su-Seghal [25] we can have

THEOREM 3.6. // F(-) is as above, and T: GrF -> Pkc(X) is a con-
tinuous, bounded, condensing random multifunction such that for all (w, x) €
GrF, !T(w, x)f)F ^ 0, then T(-, •) admits a random fixed point

REMARKS. (1) Again we can assume instead that T: GrF —• P/C(X) is a
continuous, bounded, condensing random multifunction with values in C.

(2) This result extends Theorem 2 of Sehgal and Walters [24], which was
stated for single valued functions with domain fi x X.

Also Theorem 3.4. leads us to the following implicit function theorem of Fil-
ippov type, that can be useful in control theory and mathematical economics.
Assume that X, Y are Polish spaces.

THEOREM 3.7. If F: Q —> Pf{X) is a separable, measurable multifunction,
T: GrF —> Pk(Y) is a continuous, random multifunction with stochastic domain
F{-), G:O-> 2X\{0} is graph measurable and for all LJGG, G(W) C F(U) and
i / / : ( l - t F is measurable such that for all u € fi, f{w) € T(u,G(u})), then
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there exists g: Q ^ X measurable such that for all w € Q, g(u) G G(w) and

PROOF. From Theorem II-8, p. 42 of Castaing and Valadier [4] we know
that (Pk(Y),h) is a Polish space. Apply Theorem 3.4. to find f: fi x X -»•
Pk(Y), a Carathe'odory extension of T(-,-). Let R: O -* 2X be defined by
R{u) = {x G G(«): /(w) € f(w,a;)}. Clearly for all u G fi, R{u) / 0 .
Also GrR = {(<JJ,X) G GrG: d(/(w),T(w,z)) = 0}. But recall that (w,x) ->
d(f(uj),T(uj,x)) is a Carathe'odory function, and hence it is jointly measurable.
Therefore GTR G E x B(X). Once Again Aumann's selection theorem gives us
g: fi —• X measurable such that for all w G Q, ff(w) G i?(w) unplies g(u) G G(w)

REMARK. Again we can assume instead that "T: G r F —> Pf(X) is a continu-
ous, random multifunction with stochastic domain F(-) and values in a separable
subset C of the set of all bounded, closed subsets of X"

Interesting random fixed point theorems for u.s.c. operators can be found in
[10] and [11].

4. A random differential inclusion

In this section, using a random fixed point argument, we will establish the
existence of solutions for a class of random differential inclusions defined in a
separable Banach space.

Our existence theorem extends to infinite dimensions the work of Nowak
[20]. Also the orientor field in our case satisfies weaker continuity hypothe-
ses (Carathe'odory conditions) and a more general growth assumption. When
specialized to single valued functions, our result extends significantly Theorem
4.3ofltoh [14].

So let (fi, E, fi) be a complete, <r-finite measure space, T = [0, b] a bounded,
closed interval in R+, and X a separable Banach space. Given F: Q x T x
X —> 2 X \ { 0 } and xo: fi —> X measurable, we consider the following random
multivalued Cauchy problem:

(*) i ( « , 0 G F{u, t, x(u, 0 ) , x(u,0) = io(w).

By a random solution of (*) we understand process x: fi x T —» X which is
measurable in w, absolutely continuous in t and satisfies (*) for all w G fi and
almost all t €T. We will make the following assumptions concerning F(; •, •):

(A0 F{-, •, •) has values in Pkc(Y).
(A2) for all x G X, (w, t) —> F(ui, t, x) is measurable.
(A3) for all (u>,t) G fi x T, x —> F(u>,t,x) is ^-continuous.
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(A4) \F{uj,t,x)\ = sup{||«||: z E F(u,t,x)} < a(u,t) + b(w,t)\\x\\ a.e. for all
w ECl and all x E X, where o(-, •) and &(•, •) are jointly measurable, and for all

(A5) For all B C X bounded, ~t[F(ui,t,B)] < <p(u),t)i(B) a.e. for all w €
fi, where <p(-,-) is jointly measurable and for all w E fi, <p(u;,-) E L\ and

Olli < 1/2-

THEOREM 4 . 1 . / / (Ai ) to (A5) hold then (*) admits a random solution.

PROOF. Let M(w) = [HzoMII + ||o(w,-)||i]exp[||6(o;,-)||i]. Let B(u) C
0 be denned by B(u) = {x(-) e C(T,X): ||a:(-)||oo < Af(w)}.

Let fl: n x C(T, X) - 2C<T'X) be denned by R(w, x) = {y(-) E C(T, X) : y(t)
= * o M + So /(«) ds,tET, f(-)e L1 (T, X), /(«) E F(w,«, x(s)) a.e.}.

Note that because of Aumann's selection theorem and (A4) it is easy to see
that R(UJ,X) ^ 0 . Next we will show that u —> R(u,x) is measurable, while
x —<• R(<JJ, x) is /i-continuous.

Let SoF(u>,s,x(s))ds = {f*f{a)d8: /(•) E Ll(T,X),f(s) E F(u,s,x(s))
a.e.}. As we already said this is nonempty and because of the Radstrom embed-
ding theorem (see Klein and Thompson [17] it is easy to see that

/ F(w, a, x(s)) ds E Pfcc(X) for all* E T.
Jo

So a straightforward application of the Arzela and Ascoli theorem tells us that
R(-,-) has values in Pkc(C(T,X)). Now note that Gri? = {(u,x,y) E H x
C{T,X) x C{T,X);d(y{t),L{w,t,x)) = 0 for all * e T}, where L(w,t,x) =
xo(w) -I- / 0 F(w, s, x(s)) ds. Let u(w, t, x, y) — xo(w) + d(et(y), L(ui, t, x)) where
et: C(T, X) —• X is the evaluation map at t. From Theorem 2.4, page 260 of
Dugundji [7] we know that e.(-) is continuous. Also from (A2) w —+ L(u),t,x) is
measurable. Furthermore if (tn, xn) —* (t, x) in T x C(T, X), then using (A3) we
have

h (f F{w, s, xn(s)) ds, f F{u, s, x(s)) ds)

O rtn rtn \

F(uj,s,Xn(s))ds, F(uj,s,x(s))ds\
0 Jo /

+ h( f" F(u, s, x(s)) ds, f F(u, s, x(a)) ds

< f " h{F(u,s,xn{s)),F{uj,s,x(s)))ds
Jo

/

tvtn

\F{u,s,x(s))\ds-+0,
t v t n

~ asn-» 00.
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Hence (t, x) —> L(u, t, x) is ^-continuous, so (w, t, x, y) —» u(w, £, x, j/) is mea-
surable in w and continuous in (t, x, j/), whence u(-, •,-,•) is jointly measurable,
and so (u, x, y) —> t>(u;, a;, j/) = s u p n > 1 u(w, tn, x, y) is measurable, where {tn}n>i
is dense in T. But Gr fl = {(w, x, j/)~e fi x C{T, X) X C(T, X ) : v(w, x, y) = 0} €
E x S (C(T ,X) ) x B(C(T, X)) implies that R{-, •) is graph measurable.

Next let S ^ . ^ . J J = {/(•) € L X (T,X) : / («) € F(w,s,z(8)) a.e.}. Also
let x n ( ) —•• x ( ) in C(T,X). Then using Honnander's formula (see Theorem
11-18, page 49, of Castaing and Valadier [4]), we have that (recall a(x*,A) =
sup[(x*,a), a € A] for A C X and x* € X*):

= sup kKS^,.,^.))-^^^,.^.)))!
Hloo<OO

< sup / \<T(v(s),F(u),8,xn(s)))-o(v{s),F(u,s,x{s)))\ds
l|t>||oo<W0o o <

-* 0, as n —> oo,

and so

Let z(-) eR(u,x). Then

z{t) = xoM + f /(«) ds, t € T,
Jo

with /(•) € 5|(W).ia.(.)}. Let /„(•) e Sj,^.^^ be such that /„ A / in Z,1

This is possible because of (1). Set

«„(«) = xo(u) + / /„(«) ds, t € T.

Clearly «„(•) e i?(w,xn) and

| | 2 n - « | | o o < / \\fn{s)-f(s)\\ds-*0, as n -» oo,

so J 6 s - l™n_,oo -R(w) xn)i whence

(2) R(u, •) is l.s.c.

(see Delahaye and Denel [6]).
Next we will show that R(w, •) is u.s.c. Because it has compact values it

suffices to show that given e > 0 there exists 6(e, x) > 0 such that R(ui,y) C
R{u,x) + eBl for all y e Bs(x), where B6{x) = {z{-) e C(T,X): \\z-x\\ao < 6}
and B\ is the open unit ball. Recall t ha t x(-) —> 5 L W . x / ) ) is /i-continuous. So
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we can find 6 > Osuch tha t for ||a;—j/||oo < <5 we have / i ( S L w . x,\\ S L . , > >) < e.

Our claim is tha t this 6 > 0 will do the job for us. So let z € R(u>, y). Then

d{z,R(u,x)) =

where g(-) € 5 ^

inf
i

inf
i

i and

sup

sup

O-xo(w)- / /(s)ds
Jo II

f* r*
(w) + / g(s) ds — xo(u) — I f(s)dt

Jo Jo

[u) + f* g(s) ds, t€T. So we have

f* II
i(s)ds- / f{s)ds\\

Jo II
inf

' . - . x ( - ) > '

whence iZ(w, j/) C R(u,x) + eB\, and so

(3) -R(w, •) is u.s.c.

From (2) and (3) we conclude tht R(UJ, •) is continuous and because it has
compact values it is ̂ -continuous.

Next we will show that for each w e Q R(w, •) has a fixed point in B(u). To
this end note that because of Gronwall's inequality, for all x(-) € B(u), R(u>, x) C
B(w). So R(u, •): B{u) -> B(w). Next let A C B{u) be nonempty. We have

Let {xn()}n>i C B{w) be such that cl{xn()}n>i = A. This set exists because
A being a closed subset of the separable Banach space C(T, X) is itself separable.
We claim that, for all s € T,

c\[F{u, s,A(s))\ = , s,

So let y e F(tjj, s, A(s)); then y € F(u, s, z) with z € ~A(s). Let {xm(-)}m>i Q
{xn(-)}n>i be such that xm(s) A z; then F(w, s,xm(s)) —•• F(u, s,z). Let
ym e F(w, s,xm(s)) be such that

\\ym - y\\ = d(y, F{u, s, xm(a))).

Then \\ym - y\\ —> 0 as m —• oo, so y € cl{ir(w, s, xn(s))}n>i, and so the claim
follows. But note that because of (^2) and (^3) s —» F(a;, s, xn(s)) is measurable
implies s —• convljn>1 F(w, s,xn(s)) = H(u,s) is measurable. So it admits a
Castaing representation {hn(<j, )}n>i (see Castaing-Valadier [4], Theorem III-7,
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page 66). Using it we have that

cl / conv{/in(w,s)}n>ida= / conv{/in(u;,s)}n>ids
Jo Jo

= cl / {hn(w,s)}n>ids,
Jo

which implies that

7 If F(u, s, A(s)) dsl < 7 If hn(u, s) ds: n > lj .

Using Lemma 2.2. of Kisielewicz [16] we get that

1\ hn{u,s)ds: n> 1 < / 2f[ftn(w,s): n > l]ds
Uo J Jo

= f 21(F(u,s,A(s)))ds
Jo

< / 2v?(a;,s)7(A(S))ds.
Jo

Let V() denote the Kuratowski measure of noncompactness on C(T,X).
From a well-known result of Ambrosetti (see for example Lakshmikantham and
Leela [18]) we have il)(R(ui,A)) < 2i)(A)\\(p(u, -)||i < il>(A), whence R(u,-) is
^-condensing.

Apply Theorem 1 of Himmelberg-Porter-Van Vleck [13] to deduce that there
exists x: fi —* C(T,X) measurable, and such that x(u) € -B(w) and x(u) €
R(w, x(u)) for all w € H. Because of Proposition 4.2. of Itoh [14] (see also the
Lemma in [21]) we have that x(<j,t) = x(w)(t) is a Carathe'odory function and
clearly is the desired random solution of (*).

5. Random linear functional

In this final section of the paper we prove a random version of the Riesz
representation theorem for Hilbert spaces.

So let (f2, E, fj.) be a complete, <r-finite measure space and X a separable
Hilbert space.

THEOREM 5 . 1 . If L: U —> Pf(X) is a separable, measurable multifunc-
tion with values in the closed subspaces of X and T: Gr L —• R is a linear,
continuous, random functional with stochastic domain L(-), then there exists a
unique x*: Q —• X, measurable, and such that for all w € fi, x*(w) e L(u),
T(w,x) = (x*(u),x) for all x £ L(u>), and \\T(u, -)|| = | | x » | | .
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PROOF. From Corollary 4.4. of Jdanok [15] we know that there exists f: fix
X —> R, a linear, continuous, measurable functional such that T\GIL — T and
||f(w)|| = ||T(w)|| for all w e f 2 .

Let R: fi -> 2X be defined by

R(u) = {x* G L(u): {x*,x) = f(w, a:) for all x G L{u)}.

Since I/(w) is a Hilbert space itself, from the classical Riesz representation
theorem we know that R{OJ) ^ 0 for all u G fi. Let {xn(-)}n>i be a Castaing
representation for L(-); that is, for all n > 1, xn: Q —> X is measurable and
L(w) = cl{zB(«)}B>i. Then Gri? = f l n ^ J ^ x * ) G fi x X: (i*,xn(w)) -
f(w,xn(w)) = 0} n GrL. Note that for all n > 1, un(w,a;*) = (x*,xn(w)) -
T(u,xn(oj)) is jointly measurable and so GtR G E x B(X). Apply Aumann's
selection theorem to find x*: Q —* X measurable such that x*(w) G fi(w) for all
ijj G n =>• x* G L(w) and (x*(w),x) = T(w,x) for all a; G L(u) and all w G H.
From this last equality we also get that ||x*(w)|| = ||T(w)|| for all u G Q.

REMARK. If for all w e l l , L(u) = X, then we recover the result of Bensous-
san [2], page 89, which is useful in filtering theory.
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