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Prediction of the phase difference between
large-scale velocity and Reynolds stress
fluctuations in wall turbulence
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A resolvent-based model was used to predict the phase-difference profile between velocity
and stress coherent motions measured in a high Reynolds number channel flow as a
proxy for predicting large- and small-scale turbulent interactions. The resolvent model
is based on the transfer-function approach for scale interactions in wall turbulence
proposed in Jacobi et al. (J. Fluid Mech., vol 914, 2021, pp. 1–27), but incorporates a
quasi-empirical weighting scheme to construct composite mode shapes that represent the
realistic dispersion of convection velocities associated with the large scales of turbulence.
The weighting scheme was derived from the observed similarity between the spectral
region where the resolvent operator is low rank and the streamwise spectral energy density
of wall-bounded turbulence, and was found to be superior to both single-convection
velocity models and models based on linearly weighted modes, when compared with
cross-spectral phase calculations from a channel flow computation. The ability to predict
the phase relationship between large-scale coherent motions and their associated stress
fluctuations allows for refining and extending resolvent-based models of turbulence to
describe small-scale features of wall-bounded flows.

Key words: turbulence modelling, turbulent boundary layers

1. Scale interactions in wall-bounded turbulence

The importance of large-scale coherent motions to wall-bounded turbulence has been
recognized since early observations of very long time-scale correlations, indicating the
presence of features many times the size of the outer length scale of the flow (Favre,
Gaviglio & Dumas 1967; Blackwelder & Kovasznay 1972). These large, meandering
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regions of high momentum have been identified in the outer layer (Kim & Adrian 1999)
and log layers (Hutchins & Marusic 2007) of all forms of wall-bounded flows, with
slight differences between internal and external flows (Monty et al. 2009). Moreover,
the large-scale motions were shown to contain half of the turbulent kinetic energy in
wall-bounded flows (Guala, Hommema & Adrian 2006), and thus appear well suited for
low-order modelling.

A variety of modal decompositions have been used to represent the dynamically
significant large-scale motions in turbulence, reviewed recently by Taira et al. (2017),
including variations on the proper orthogonal decomposition (POD) technique, along with
dynamic mode decomposition (DMD), and a growing literature based on linearizing the
Navier–Stokes equations, referred to as the resolvent framework.

The resolvent approach uses the linearized Navier–Stokes operator to construct a transfer
function (the ‘resolvent operator’) to analyse the input–output relationship between the
nonlinear forcing terms of the momentum equation and the resulting velocity fluctuations
(McKeon 2017). A singular value decomposition (SVD) of an appropriately weighted
resolvent operator is used to identify the forcing and response modes which result in
the greatest (linear) energy amplification of the system, and which are supposed to be
energetically representative modes within the flow. McKeon & Sharma (2010) showed that
a special class of resolvent modes whose phase speed is equal to the local mean velocity
results in uniquely strong amplification, similar to the critical layer modes traditionally
studied in stability analysis. Since then, critical resolvent modes have been applied to a
wide variety of wall-bounded flows (McKeon 2017), and have been shown to relate directly
to the spectral form of the POD technique (Towne, Schmidt & Colonius 2018) under
idealized conditions (although, practically, differences have been observed between SPOD
and resolvent modes Abreu et al. 2020). Similarly, DMD has been related to both SPOD
and the resolvent modes, and has been suggested as a tool for constructing a data-driven
(equation-free) resolvent framework (Herrmann et al. 2021).

Because the resolvent represents energy-maximizing modes (within a linearized
analysis), it has successfully captured certain large-scale energetic features of flows.
However, generally it has not been employed for modelling the small-scale fluctuations
within the turbulence that are particularly important for understanding the near-wall
physics.

The first systematic treatment of the relationship between the large, energetic coherent
motions and the small-scale features of wall-bounded turbulence appeared in the work
of Bandyopadhyay & Hussain (1984), where instantaneous velocity signals, ui, were
decomposed into large and small-scale components by filtering, and the two resulting
signals were compared by correlation techniques to show that variations in the large
scales were indeed strongly correlated with variations in the amplitude of the small-scale
fluctuations. This approach was revived by Mathis, Hutchins & Marusic (2009), who
formulated a correlation coefficient, R, to quantify the inter-scale amplitude modulation
as it varied across the boundary layer, which was eventually shown to be a consequence
of triadic interactions between different scales of turbulence (Duvvuri & McKeon
2015).

Although the mathematical origin of the scale interactions is clear, the physical
interpretation of those interactions remains an open question. Initial studies suggested
an amplitude modulation between the large and small scales, while others proposed
a frequency modulation instead (Baars et al. 2015). And even within the amplitude
modulation approach, the modulation has been interpreted in the form of a spatial phase
lag between the large and small scales (Chung & McKeon 2010; Jacobi & McKeon 2017)
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Phase difference prediction from composite resolvent modes

as well as a kind of interaction delay associated with the quadratic (advective) nonlinearity
(Cui & Jacobi 2021).

Understanding and potentially predicting the behaviour of turbulent scale interactions
has significant implications for turbulence modelling and control, particularly as part
of outer-layer models for near-wall turbulent fluctuations (Marusic, Mathis & Hutchins
2010; Mathis et al. 2011b; Baars, Hutchins & Marusic 2016a). More recently, the
scale-interaction problem has been exploited to demonstrate net-energy-positive drag
reduction scheme using wall oscillations (Marusic et al. 2021), in which large-scale
spanwise wall oscillations were used to enhance inter-scale interactions (Deshpande et al.
2022a) and thereby exert indirect control over the small scales associated with turbulent
drag generation in the near-wall cycle.

Recently, Jacobi et al. (2021) outlined an analytical approach towards modelling the
relationship between the large- and small-scale motions based on the resolvent framework.
Following Reynolds & Hussain (1972), they decomposed the coupled momentum and
Reynolds stress equations and then filtered both equations to include the dynamics of
only a single, isolated scale at wavenumber triplet kf . In this way, the filtered, streamwise
component of the momentum equation, ũ, was used to represent the dynamics of the
most prominent, isolated very large-scale motion (VLSM) that had been shown (Jacobi
& McKeon 2017) to dominate other large scales in the scale-interaction correlation
analysis. The streamwise Reynolds normal stress, ũ2, was used to represent the envelope
of small-scale fluctuations, u, acting at that same, isolated wavenumber. The empirical
average phase lag between large and small scales reported in Bandyopadhyay & Hussain
(1984) was then taken to be the phase difference between complex representations of the
ũ and ũ2 signals that were governed by a system of two nonlinear equations.

In order to solve the system, Jacobi et al. (2021) employed two key simplifications: (i)
the large-scale mode, ũ, was modelled to be a self-similar resolvent mode, and (ii) the
component of the small-scale mode, ũ2, which contributed towards the correlation with ũ,
was assumed to be independent of the nonlinear forcing in the Reynolds stress equation.
This latter assumption is reminiscent of the restricted nonlinear (RNL) Navier–Stokes
analysis which similarly truncates the ‘closure’ problem at the level of the Reynolds stress
dynamics (Thomas et al. 2014; Gayme & Minnick 2019). In addition to these assumptions,
they also assumed that, as a practical matter, the contribution of the wall-normal isolated
velocity fluctuation, ṽ, to the normal Reynolds stress, ũ2, was negligible for high Reynolds
numbers.

Under these assumptions, the phase difference, �φ, between ũ and ũ2 was obtained
analytically and shown to be consistent with empirical observations reporting that the
envelope of small scales spatially leads the large-scale fluctuations, with a phase difference
of �φ ≈ −π/2 evaluated at the wall-normal location of the critical layer height for
the isolated VLSM, i.e. the height of the streamwise, outer, spectral energetic peak,
yop.

Although this analytical approach was able to ascertain the correct sign of the phase
difference between the scales, it was based on approximate resolvent mode shapes
evaluated only in the immediate vicinity of the critical layer. Therefore, Jacobi et al.
(2021) were not able to predict the full profile of the inter-scale phase difference across
the boundary layer. More fundamentally, their key programmatic assumption that velocity
and stress modes at a single wavenumber are sufficient to capture the average phase-lag
behaviour from filtered large- and small-scale signals including many wavenumbers was
never examined in detail. And their additional, practical assumptions about model inputs
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were not rigorously tested by using known mean velocity and Reynolds stress profiles, nor
by calculating exact resolvent mode shapes as outputs.

In this paper, we first re-examine the resolvent framework for scale interactions and its
fundamental assumptions. We show that a single phase-speed model cannot capture the
phase difference between velocity and stress modes, and develop a composite approach
to represent realistic VLSMs. We then develop a new quasi-empirical model based on
resolvent modes to identify the components of this composite mode and accurately
reproduce the average phase-difference profiles between velocity and stress fluctuations
measured empirically in a channel flow direct numerical simulation (DNS). In § 2, we
provide a detailed justification and physical interpretation for the single-wavenumber
resolvent modelling approach to the scale-interaction problem. Then, we define the
Reynolds stress resolvent framework in matrix form and describe the numerical approach
for finding the phase relationship between velocity and stress fluctuations. In § 3 we
numerically calculate the resolvent mode shape for just the dominant VLSM mode,
assuming it is centred at the outer spectral peak location and that it convects with the
local mean velocity there. We show that this mode shape does not represent the VLSM
modes that predominate closer to the wall, and thus cannot be used to accurately unwrap
the phase profile near the wall, resulting in an incorrect prediction of the inter-mode
phase difference. Therefore, in § 4, we introduce the idea of a composite mode shape
composed of VLSMs with differing convection velocities at each wall-normal position.
The convection velocities were selected assuming that a single resolvent mode dominates
at each wall-normal position by utilizing a new, quasi-empirical energy-based ‘forcing’
weighting. The phase-difference profile for the resulting composite modes was then
calculated by simultaneous integration and unwrapping of the phases from each of the
constituent resolvent modes in order to preserve physically meaningful phase information
across the wall layer. Finally, the phase-difference profile from the composite resolvent
modes was compared with empirical phase profiles extracted from DNS channel data, and
wavenumber and Reynolds number trends were explored.

2. Reynolds stress resolvent operators

2.1. Justifying the single-scale analysis
The present work develops a new model for predicting phase profiles of scale interactions
based on the analytical foundations of Jacobi et al. (2021). In order to develop this
new model, it is necessary to first revisit those analytical foundations. In particular,
the traditional approach to quantifying scale interactions involves filtering large- and
small-scale velocity signals and computing correlations between them, whereas the
analytical resolvent approach considers correlations of velocity and Reynolds stress
fluctuations at a single, isolated scale, without filtering to separate between large- and
small-scale motions. At first glance, these two techniques seem quite different. The
single-scale approach assumed that isolated, VLSM-scale velocity and stress fluctuations
are the dominant contributors to inter-scale interactions and thus capture the relevant
trends obtained from the traditional filtered correlations.

To justify the assumption of the single-scale approach, we performed a spectral
comparison of the correlation coefficient of Mathis et al. (2009), calculated by filtering,
and an analogous correlation coefficient based on single-scale velocity and Reynolds stress
calculations, without filtering. In this way, we can identify the conditions under which the
velocity and stress signals (without filtering) can replicate trends obtained from filtering
the velocity signal, and also when the single scale of the velocity and stress signals can
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capture the integrated effect of a wide range of scales. These conditions will then provide
a physical context to the resolvent-based model developed in the following sections.

Throughout the paper, we non-dimensionalize the incompressible Navier–Stokes
equations with respect to the friction velocity uτ and outer length scale, h, corresponding to
a half-channel height that is relevant for later comparisons with channel DNS calculations.
The Reynolds number is defined as Re ≡ uτh/ν, where ν is the kinematic viscosity; U0
denotes the centreline velocity and (x, y, z) and (u, v,w) are the streamwise, wall-normal
and spanwise coordinates and velocities, respectively.

Mathis et al. (2009) defined their amplitude modulation coefficient in terms of a
large-scale signal, uL, obtained by low-pass filtering the instantaneous velocity, u, and
a small-scale remainder signal, uS, obtained by subtraction, uS = u − uL. The envelope
of the small scales was then calculated by the Hilbert transform in order to describe the
large-scale manifestation of the small-scale fluctuations; in our analysis, we calculate a
roughly equivalent envelope by squaring the small-scale signal, u2

S, following the approach
of Chung & McKeon (2010). The resulting large-scale and envelope signals were then
Fourier transformed into wavenumber space, denoted by the (̂·), to yield the amplitude
modulation coefficient via the cross-correlation theorem

R( y) = R[
∫ ∞
−∞ û∗

Lû2
S dkx]

[
∫ ∞
−∞ |ûL|2 dkx]1/2[

∫ ∞
−∞ |û2

S|2 dkx]1/2
, (2.1)

where ∗ denotes the complex conjugate. Rewriting the complex signals, at each
wavenumber kx, in terms of their magnitudes and the phase difference between them,
�φ(k), according to

û∗
Lû2

S = |ûL||û2
S|ei�φ = |ûL||û2

S| [cos (�φ)+ i sin (�φ)] , (2.2)

we can then rewrite the modulation coefficient as

R( y) =
∫ ∞
−∞ |ûL||û2

S| cos (�φ) dkx

[
∫ ∞
−∞ |ûL|2 dkx]1/2[

∫ ∞
−∞ |û2

S|2 dkx]1/2
= 〈cos (�φ)〉w. (2.3)

From this integral, the amplitude modulation coefficient can be naturally interpreted as
an average phase cosine, 〈cos (�φ)〉w, weighted by the magnitude of the cross-spectral
density, û∗

Lû2
S. Therefore, the amplitude modulation coefficient can be interpreted

physically as an average phase difference between the large- and small-scale signals. (Note
that the definition of the cross-spectrum here differs in the complex conjugate from that
defined in Jacobi & McKeon (2013) in order to make the phase difference consistent with
Jacobi et al. (2021).)

Figure 1(a) shows the premultiplied cross-spectral energy density |û∗
Lû2

S| in the inner
region of a channel flow DNS at Re = 5200 by Lee & Moser (2015), ensemble
averaged over 15 300 streamwise/wall-normal velocity-field slices. The cross-spectral
energy density represents the weighting factor for the phase cosine and the integral of the
normalized cross-spectrum yields the amplitude modulation coefficient, shown as the solid
blue line in figure 1(b). Despite the different envelope used here, the general shape of the
modulation profile is consistent with previous reports of Mathis et al. (2009) and others,
specifically showing a zero-crossing location near the wall, which represents the location
of a −π/2 average phase difference between the two signals. Except for the signature of
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Figure 1. Magnitude of the pre-multiplied cross-spectrum of (a) |〈kxû∗
Lû2

S〉| following Mathis et al. (2009) with
a root mean square (r.m.s.) envelope, and (c) |〈kxû∗û2〉| used in the present study. The two white dashed lines
represent the large-scale region 0.4 < kx < 2. Integrating the cross-spectrum over all wavenumbers yields the
amplitude modulation coefficient, R( y), shown in (b) for both cases: the filtered cross-spectrum of (a) shown
in blue, and the unfiltered cross-spectrum of (c) shown in red. The difference between the two coefficient
profiles is no greater than the variability due to the choice of filter cutoff explained in Mathis et al. (2009). The
coefficient R( y) resulting from integrating over only the large-scale sub-region in (c) is shown as the dashed
line, and nearly coincides with the full integral in red, except very near the wall.

the near-wall cycle, most of the co-spectral energy in the inner region is concentrated in the
large-scale motions, for 0.4 � kx � 2, consistent with experiments by Jacobi & McKeon
(2013).

Figure 1(c) shows the premultiplied co-spectral energy density for the raw, unfiltered
velocity and stress signals, |û∗û2|, to compare with the filtered results in (a). Both spectral
maps show the same dominant contribution from the VLSMs, although the unfiltered case
is more intense. The similarity between the filtered and unfiltered cross-spectral maps at
the large scales can be explained by considering their algebraic relationship

û∗û2︸︷︷︸
unfiltered

= û∗
Lû2

S︸︷︷︸
filtered

+ 2û∗
LûLuS︸ ︷︷ ︸

negligible

+ û∗
Lû2

L︸︷︷︸
self-modulation

+ û∗
S(û

2
S + 2ûLuS + û2

L)︸ ︷︷ ︸
small-scale contribution

. (2.4)

The terms that multiply ûS contribute energy only at the small scales and can be neglected
when considering interactions at small wavenumbers. The remaining terms that explain
the discrepancy between the filtered and unfiltered signals are (i) a cross-interaction term
û∗

LûLuS which contributes very little due to the lack of spectral overlap between the
large- and small-scale signals, and (ii) a self-modulation term, û∗

Lû2
L, which represents

interactions between large scales and the envelope of other large scales on the same side
of the filter cutoff.

The relative energetic balance between the filtered scale-interaction term û∗
Lû2

S and the

self-interaction term û∗
Lû2

L determines the extent to which the unfiltered cross-spectrum
mimics the filtered cross-spectrum, and this balance is a result of the choice of filter cutoff.
As the filter cutoff increases, the cross-spectral energy at the large scales decreases and
Mathis et al. (2009) noted that the magnitude of the modulation effect also decreases.
This decrease in cross-spectral energy is due to the fact that the modulation effect
primarily represents interactions between VLSMs and scales that are (relatively speaking)
smaller, but not strictly small. If the filter-cutoff wavenumber is too high, then the only
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scales in the envelope signal are too small to interact with the VLSMs, and all of the
cross-spectral energy shifts to the self-modulation term. As the filter-cutoff wavenumber is
decreased, the energy in the self-modulation also decreases and the filtered and unfiltered
scale-interaction terms become more aligned, as shown in detail in Appendix A. As
long as the filter-cutoff wavenumber is sufficiently low, the unfiltered cross-spectrum will
capture the same interactions between VLSMs and relatively smaller scales as the filtered
cross-spectrum.

Therefore, instead of filtering the instantaneous velocity signals to construct a
cross-spectrum of û∗

Lû2
S, we can actually skip the filtering step altogether and construct

a cross-spectrum based on the instantaneous velocity and stress signals, û∗û2, and the
discrepancy between these two representations should be of the same order of magnitude
as the variability observed in û∗

Lû2
S alone due to changing the filter cutoff (Mathis et al.

2009). The resulting amplitude modulation coefficient from the unfiltered signals, shown
as the solid red line in figure 1(b), exhibits all of the same qualitative behaviour as the
coefficient calculated from the filtered signals, and a quantitatively similar zero-crossing
location.

In addition to showing that the velocity/stress cross-spectrum can approximate the
filtered cross-spectrum, figure 1 also shows that only a narrow range of wavenumbers
contributes significantly to the scale-interaction effect, marked in the region between the
two vertical dashed lines. Integrating the cross-spectrum within just this wavenumber
range produces an amplitude modulation coefficient in figure 1(b) that is nearly identical
to the coefficient resulting from integrating over all wavenumbers. Therefore, we can focus
on just isolated VLSM wavenumbers in the resolvent analysis without filtering, and these
should represent the dominant contribution to the overall scale-interaction behaviour.

The use of unfiltered velocity and stress signals appears to be consistent with the
traditional filter-based analysis of scale interactions, at least for VLSMs interacting with
smaller scales; and the assumption that isolated wavenumbers can capture the integrated
effect appears to apply except very close to the wall. Figure 1(c) shows that the VLSM
contribution to R( y) varies with wall-normal location. Beneath the log layer (y < 0.025 or
y+ < 130), the cross-spectral energy density is broadly distributed across a wide range of
wavenumbers, so the single-scale modelling will be less accurate. Special techniques will
be developed in § 4 to unwrap the phase difference between the large-scale velocity mode
and Reynolds stress fluctuations at VLSM scales in this near-wall region.

2.2. Triple-decomposed equations
Having established that the single-scale representations of velocity and stress can be used
as a proxy for studying large- and small-scale turbulent interactions, we now briefly explain
the resolvent-based representation for scale interactions used in Jacobi et al. (2021), which
was based on earlier work by Reynolds & Hussain (1972).

A triple decomposition of the instantaneous velocity, ui, and pressure, p, fields was
then performed, separating the ensemble average values, denoted ( ), from a single,
isolated coherent scale, denoted (̃ ), and the remaining turbulent components, denoted ( )′,
according to

ui = ūi + ũi + u′
i, p = p̄ + p̃ + p′. (2.5a,b)

This triple decomposition can be accomplished practically by a very narrow, bandpass
spectral filter around a single (vector-valued) wavenumber triplet of interest, kf =
(kx, kz, ω), which will reflect the large-scale wavenumber of the VLSMs. The components
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of kf are the real wavenumbers in the wall-parallel directions, kx and kz, and the real
angular frequency of the associated coherent structure, ω. Thus ũi represents just a single,
isolated velocity mode, and u′

i represents all of the remaining wavenumber triplets in the
turbulence signal, k /= kf .

Substituting the triple decomposition (2.5a,b) into the incompressible Navier–Stokes
equations results in a dynamical equation that includes an instantaneous Reynolds stress
term, u′

iu
′
j, which represents content from all wavenumber triplets, including kf , due to the

quadratic nonlinearity. Filtering the resulting equation at the isolated scale, kf , results in
a dynamical description of just the isolated scale motion, ũi

∂ ũi

∂t
+ ūj

∂ ũi

∂xj
+ ũj

∂ ūi

∂xj
+ ∂ p̃
∂xi

− 1
Re
∂2ũi

∂x2
j

= −∂ r̃ij

∂xj
≡ f̃i,

∂ ũi

∂xi
= 0, (2.6a,b)

which depends on the filtered Reynolds stress, r̃ij = ũ′
iu

′
j.

If we consider just the streamwise component, for illustrative purposes, then the isolated
scale, ũ, can be thought of as representing the dominant streamwise VLSM mode. Thus,
ũ can be interpreted as the large-scale, streamwise velocity signal commonly derived in
previous studies of inter-scale interactions via low-pass filtering, uL.

Similarly, the instantaneous Reynolds stress, u′2, can be thought of as a variance
envelope of the remainder turbulent fluctuations, u′, after the VLSM component was
removed, as discussed in detail in § 2.1. Filtering the enveloped fluctuations to obtain ũ′2
is then equivalent to rectifying the enveloped signal at the same scale as the large-scale
signal, ũ. The enveloped, non-VLSM signal, ũ′2, differs from the enveloped small-scale
signal used in previous studies of scale interactions, uS or E(uS), due to the presence of
large-scale (albeit non-VLSM) contributions in u′. Nevertheless, ũ′2 can still be interpreted
as equivalent to the traditional, small-scale envelope assuming that the non-VLSM
contributions to the scale interactions are negligible, as shown above in figure 1.

The dynamical equation for the filtered Reynolds stress, r̃ij, was derived in similar
fashion

∂ r̃ij

∂t
+ ūk

∂ r̃ij

∂xk
+ ũk

∂ r̄ij

∂xk
+ r̃jk

∂ ūi

∂xk
+ r̃ik

∂ ūj

∂xk
+ r̄jk

∂ ũi

∂xk
+ r̄ik

∂ ũj

∂xk
− 1

Re
∂2r̃ij

∂x2
k

= g̃ij, (2.7a)

g̃ij = − ∂

∂xk
ũ′

iu
′
ju

′
k −

˜
u′

j
∂p′

∂xi
−

˜
u′

i
∂p′

∂xj
− 2

Re
∂̃u′

i
∂xk

∂u′
j

∂xk
, (2.7b)

where the nonlinear terms have been grouped together on the right-hand side, labelled
g̃ij. Note that the filtered Reynolds stress dynamical equation depends on the ensemble
averaged Reynolds stress profiles, r̄jk = u′

ju
′
k. The channel flow geometry resulted in

simplifications of the mean flow

ū = ū( y), {v̄, w̄} = 0, (2.8a,b)

and mean Reynolds stresses

{r̄xx, r̄yy, r̄zz, r̄xy} = {r̄xx, r̄yy, r̄zz, r̄xy}( y), {r̄xz, r̄yz} = 0, (2.9a,b)

based on geometrical and statistical symmetries.
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Phase difference prediction from composite resolvent modes

2.3. Resolvent formulation
To apply the resolvent analysis to this system of equations, the isolated (large) scale, ũi,
and filtered Reynolds stress, r̃ij, signals were expressed in the form of normal modes. In
addition, the nonlinear forcing of the isolated mode (which appears as the divergence of the
filtered Reynolds stress in (2.6)) was also assumed to exhibit normal mode form, according
to

{ũi, r̃ij, f̃i}(x, y, z, t) = {Ũi, R̃ij, F̃i}( y; kx, kz, ω) exp(i(kxx + kzz − ωt))+c.c., (2.10)

where f̃i is the forcing term in (2.6). The complex mode profiles, Ũi, R̃ij and F̃i can be
decomposed in terms of a magnitude and phase as Ũi = |Ũi|eiφUi , R̃ij = |R̃ij|eiφRij and
F̃i = |F̃i|eiφFi , and the phase difference between large-scale velocity and stress modes is
defined as �φ = φR̃xx

− φŨ . The c.c. denotes the complex conjugate of the preceding
normal modes.

Substituting the normal mode decomposition (2.10) into the large-scale dynamics (2.6)
results in a dynamical equation for each wavenumber (kx, kz, ω). Combining the three
components of velocity modes ũi into a matrix form, U , and then re-writing the velocity
components in wall-normal velocity/vorticity form, Q (following Schmid & Henningson
(2001)), equation (2.6) can be written entirely in terms of matrix operators as

(−iωM + L)Q = B1F = B1B2R, (2.11a)

where the individual matrices are given as

M =
[
−� 0

0 1

]
; L =

[
Re−1�2 + ikx

(
d2ū − ū�

)
0

ikzdū −Re−1�+ ikxū

]
; (2.11b)

B1 = i

[
kxd −ik2 kzd
kz 0 −kx

]
; (2.11c)

B2 =

⎡⎢⎣−ikx 0 0 −d −ikz 0
0 −d 0 −ikx 0 −ikz

0 0 −ikz 0 −ikx −d

⎤⎥⎦ ; C = i
k2

⎡⎢⎣ kxd −kz

−ik2 0
kzd kx

⎤⎥⎦ ; (2.11d)

Q =
[

Ṽ
η̃

]
; R =

⎡⎢⎢⎢⎢⎢⎢⎣

R̃xx
R̃yy
R̃zz
R̃xy
R̃xz
R̃yz

⎤⎥⎥⎥⎥⎥⎥⎦ ; U =
⎡⎣Ũ

Ṽ
W̃

⎤⎦ ; F =

⎡⎢⎣F̃x

F̃y

F̃z

⎤⎥⎦ ; (2.11e)

where I is the identity matrix and � = (d2 − k2) is the Laplacian operator, with d ≡ d/dy
and k2 = k2

x + k2
z . The velocity–vorticity vector, Q, is related to the Cartesian velocity

components, U as U = CQ, where η̃ is the wall-normal vorticity component.
Isolating the velocity modes, Q in (2.11) and rewriting them in Cartesian form, U , yields

CQ︸︷︷︸
U

= C(−iω + M−1L)−1(CHC)−1CH︸ ︷︷ ︸
H(k)

B2R︸︷︷︸
F

, (2.12)

where superscript H denotes the Hermitian transpose. Thus we can define a transfer
function H(k) to relate the nonlinear Reynolds mode input, F , to the velocity output
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modes, U . This formulation is identical to the traditional resolvent as discussed in Moarref
et al. (2013), except for a sign reversal in their equation (2.7b), in element (2.1) of their
forcing operator C† (corresponding to our B1).

The dynamics of the Reynolds stress in (2.7a) can also be written in terms of the
substituted normal modes and then rewritten in matrix form for each (kx, kz, ω) as

AR + JU = G, (2.13a)

where the operator matrices are defined as

A = i(−ω + kxū)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 2γ 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 γ 0 1 0 0
0 0 0 0 1 γ

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− Re−1(d2 − k2)I; (2.13b)

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2r̄xxikx + 2r̄xyd r̄xx,y 0
0 r̄yy,y + 2r̄xyikx + 2r̄yyd 0
0 r̄zz,y 2r̄zzikz

r̄xyikx + r̄yyd r̄xy,y + r̄xxikx + r̄xyd 0
r̄zzikz 0 r̄xxikx + r̄xyd

0 r̄zzikz r̄xyikx + r̄yyd,

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.13c)

with γ = (dū/dy)/[i(−ω + kxū)]; ( ),y ≡ d( )/dy, and G corresponds to the forcing term
g̃ij in (2.7).

The denominator of γ expresses the difference between the streamwise phase speed of
the normal mode, c = ω/kx, and the local mean velocity in the channel, ū, and thus A
exhibits a inviscid singularity at the wall-normal location, yc, when the two speeds are
matched, such that ū( yc) = c. This singularity also appears in the large-scale dynamics,
within the resolvent operator H(k). In both cases, viscosity (expressed through Re)
resolves this singularity via the generation of a critical layer in the neighbourhood of yc,
near where the amplitude of the related ‘critical’ mode reaches its maximum.

2.4. Most amplified velocity modes
In order to obtain the modes shapes for the large- and small-scale structures represented by
U and R, we apply the resolvent framework to the analysis of (2.11) and (2.13). Assuming
that the fluctuating Reynolds stresses, R (and thus the related nonlinear forcing, F ) is
unknown, the most amplified velocity modes can be modelled by a SVD of the operator,
H, linking U and F , under a kinetic energy norm, following Reddy, Schmid & Henningson
(1993).

The SVD of the resolvent operator evaluated at a wavenumber triplet kf can be
expressed as the sum of left, ψj, and right, φj, singular vectors, each associated with an
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Phase difference prediction from composite resolvent modes

ordered sequence of singular values, σj

H =
∞∑

j=1

ψjσjφ
H
j . (2.14)

The orthonormal singular vectors represent the shape (phase and amplitude) of the velocity
(output) and forcing (input) modes that most strongly amplify the kinetic energy associated
with the resolvent operator, as given (in vector form) by

F̃i =
∞∑

j=1

φi,jχ̄ j, (2.15)

Ũi =
∞∑

j=1

σjψi,jχ̄ j =
∞∑

j=1

ψi,jχ j, (2.16)

where σj represents the magnitude of the linear amplification of mode j, and χ̄ j represents
the a priori unknown projection coefficient of the true forcing onto the linearly amplified
forcing mode, such that the inputs and outputs of the system are self-consistent. For
broadband forcing, χ̄ j is assumed to be unity (i.e. the forcing and principal forcing
directions are aligned). Combining the projection coefficient with the linear amplification
captured by the singular value, McKeon (2017) defined an overall ‘velocity weighting
factor’, χ j = σjχ̄ j, which conveniently captures the energy of individual disturbance
modes, as described below in § 4.

The rank-1 mode of the velocity response modes (i.e. just the first singular mode,
j = 1) has been shown to successfully capture the near-wall cycle and other energetically
significant features of wall-bounded flows due to the low rank of the resolvent operator –
see McKeon (2017) for a review. Thus, for the subsequent scale-interaction analysis, the
mode shapes of Ũi will be modelled by only ψi,1.

In order to obtain the Reynolds modes, R̃ij corresponding to the velocity modes Ũi,
there are two possible approaches. In Jacobi et al. (2021), they assumed that the nonlinear
forcing to the Reynolds stress, G, appearing in (2.13) was uncorrelated with the scale
interactions (a variation on the RNL model)

AR + JU ≈ 0 (2.17)

and thus expressed R in terms of the U modes obtained above via the resolvent analysis,
according to

R ≈ −(A−1J)U. (2.18)

However, in the previous analysis, they did not actually solve for the resolvent modes via
the SVD. Rather, they approximated the Ũi and R̃ij mode shapes analytically, assuming
they exhibited the self-similar resolvent form identified in Dawson & McKeon (2019). In
the present analysis, we adopted this same general procedure, but we represented the U
mode shape with the first singular mode, ψi,1, obtained from the numerical solution of
(2.11), without any additional analytical modelling.

Upon substitution of the rank-1, large-scale mode shapes, ψi,1, into (2.18), we denote
the resulting rank-1 Reynolds stress mode shapes as ξi,1. Note that these Reynolds stress
modes are not orthonormal.

An alternative approach to obtaining the U and R mode shapes, in which G is not
neglected and instead the resolvent framework is applied directly to the R modes, is
discussed in Appendix B.
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3. Numerical solution of the inter-mode phase difference

To obtain the phase relationship between large and small scales, the large-scale mode
shapes were obtained via the SVD of the resolvent operator, H, in (2.12), following the
standard resolvent calculation. The mean velocity profile and the Reynolds stress profiles
which appear in the operator were obtained from the channel flow DNS at Re = 5200 by
Lee & Moser (2015), and the operator was discretized using spectral collocation (Trefethen
2000) with a resolution of 400 points across the full channel height, which was found to
achieve grid-independent singular mode shapes. Prior to the SVD, the resolvent operator
was augmented by a weighting matrix, W , so that the L2-norm of the modified operator
corresponded to a kinetic energy norm of the velocity modes, following Reddy et al.
(1993).

The spatial wavenumbers, (kx, kz), for the large-scale mode, Ũi, were selected
to correspond to the dominant VLSMs in the channel flow by examining the
two-dimensional, premultiplied energy spectral density map evaluated at the height of the
streamwise, outer spectral energetic peak, yop ≈ 3.9 Re−1/2. The resulting wavenumber
pair, (kx, kz) = (0.75, 6), corresponded to a large-scale motion with streamwise extent
approximately 8 channel half-heights long. The temporal frequency of the mode, ω, was
selected such that the phase speed of the mode, c = ω/kx, corresponded to the local mean
velocity evaluated at the outer peak location, cop = ū( yop) ≈ 0.71U0. Previous studies
have assumed that the convective velocity for the dominant VLSM ranged from 0.67U0 to
0.8U0. The resulting isolated mode was therefore a detached, critical mode with amplitude
centred at yop, consistent with the self-similar VLSM mode assumption of the analytical
approximation in Jacobi et al. (2021).

The mode shape for the streamwise velocity fluctuation, Ũ was obtained from the
first orthonormal response mode ψ1,1, which is unique up to an arbitrary phase (via the
properties of the SVD) and thus the phase was assigned to be 0 at the wall, for convenience.
A map of a period of the real part of ψ1,1 is shown in figure 2(a), where the amplitude of
ψ1,1 has been normalized by its wall-normal maximum.

The Ũi modes are related to the R̃ij modes via (2.18), where the operator J depends
on the mean Reynolds stress profiles, r̄ij( y), obtained from the DNS. Here, ψ1,1 was
substituted into (2.18) to obtain the corresponding leading-order streamwise Reynolds
normal stress mode, denoted ξ1,1, which is shown in figure 2(b), also normalized by
its wall-normal maximum. Very near the wall, the Reynolds stress mode is inclined
upstream, opposite the VLSM mode. A bit farther from the wall, the inclination reverses
and proceeds downstream until the outer region. This shift in inclination is inconsistent
with the analytical approximation where the mode shapes of large-scale velocities and
stresses were assumed similar. The location of maximum amplitude also differs between
the two modes, where the Reynolds stress mode is centred closer to the wall. For y � 0.2,
the profile shapes are vertically oriented with very low amplitude, and thus this region is
excluded from this and subsequent figures.

However, the resolvent modes appear quite different from the corresponding spatial
Fourier mode shapes for the velocity and stress signals that were extracted from the DNS
and are shown in the second row of figure 2. (Technically speaking, the closest empirical
analogue to the resolvent mode is SPOD, as shown by Towne et al. (2018), but Fourier
modes are used here for consistency with the analytical framework of the governing
equations, which is designed to capture the phase difference between velocity and stress
modes, but not the ensemble-averaged mode shapes themselves. Correspondence between
the resolvent and the average mode shapes does not imply correspondence of the average
phase difference between mode shapes, as discussed in the next section.) Care was taken to
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Figure 2. (a–c) The real part of the streamwise mode shapes of (a) the large-scale velocity mode, ψ1,1, and
(b) the stress fluctuations, ξ1,1, for (kx, kz, ω) = (0.75, 6, 14). The amplitude of each mode was normalized by
its maximum across the channel. The outer spectral peak, yop (about which the large-scale mode is centred)
is marked in the dash-dotted line. The phase profiles for ψ1,1 and ξ1,1 are represented by the solid and
dashed black lines, respectively, so that the relative phase difference can be seen clearly in (b). In (c), the
phase-difference profile, �φ = φξ1,1 − φψ1,1 is shown by the black solid line. (d,e) The ensembled-averaged,
spatial Fourier mode shapes extracted from the DNS data for the (d) the large-scale velocity mode and (e) the
stress fluctuations. The average phase difference between these modes, calculated from the cross-spectrum,
û∗û2, is shown in the circles in (c) for comparison with the solid line for the resolvent modes. As discussed
in § 3.1, the phase difference cannot be inferred from the individual, ensemble-averaged modes due to the
non-zero covariance between velocity and stress.

preserve the separate phase profiles of each of the Fourier modes in the ensemble average
by setting the wall phase for each snapshot to zero.

We note that the DNS velocity mode is inclined towards the wall at ≈ 10◦, consistent
with observations of VLSMs, and far less steep than the corresponding resolvent mode,
which traditionally exhibits inclination angles of around 2◦ (Dawson & McKeon 2020;
Madhusudanan & McKeon 2022). This discrepancy between VLSM and resolvent mode
shapes was observed in a number of earlier studies and was explored in detail in Morra
et al. (2019), who showed that the resolvent operator is unable to properly resolve
large-scale motions without incorporating an eddy-viscosity model. But an eddy-viscosity
model is not possible under the current framework, which explicitly solves for the
Reynolds stresses. Similarly, the Fourier stress mode is significantly less steeply inclined
towards the wall than that predicted by the transfer function. These differences in the
individual mode shapes are expected to influence the spatial lag between the modes, as
expressed through the phase difference, discussed below.
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3.1. Phase-difference calculations
The average phase differences between the Fourier modes, shown in figure 2(c), were
obtained directly from the ensemble-averaged cross-spectrum of the DNS, û∗û2. The
phase differences were then unwrapped to obtain a continuous phase-difference profile.
However, it is important to note that the phase difference between the two Fourier
modes cannot be obtained by subtracting the phases of the separate, ensemble-averaged
mode shapes in figure 2(d,e) due to the non-zero covariance between the velocity
and stress signals, i.e. 〈û∗û2〉 = 〈û∗〉〈û2〉 + cov(û∗, û2), where 〈·〉 represents ensemble
averaging. This covariance problem applies more generally to any mode eduction by
ensemble averaging, including SPOD. The phase difference observed between individual,
ensemble-averaged modes will not correspond to the phase difference implicit in the
amplitude modulation coefficient (2.1) that we are seeking to predict. For this same
reason, the shape of the individual modes predicted by the resolvent cannot be compared
with ensemble-averaged modes educed from measurements or computations, since those
educed modes do not represent the ensemble phase difference, whereas the transfer
function between the resolvent modes does.

As expected from the phase interpretation of the amplitude modulation coefficient, the
phase profile extracted from the cross-spectrum starts at �φ = 0 at the wall, where the
velocity and stress are in phase, and decreases monotonically to −π far from the wall,
where the velocity and stress are out of phase. We then compared this phase-difference
profile with the difference predicted by the resolvent mode.

The phase difference, �φ = φξ1,1 − φψ1,1 between the large-scale velocity and stress
modes, calculated via the resolvent framework, was obtained by unwrapping the phases
of the ψ1,1 and ξ1,1 modes from the wall outwards before subtraction and is illustrated in
figure 2(c) in the solid line.

The phase calculation from the DNS cross-spectrum and the analysis of Jacobi et al.
(2021) both indicated that the phase difference, �φ, is negative across the wall layer,
consistent with many other empirical studies. By contrast, the resolvent phase difference
calculated here is positive very near the wall and then changes sign farther out in the wall
layer. At the location of the outer spectral peak, yop, previous studies and the DNS results
indicated a phase difference of around −π/2, consistent with the zero crossing of the
amplitude modulation coefficient, R (since the amplitude modulation coefficient is related
to the phase difference, heuristically speaking, via R � cos (�φ) as noted above; see in
§ 2.1 for details), but the resolvent modes predicted a positive phase of approximately
+π/4.

The discrepancy between the resolvent and DNS phase calculations originates
immediately at the wall, where previous studies reported a negligible phase difference and
the single phase-speed resolvent predicted a positive difference. This phase disagreement
at the wall is likely a result of the differences between the Fourier and resolvent mode
shapes in this region, the two most prominent of which are the downstream inclination
angles and near-wall modal amplitudes, as visible in figure 2. However, the discrepancy
in inclination angle itself is not necessarily the primary cause for concern, since both
the velocity and stress modes are similarly inclined and we are interested only in the
relative phase difference between the two. The key concern is actually the discrepancy
in amplitude. The resolvent mode exhibits a maximum amplitude at the location of the
VLSM peak, where its phase speed matches the local mean velocity (the critical layer),
and thus its amplitude closer to the wall is much lower than that of the corresponding
spatial Fourier mode at the same wavenumber. This means that, from the perspective of
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a modal decomposition of the flow, the particular resolvent mode centred at the VLSM
peak, Ũ( y, kx, kz, cop), is a poor analogue for the spatial Fourier mode educed from the
DNS data, û( y, kx).

3.2. The problem with a single resolvent mode model
The fundamental problem with comparing a phase model based on a single resolvent
mode with the Fourier DNS modes is that the spatial Fourier mode is really an ensemble
average of the full, spatio-temporal Fourier mode, û( y, kx, kz, ω), over frequency (or,
equivalently, phase speed) and spanwise wavenumber. Therefore, the spatial Fourier mode
incorporates energy from a variety of phase speeds at a given wall-normal location. The
range of different convection velocities, c, associated with a single wavenumber kx of
spatial Fourier modes can be observed from the non-negligible width of two-dimensional,
temporal/spatial energy spectra (Lehew, Guala & McKeon 2011). Thus, we can think
of the relationship between the spatial Fourier mode, û( y, kx), and the resolvent modes,
Ũ1( y, kx, kz, c), in terms of an ensemble average

û( y, kx) ≈ kx

∫∫
ckz

Γ (kz, c)Ũ1( y, kx, kz, c) dkz dc, (3.1)

where Γ (kz, c) is a weighting function, representing the (unknown) joint probability
density function (p.d.f.) of phase speeds and spanwise wavenumbers of the resolvent
modes at a fixed wall-normal location. By utilizing a single phase speed for our resolvent
mode, above, we assumed that (i) a single resolvent mode with phase speed, cop, dominated
the modes of all other phase speeds; and (ii) that this dominance applied uniformly across
all y-locations. However, these assumptions depend on the shape and amplitude of the
resolvent modes and are not satisfied.

McKeon, Sharma & Jacobi (2013) identified two distinct regimes of resolvent-generated
modes: attached modes, which can appear as either wall modes or critical modes, and
detached critical modes. Critical modes are distinguished from wall modes by expressing
a localized amplitude maximum at the wall location, yc, close to where the local mean
velocity matches the phase speed, ū( yc) = c, known as the critical point. Attached modes
are distinguished from detached by expressing a high amplitude even very near the wall,
thus exemplifying Townsend’s concept of exerting a ‘footprint’ on the wall. Because the
detached modes are localized away from the wall, they obtain a self-similar universal form
for a range of phase speeds 16 < c < U0 − 6.15 (Moarref et al. 2013) that allows for the
asymptotic modelling of the mode shape noted above. But this also means that detached,
self-similar modes have very low amplitude near the wall, as in the case of our single
critical mode considered above with a critical layer around yop.

Figure 3(a) shows the amplitude map of the principal streamwise velocity mode,
ψ1,1( y), with varying convective velocity, c, for the streamwise VLSM structures
calculated by the resolvent approach. For high convective velocities, we observe the
detached, self-similar critical modes that were utilized in the analytical modelling, each
centred on the wall-normal location matching its local mean velocity (marked by the black
solid line). At lower convective velocities, the critical modes begin to attach to the wall,
and lower still eventually lose their ‘critical’ characteristic shape and appear as attached
wall modes.

Four sample modes taken from a near-wall location in figure 3(a) are sketched in
figure 3(b) to illustrate how they disconnect from the wall region with increasing
convective velocity. The detached (blue) mode is the mode used in the single velocity
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Figure 3. (a) Amplitude map of the VLSM mode, ψ1,1, across the half-channel as a function of phase speed,
c. The blue dashed line marks the mean velocity (and thus critical phase speed) at the outer spectral peak, yop,
and thus traces along the amplitude profile of the mode with cop = 0.71U0. Due to the very low amplitude
near the wall, it is clear that this mode is detached. The other coloured lines indicate large-scale modes with
different phase speeds, ranging from detached to attached. These 4 modes are illustrated in the cartoon in (b).
The lowest phase speed (grey), representing the mean velocity at around y+ ≈ 10, generates an attached wall
mode. As the phase speed increases, the resolvent modes become critical and eventually detach.

analysis above; it convects at the local mean velocity at the location of yop. Because it is a
critical mode, its amplitude will dominate the amplitude of any other resolvent mode at the
same wall-normal location. But it will not dominate over other resolvent modes closer to
the wall. In fact, nearer to the wall, the amplitude of the resolvent mode defined by phase
speed cop is negligible compared with other phase speeds. Thus the single mode centred
on yop will not describe the statistically representative (or ‘average’) mode shape in the
region close to the wall.

The fact that the critical resolvent mode centred at the outer peak is not, in fact, the
dominant mode nearer to the wall creates a significant problem for computing a meaningful
phase difference profile. When the phase difference from this outer-peak-centred resolvent
mode was unwrapped, it incorporated phase information from locations where it was not
dominant, and thus where its associated phase was also not representative. But phase
unwrapping depends on the phase values everywhere along the unwrapping path in order
to be reliable. If the phase near the wall is based on a mode that does not actually represent
the flow, then the unwrapped phase farther from the wall where that mode is indeed
representative will be contaminated. For the unwrapped phase to be physically meaningful,
it must reflect the contributions of only significant, representative modes along the entire
unwrapping path, from the wall to any point of interest. (This is a problem specific to
the need to unwrap phase profiles and is not relevant for standard superposition analysis.
The analytical study of Jacobi et al. (2021) avoided this problem by assuming a zero phase
difference at the wall and a monotonic unwrapping out to the neighbourhood of the critical
layer at yop, without verification.)

In order to predict a meaningful profile of the phase difference, we must incorporate the
phase information from different resolvent modes, each one dominant and representative
of the flow at a different wall-normal height, instead of just a single mode, in order to
properly unwrap the phase. The challenge is therefore to determine how to construct a
statistically representative composite mode.
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4. Composite resolvent modes

We now turn to the question of how to construct a composite mode shape that will better
represent the inter-scale phase difference. Instead of choosing a single mode with one
convective velocity, a statistically representative large-scale mode can be constructed by
piecewise combining modes with different convective velocities, c∗, each associated with
the most significant mode at its respective y location, to create a dispersive ‘average’ mode
shape that represents the most significant resolvent modes at all heights, reminiscent of
the ‘bottom up’ perspective on the composition of VLSMs. This can be interpreted as
the result of a weighted superposition of resolvent modes across all convective velocities,
with the assumption that only one critical mode dominates the others at each wall-normal
location, and thus we include only that dominant mode in the composition process. A
more detailed, albeit heuristic, justification for employing only one dominant phase speed
at each wall-normal location is outlined in Appendix C.

However, as noted, the need to preserve a meaningful phase profile presents a unique
challenge to constructing this composite mode shape, in contrast with standard cases
of modal superposition. Therefore we first describe a piecewise composition technique
for combining energetically significant modes together that preserves the phase profile.
Afterwards, we examine how to choose the most significant mode phase speeds, c∗, to use
in the composition.

4.1. Cumulative phase composition
In order to calculate the phase difference between different modes at a particular
wall-normal location, y, the phase of each mode must first be unwrapped at all
y-positions, from the wall out to that location. Without unwrapping, the phase difference
is meaningless, e.g. a wrapped phase difference of +π/2 might actually be associated
with a true phase difference of −3π/2 that wrapped around to the positive branch of the
argument function. In the wrapped state, it is impossible to establish the lead or lag of
different modes. Therefore, the correct value of the phase difference is entirely dependent
on the validity of its unwrapping from the wall.

This presents a problem if we consider a piecewise composition of spatially localized
mode shapes (like resolvent modes or SPOD modes), because the individual (constituent)
modes used for the pieces of the composition cannot be unwrapped separately and then
combined. Rather, the phase of the overall composite mode must be unwrapped as part of
the composition process, itself.

In order to accomplish this simultaneous mode composition and unwrapping, we
consider piecing together a set of dominant resolvent modes, each with phase speed
c∗ resulting in a maximum (weighted) amplitude at location y∗, such that the overall
composite mode includes phase and amplitude information only from the neighbourhoods
of these amplitude maxima, as sketched in simplified form in figure 4(a–c). In other
words, one resolvent mode at each y∗ location (defined by its phase speed c∗) is assumed
to contribute predominantly to the composite mode at that same location. Therefore,
holding wavenumbers constant, we assume that ( y∗, c∗( y∗)) identifies the phase speed that
maximizes the weighted mode amplitude at any given y∗ location, shown in figure 4(a).
And, for each constituent velocity or stress mode with phase speed c∗, the phase profile is
given by φ( y, kx, kz, c∗), shown in figure 4(b).

Now, we can define the composite phase profile, 〈φ( y, kx, kz)〉, for a piecewise
composition of modes with different phase speeds, c∗ at each wall-normal location, y∗,
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〈φψ1,1

〉

(b)(a) (c)

Figure 4. A heuristic illustration of the phase composition method described in (4.1) for the ψ1,1 mode shape.
At each height y∗

i , we identify the energetically dominant resolvent mode with phase speed c∗
i from among all

the different phase speeds. The amplitude profiles for three such dominant modes are shown in (a). The phase
profiles for each of these modes are unwrapped from the wall, individually, in (b). The derivative of each phase
profile, in the neighbourhood of its maximum amplitude, is then composited piecewise and integrated from the
wall, in order to obtain an unwrapped phase profile that preserves the phase information from the dominant
modal contributions at each height, as shown in (c).

according to

〈φ( y, kx, kz)〉 = φ(0, kx, kz, c∗
0)+

∫ y

0

∂

∂y
φ( y, kx, kz, c∗)

∣∣
y=y∗ dy∗, (4.1)

where c∗
0 ≡ c∗(0) is the phase speed corresponding to y∗ = 0, at the wall. This

anti-derivative accumulates the phase of the different constituent modes as they are
integrated together to form the composite mode, such that the phase of the resulting
composite mode varies continuously and captures the slope of each constituent piece,
illustrated in figure 4(c). The derivative in the integrand can be approximated numerically
in the neighbourhood of the peak amplitude location, y∗, to any order of accuracy by
writing a series expansion of φ( y, kx, kz, c∗) near y∗. Thus, we can use (4.1) to calculate
a meaningful phase profile of a composite mode that is constructed from the dominant
resolvent modes at all (or a subset of all) wall-normal positions.

Now, the problem is how to determine which are the dominant resolvent modes, or,
in other words, what is the phase speed, c∗, of the dominant mode at each wall-normal
location.

4.2. Determining the dominant resolvent modes
To compare the relative importance of modes of different convective velocities, c, at a
given y location, we consider two weighting approaches based on kinetic energy. Following
the definitions of the velocity modes in (2.16), the streamwise spectral energy density of the
rank-1 approximated VLSM modes, Φ1, can be written in two different forms, depending
on assumptions about the forcing

Φ1 = Ũ∗
1Ũ1 =

{
σ 2

1 |ψ1,1|2, if |χ̄1|2 = 1, broadband forcing,
|χ1|2 |ψ1,1|2, unknown forcing.

(4.2)

Assuming broadband forcing, the forcing projection term, χ̄1 can be set to unity,
and the upper expression depends on the singular value, σ 2

1 , which expresses the
linear amplification of the mode, and on ψ1,1 which expresses how that amplification
is distributed over the mode’s amplitude profile. This version of the kinetic energy
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(d )

Figure 5. (a) Spectral energy density profiles, σ 2
1 |ψ1,1|2, under the assumption of broadband forcing given

in (4.2). The red line represents the convection velocity, c∗, defined in (4.3) used to construct the composite
modes; (b) the composite velocity mode, ψ1,1; and (c) the composite Reynolds stress mode ξ1,1 defined by the
convective velocity profile in (a); the normalization and phase line markings are the same as figure 2. (d) The
phase difference, �φ, calculated from the composite modes is shown by the black line, contrasted with the
phase from the DNS.

distribution over the mode shape has the advantage of being entirely predictable from
within the resolvent itself, via the singular value.

Relaxing the broadband forcing assumption, the lower expression utilizes a general
velocity weighting, χ2

1, to express the total (linear and nonlinear) weighting necessary
to render the output mode shapes consistent with the unknown, nonlinear forcing. The
nonlinear forcing effect was also pointed out in McKeon (2017) and the idea of the colour
of forcing is explored in detail in Morra et al. (2021). This weighting is not, a priori, known
and must be modelled, but would, in principle, have the advantage of greater fidelity to true
turbulent flows. We consider both approaches, in order to identify the phase speed, c∗, of
the dominant resolvent mode.

4.3. Resolvent weighting: linear amplification
We adopt the broadband forcing assumption first, for simplicity. Figure 5(a) shows the
map of the spectral energy density, Φ1, of the VLSM modes under this assumption, as a
function of y and c. The particular convection velocity, c∗, of the VLSM that contributes
most strongly to the energy of the system at height y, is then given by tracing along the
peak of this map, and can be written formally as

c∗( y∗, kx, kz) = arg max
c

[σ 2
1 ( y∗, kx, kz, c)|ψ1,1( y∗, kx, kz, c)|2], (4.3)

which is illustrated by the solid red line over the map. This function c∗( y) indicates
the equivalent convective velocity profile for a representative VLSM mode that can be
constructed piecewise from the dominant mode contributions at each height, y, with each
piece convecting at a different velocity. The resulting composite modes for the VLSM are
shown in figure 5(b); the corresponding small-scale (Reynolds stress) mode shapes, ξ1,1,
calculated from the same piecewise procedure as the large scales, are shown in figure 5(c).

The piecewise modes can be compared with the single speed mode shown above in
figure 2(a,b). The Reynolds modes in both cases show an initial upstream inclination and
then, farther from the wall, a downstream inclination, leading to the same, problematic,
positive phase difference between the large and small scales at the wall.
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The profile of the phase difference between the large and small scales from the piecewise
modes is shown in figure 5(d). Although the sense of the phase difference is still
incorrect very near the wall, the trend appears slightly more realistic than the single mode
calculation, at least farther from the wall. Nevertheless, weighting based on the linear
amplification predicted by σ 2

1 still does not seem sufficient to capture a representative
signature of the VLSMs, and thus we turn to the second weighting option, involving the
general velocity weighting factor, χ1.

4.4. Resolvent weighting: modelling nonlinear weights
Because the general velocity weighting cannot be determined endogenously from the
resolvent calculation itself, it requires a model. A number of previous studies have
considered how to model this weighting in order to align the spectral energy density
predicted by the rank-1, critical mode resolvent approximation, Φ1( y, kx, kz, c), with
the true spectral energy density, Φ( y, kx, kz, ω). Moarref et al. (2013) introduced
a phase-speed-dependent weighting function, W(c), and constructed an optimization
problem to correct the integrated form of Φ1, whereas Moarref et al. (2014) applied a
similar optimization approach to a matrix constructed from the velocity weighting factors,
χ j, directly.

Instead of utilizing an optimization approach, in this analysis, we will adopt an
empirical/heuristic argument to model the velocity weighting factors, χ j, in order to
properly weight the contributions of VLSM resolvent modes at different phase speeds
for a given wall-normal location.

We begin with the empirical observation (Moarref et al. 2013) that the pre-multiplied,
streamwise spectral energy density of wall-bounded turbulence, integrated over ω, and
evaluated at the y location of the critical layer, yc′ , is similar in form to the low rankness
measure of the rank-1 singular modes, S(kx, kz, c′) ≡ σ 2

1 /
∑∞

j=1 σ
2
j , evaluated at the

corresponding convection velocity, c′ for that same critical layer

kxkz

∫
ω

Φ( yc′, kx, kz, ω) dω ∼ S(kx, kz, c′), (4.4)

where the left-hand side is a function of yc′ which is the specific location compatible with
the specific phase speed c′ on the right-hand side, ū( yc′) = c′. We assume that (kx, kz, c′)
are fixed on both sides of this similarity expression.

The spectral energy density is then expressed by its rank-1 approximation including the
velocity weighting

Φ1( y, kx, kz, c) = Ũ1Ũ∗
1 = |χ1(kx, kz, c)|2|ψ1,1( y, kx, kz, c)|2, (4.5)

and this is substituted into the similarity statement, changing the integration from
frequency to phase speed, dω = kx dc, to obtain

k2
xkz

∫
c
|χ1(kx, kz, c)|2|ψ1,1( yc′, kx, kz, c)|2 dc ∼ S(kx, kz, c′), (4.6)

where we note that the velocity weighting factor |χ1(kx, kz, c)|2 appears similar to
the W(c) weighting function constructed in Moarref et al. (2013), with the important
difference that the current factor is wavenumber dependent.

Because the mode shape dependence of the kinetic energy is already accounted for via
ψ1,1, we focus on just the convection velocity effect in the weighting term. Therefore, we
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integrate the similarity statement over wall-normal position, yc′

k2
xkz

∫
c
|χ1,1(kx, kz, c)|2

[∫
yc′

|ψ1( yc′, kx, kz, c)|2 dyc′

]
dc ∼

∫
yc′

S(kx, kz, c′) dyc′, (4.7)

and exploit the unit normalization of the integrated singular modes to eliminate the
bracketed term on the left-hand side

k2
xkz

∫
c
|χ1(kx, kz, c)|2 dc ∼

∫
yc′

S(kx, kz, c′) dyc′ . (4.8)

To simplify the right-hand side, we change the wall-normal integral into an integral over
convection velocity, according to dyc′ = (dū/dy)−1|yc′ dc′ and obtain

k2
xkz

∫
c
|χ1(kx, kz, c)|2 dc ∼

∫
c′

S(kx, kz, c′)
(

dū
dy

)−1

yc′
dc′. (4.9)

Note here that (dū/dy)−1
yc′ = (dy/dū)c′ and thus is a function of c′. The integrals on both

sides of the similarity can be written over c and thus the integrands themselves must be
similar, such that

|χ1(kx, kz, c)|2 ∼ 1
k2

xkz

(
dy
dū

)
c

S(kx, kz, c), (4.10)

and we obtain an expression for the otherwise unknown velocity weighting. (The
proportionality factor is unimportant due to the arg max operation.)

Based on this empirical/heuristic argument, when seeking the particular convection
velocity c∗ that corresponds to the VLSM with the largest energetic contribution at a
particular y location, we solve

c∗( y, kx, kz) = arg max
c

[|χ1(kx, kz, c)|2|ψ1,1( y∗, kx, kz, c)|2] (4.11)

≈ arg max
c

[
1

k2
xkz

(
dy
dū

)
ū=c

σ 2
1∑∞

j=1 σ
2
j

|ψ1,1( y, kx, kz, c)|2
]
. (4.12)

Figure 6(a) shows the map of the energy distribution of VLSM modes with this
weighting model, as a function of y and c, where the magenta solid line indicates the
dominant convective velocities, c∗( y). Note that the convective velocity of the VLSM
approaching the wall is predicted to be 0.59U0, precisely the value that would eliminate
the problematic phase difference at the wall observed in § 3.

The large- and small-scale mode shapes generated by the piecewise profile of convective
velocities are shown in figure 6(b,c), respectively. The differences between these modes
and previous mode shapes are quite significant. In particular, the Reynolds mode no longer
exhibits a change in inclination angle near the wall, and as a consequence, the weighting
model results in a negligible phase difference between large and small scales at the wall
itself, consistent with experimental observations and with the assumptions of the previous
analytical approach.

The profile of the phase difference,�φ, is shown in figure 6(d) and compares reasonably
well with that calculated from the DNS channel data at matched Reynolds number. Unlike
the single mode or linear-weighted, piecewise mode approaches, the sign of the phase
difference appears accurate across the entire near-wall region. Using the new χ j weighting
therefore results in a reasonably close estimate of the inter-scale phase profile.
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Figure 6. Caption entries follow from figure 5 with (a) the spectral energy density profile map and optimal
convection velocity defined by (4.11); (b,c) the constructed piecewise mode shapes for ψ1,1 and ξ1,1,
respectively; and (d) the resulting phase difference profile between scales, compared with DNS results.

However, the agreement between the Fourier and composite modes is still not perfect.
The inclination of the composite velocity mode is still much steeper than the corresponding
Fourier spatial mode. And near the wall, the composite mode seems to under-predict the
magnitude of the phase lag, while over-predicting it farther from the wall. This discrepancy
is likely a result of the single-wavenumber simplification at the foundation of the modelling
approach, in which we inferred from the cross-spectral power in figure 1(c) that a narrow
range of wavenumbers dominates the inter-scale coupling, and thus we excluded terms
with wavenumbers beyond the specific scale of interest from (2.6a). But this simplification
does not apply near the wall, where the range of scales participating in scale interactions
broadens significantly. Moreover, we assumed that only a single spanwise wavenumber, kz,
dominated the flow. It is also important to note that, because the weighting formula was
derived from the streamwise energy spectrum, its application to other velocity components
is less certain, and other weighting models may be required, as discussed in Appendix D.

Nevertheless, the weighted profile reproduces the wall-normal location where the phase
difference is −π/2 to within 20 %, which is less than the 40 % relative variation in
zero-crossing location due to varying the filter cutoff reported by Mathis et al. (2009).
The −π/2 location of the predicted phase profile is important because the resolvent
model prediction of the phase difference profile,�φ(kx) represents a wavenumber-specific
contribution to the amplitude modulation coefficient, R, which averages phase-difference
contributions over all wavenumbers, R = 〈cos (�φ(kx))〉. Thus, the −π/2 phase location
corresponds to the zero-crossing point of the amplitude modulation coefficient and
the VLSM energetic peak at around y+ = 3.9Re1/2. And the profile of the amplitude
modulation coefficient, in turn, plays an important role in efforts at inner-outer wall
modelling. In particular, Mathis, Hutchins & Marusic (2011a) showed that their modelling
coefficient, β, which regulates the magnitude of influence of the outer large-scale
fluctuations, is basically identical to R. Therefore, the resolvent model could be used
to generate the β coefficient for inner–outer models, independent of experimental data,
after which it can be incorporated into large-eddy simulation (LES) wall models that
use the inner–outer modelling formulation, like in the work of Inoue et al. (2012). Or,
the inner–outer model could be rewritten in the spectral domain as presented in Baars,
Hutchins & Marusic (2016b), on a wavenumber-by-wavenumber basis, in which case the
wavenumber-specific phase difference could be employed directly.
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Because of the importance of identifying the −π/2 phase crossing location, we explored
the effect of different choices for the dominant wavenumbers, kx and kz, on this point of
the phase profile.

4.5. Wavenumber and Reynolds number dependence
The above analysis showed that a composite VLSM mode based on appropriately weighted
convective velocity contributions can reasonably predict the phase-difference profile
between large- and small-scale motions. But that analysis studied only a single VLSM
scale, with fixed spatial wavenumbers (kx, kz) = (0.75, 6) corresponding to the energetic
outer peak in the premultiplied energy spectral density map at a single Reynolds number,
Re = 5200. Other large-scale motions also contribute to the modulation between large and
small scales, and thus we examine how the phase difference varies with wavenumber, for
a fixed Reynolds number, and also how changing the Reynolds number affects the phase
profile.

Figure 7(a) shows the phase difference evaluated at the outer spectral peak location,
�φ( yop), over a wide range of streamwise and spanwise wavenumbers corresponding to
different isolated scales, overlaid with the contour lines of the premultiplied streamwise
spectral energy density. The phase difference is negative for all scales, indicating that the
small-scale envelope of fluctuations always (spatially) leads the large scale, irrespective of
the wavenumbers. However, the magnitude of the phase lead varies with wavenumber;
for a band of large scales with kx ∼ O(1), the phase lag at the outer spectral peak is
approximately −π/2, consistent with experimental findings. But the magnitude of the
lead tends to increase with increasing kx, which means that the −π/2 point between the
large and small scales moves closer to the wall, in outer units. We visualize this shift in
the −π/2 point directly in figure 7(b), which shows the relative error in the predicted
location of the −π/2 phase shift vs the outer spectral peak location, yop. As noted above,
this location corresponds to the R = 0 point in the amplitude modulation analysis and can
vary by as much as 40 % due to changing filter cutoffs (Mathis et al. 2009). Nevertheless,
there is a significant band of large-scale motions across all spanwise wavenumbers which
predict the crossing point to within 5 %.

Mathis et al. (2009) showed that as the filter-cutoff wavenumber increased, the zero
crossing in R moved away from the wall (and the amplitude of the correlation increased
generally). Physically, by increasing the filter-cutoff wavenumber, fewer large scales are
included in the small-scale signal. This means that the large- and small-scale signals
diverge in phase more slowly (moving away from the wall), because the large scales can
exert more influence over a signal containing few energetic large-scale signals, resulting
in the outward shift of the zero-crossing location. Decreasing the filter-cutoff wavenumber
puts more large scales in the small-scale signal, resulting in less influence of the large
scales over other large scales, a faster divergence of phase (away from the wall), and an
inward shift of the zero crossing. In other words, the trend in the zero crossing can be
explained in terms of the greater ease with which large scales can modulate smaller scales
compared with modulating other large scales.

In the current model, the predicted trend in zero crossing is different, because the current
model only examines a single scale, without any cutoff filter. Thus the current model is
more like the filtered case with relatively large scales appearing in both signals, in which
case the divergence happens more quickly due to the weaker ability of one signal to
modulate the other. Therefore, for a single-wavenumber resolvent mode, increasing the
wavenumber means that equivalent-sized smaller scales are interacting with each other,
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Figure 7. (a) The phase difference �φ of the composite mode at the location of the outer energy peak yop for
varying streamwise and spanwise wavenumbers. The black lines indicate the contour levels [0.1, 0.3, 0.6] of
the two-dimensional pre-multiplied energy spectrum kxkzφuu(kx, kz) of Re = 5200 DNS channel flow. The red
circle marks the wavenumber, (kx, kz) = (0.75, 6), used for the composite modes above in § 3 and § 4. (b) The
relative error in the predicted location of the −π/2 phase shift compared with the outer energy peak location,
yop, across all the wavenumbers. The relative error for the composite mode case (red circle) is 19 %, while a
slightly smaller LSM, (kx, kz) = (1, 3), (blue square) exhibits an error of only 4 %. The predicted mode shapes
between these two cases were not significantly different.

and are less able to influence one another than larger, energetic scales would be, thus
resulting in a faster phase divergence (away from the wall) and a −π/2 shift closer to the
wall. The rate of phase divergence of the resolvent model therefore offers a measure of the
degree of influence between velocity and stress modes that is scale specific, and supports
the idea that targeting lower wavenumber pairings of velocity and stress can result in faster
and more effective modulation between the two.

The streamwise wavenumber of the large scales, kx, exerts a much stronger influence
on the phase profile behaviour than the spanwise wavenumber, kz, although the best
predictions for the −π/2 phase crossing occur for the region aligned with kx ≈
0.65k1/2

z or λx ≈ 3.8λ1/2
z . Jimenez & Hoyas (2008) reported that the two-dimensional

spectral contours of the streamwise velocity are aligned along λx ≈ y−1λ2
z curves,

representing streamwise-oriented, conical velocity structures. Therefore, the vortex
structures associated with the best prediction of the phase profile are also conical velocity
structures, but wider and squatter than those associated with the energetic peak. The
additional width may represent the statistical effect of streamwise meandering of the large
scales, which is not captured by the spanwise homogeneous construction of the resolvent
operator. The fact that the spanwise and streamwise dimensions scale disproportionately
also indicates that the predominant scales involved in the phase profile construction are
not geometrically self-similar, which is possibly a low Reynolds number effect as noted
by Deshpande et al. (2020), although this may also indicate limitations to the chosen
weighting, which is based on streamwise energy alone.

The effect of the Reynolds number on the phase-difference prediction was also
examined, specifically in the context of the y-location where the phase difference between
scales equal −π/2 which roughly corresponds to the zero-crossing location of the
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Figure 8. Wall-normal height where the phase difference, �φ = −π/2 vs Reynolds number. The discrete
markers denote resolvent predictions from the current model using mean flow quantities from DNS channel
flows at: Re = 180, 550, 1000, 2000 from Hoyas & Jiménez (2008) and 5200 from Lee & Moser (2015); the
red circles are calculated for wavenumbers (kx, kz) = (0.75, 6) (corresponding to the red circle in figure 7); the
blue squares are calculated for (kx, kz) = (1, 3) (the blue square in figure 7). The black dashed line represents
the relation of 3.9Re1/2 from Mathis et al. (2009), and red dashed line is 0.42Re3/4 inferred from Klewicki
et al. (2007).

amplitude modulation coefficient, as noted above, and to the location of the outer spectral
energy peak, given empirically as y+

op ≈ 3.9Re1/2.
To see if this empirical trend is obeyed by the predicted phase differences, we calculated

the y-location of the −π/2 phase difference against Reynolds number, shown by the
red circles in figure 8 for the wavenumber pair used in the earlier sections. Although
the predicted trend is consistent with an increasing zero-crossing location with Reynolds
number, the prediction appears to saturate much more quickly than experiments. This is
likely due to the fact that the resolvent includes only a single wavenumber, kx, for the large
scales, whereas the true R( y) signal (on which the zero-crossing empirical observation is
based) depends on an integral across all such wavenumbers, as shown in § 2.1. Including
different (or multiple) streamwise and spanwise wavenumber contributions, perhaps in
self-similar triadic hierarchies as demonstrated in Sharma, Moarref & McKeon (2017),
would introduce additional phase differences into that integral. In particular, higher values
of kx and lower values of kz tend to be associated with larger phase differences at a fixed
y-location, as shown in figure 7(a), which means that the −π/2 location would tend to
shift closer to the wall, as noted above. Therefore, the exclusion of these smaller scales
would tend to result in exaggerating the wall-normal location of the −π/2 phase, thus
possibly explaining why the single-wavenumber model trend differs from empirical trends
that are based on a correlation coefficient.

To test this explanation, we plotted the Reynolds number trend of the −π/2 phase
location for an alternative wavenumber pair, (kx, kz) = (1, 3), which was shown to more
accurately identify the yop location for the Re = 5200 case in figure 7(b), with less than 5 %
relative error. The trend for this wavenumber pair is shown by the blue squares in figure 8
and indicates that the over-saturation can be rectified by utilizing large-scale motion (LSM)
modes with larger spanwise extent relative to streamwise extent. Again, this indicates that
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non-self-similar LSMs play an important role in accurate prediction of the phase profile
and the zero-crossing location of the amplitude modulation.

Physically, we can interpret the trend of the increasing −π/2 phase location as a
reduction in the divergence rate between large and small scales (moving away from the
wall, described above), or equivalently an increase in the ease of modulation between the
velocity and stress modes. The fact that this phase location saturates faster for lower kx
and slower for higher kx suggests that large, energetic velocity and stress modes are more
easily aligned with each other as the Reynolds number increases and diffusive delays in
the scale interactions become negligible. But under this interpretation, the −π/2 phase
location reflects the ease of modulation and thus we would not expect an asymptotic limit
to the growth in that location with increasing Reynolds number.

5. Conclusions

The recent emphasis on the use of large-scale actuation to modify the small scales of
turbulence revived interest in the question of how the large and small scales are related.
Jacobi et al. (2021) established a framework for representing the large scales as a single,
isolated VLSM mode, and the small scales as the corresponding Reynolds stress mode
filtered at the same scale, and then approximated the mode shapes using self-similar
resolvent modes to obtain an analytical expression describing the phase difference between
the two scales.

In this study, we formally justified the single-wavenumber resolvent framework via
cross-spectral analysis, and then implemented it numerically in order to explore how
the predicted phase difference depended on the nature of the underlying resolvent
mode. We found that using a VLSM with a single convective velocity to represent the
large-scale signal resulted in an incorrect prediction of the inter-scale phase difference,
because an isolated resolvent is spatially localized near its critical layer and thus not
sufficiently representative of the statistically averaged modes in turbulent, wall-bounded
flows, across the height of the channel. This localization meant that the unwrapped
phase difference between the velocity and stress modes was also not representative of
the true flow. Therefore, we constructed a statistically representative resolvent mode via a
piecewise composition of dominant modes with distinct convection velocities at different
wall-normal locations in order to capture a meaningful sense of the phase difference.

The key to constructing this piecewise dispersive VLSM mode was developing a
realistic weighting scheme for the kinetic energy associated with individual modes, so
that the most significant mode at each wall-normal height could be selected. We derived a
model for this weighting, based on the empirical similarity between the spectral energy
density of wall-bounded turbulence and the low-rankness measure for the resolvent
operator. This model was shown to reproduce a negligible phase difference between scales
at the wall, along with a realistic phase-difference profile when compared with the phase
obtained via the cross-spectrum of filtered, velocity and stress measurements from a
channel flow DNS. The effectiveness of the piecewise VLSM mode is consistent with
the bottom-up view of VLSMs in which a dispersive packet of relatively small scales
appears instantaneously as a large-scale motion, as suggested by e.g. Adrian, Meinhart &
Tomkins (2000), Dennis & Nickels (2011) and Deshpande, de Silva & Marusic (2022b)
among others.

The piecewise VLSM model also indicated that the wall-normal location (in inner
scaling) where the velocity and stress signals were separated in phase by −π/2
tended to increase with Reynolds number, consistent with empirical observations of the
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zero-crossing location of the amplitude modulation coefficient of Mathis et al. (2009)
and the outer peak of the turbulence intensity reported in Marusic et al. (2010), although
the exact form of the predicted trend is different, likely due to the use of only a single
wavenumber in the model.

However, despite the predictions provided by the current analysis, the use of white-noise
forcing in the resolvent modes and the composite nature of the phase-difference
reconstruction process both represent serious limitations. As we noted, if not for the
need to calculate phase differences between correlated velocity and stress modes, it would
have been desirable to work with more accurate resolvent modes based on coloured-noise
forcing, which better captures the empirical modes educed by SPOD. Extending current
SPOD tools to allow for such phase-difference calculations would thus be a valuable step
towards more accurately describing the scale-interaction problem in terms of the phase
differences between interacting modes. Similarly, classical superposition of predicted
mode shapes would have been preferable to the more ad hoc phase composition utilized
in the current study, but such superposition relies on an empirical knowledge of the
distribution of phase speeds of different modes, which remains a question for observational
studies.

The ability to predict the phase difference between velocity and stress fluctuations via
a resolvent framework has implications for modelling the amplitude modulation process
that are crucial for understanding near-wall turbulent behaviour, particularly as it relates to
modifying drag via the near-wall cycle. Moreover, the intimate connection identified here
between the dispersion of convective velocities among VLSMs and the resulting average
phase difference between velocity and stress fluctuations indicates that many of the recent
studies on Taylor’s hypothesis and the identification of accurate convective velocities (e.g.
Yang & Howland 2018; Liu & Gayme 2020) are also highly relevant for understanding
the scale-interaction problem in turbulence and for extending the reach of the resolvent
modelling framework to smaller scales.
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Appendix A. Cutoff impact

The relationship between the cross-spectrum of the filtered signals, ûLû2
S
∗
, presented in

Mathis et al. (2009) and the cross-spectrum of the unfiltered signals, ûû2∗
, used in the

current study, is expressed in (2.4) in § 2.1, repeated here for convenience

û∗û2︸︷︷︸
unfiltered

= û∗
Lû2

S︸︷︷︸
filtered

+ 2û∗
LûLuS︸ ︷︷ ︸

negligible

+ û∗
Lû2

L︸︷︷︸
self-modulation

+ û∗
S(û

2
S + 2ûLuS + û2

L)︸ ︷︷ ︸
small-scale contribution

. (A1)

The discrepancy between the two right-most terms is determined by the choice of cutoff
wavenumber, and thus any discrepancy is essentially arbitrary, within the limits of the
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Figure 9. Effect of filter-cutoff wavelength, λc on the cross-spectral energy density for: (a–c) modulation,

û∗
Lû2

S, and (d–f ) self-modulation, û∗
Lû2

L, effects. From left to right, λc = 1, 2, 4. The corresponding cutoff
wavenumbers, kx, are marked in the dashed line.

acceptable filter cutoffs, k∗
x , discussed in Mathis et al. (2009), which ranged from 1.6 �

k∗
x � 30.
Figure 9 illustrates the relative distribution of cross-spectral energy density between

the modulation term, û∗
Lû2

S, and self-modulation term, û∗
Lû2

L, as a function of filter cutoff
wavelength, λc, ranging from 1 to 4 (from left to right, and the corresponding kc
ranging from 6.3 to 1.6). All of these cutoffs produce qualitatively similar amplitude
modulation coefficients, and yet the relative contribution of self-modulation is quite
different. As the filter wavelength cutoff increases (filter wavenumber decreases) and more
large scales are included in the small-scale signal, the self-modulation effect decreases,
inter-scale modulation effect dominates. This indicates that the self-modulation effect
among large-scale motions tends to enhance the standard modulation between larger- and
smaller-scale motions, but that the two effects are not qualitatively different, because the
modulation is always occurring between relatively large-scale motions.

The idea that the amplitude modulation coefficient represents an interaction with
objectively small scales, say λ < 0.1 (k > 62.8), is simply not true. It is precisely because
the self-modulation among large scales is not qualitatively different from the modulation
with relatively smaller scales that the analysis performed here without any scale-based
filtering is expected to capture all of the same scale-interaction trends as the traditional
filtered analysis.

Appendix B. An alternative development for R̃ij

As noted at the end of § 2, there is an alternative approach for predicting the Reynolds
stress modes. Returning to (2.13a), in the primary analysis we assumed that G was
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uncorrelated with the scale interactions and thus could be neglected. Here, instead, we
retain G and treat it as an unknown, nonlinear forcing and perform the resolvent analysis
to obtain the Reynolds stresses, R. To do this, we substitute the expression for U in terms
of R from (2.12)

AR + JU = G, (B1)

AR + JHB2R = G, (B2)

and then formulate a new resolvent operator, HG, whose output is R according to

R = (A + JHB2)
−1︸ ︷︷ ︸

HG

G. (B3)

We can then calculate the most amplified Reynolds modes via the SVD, and then use the
Reynolds modes to obtain the corresponding large-scale modes, in the reverse direction
described above.

A key challenge in formulating the resolvent for R is how to define an appropriate
weighting matrix to enforce a physically meaningful energy norm for the SVD. We chose
to define the weighting matrix W obtained from the Cholesky decomposition of the
positive definite matrix P, so that RHPR produces a pseudo-energy norm, which is close
but not exactly proportional to the squared kinetic energy defined via the Reynolds normal
stresses. P is defined in terms of the small parameter ε as

P =

⎡⎢⎢⎢⎢⎢⎣
1 + ε 1 − ε 1 − ε 0 0 0
1 − ε 1 + ε 1 − ε 0 0 0
1 − ε 1 − ε 1 + ε 0 0 0

0 0 0 ε 0 0
0 0 0 0 ε 0
0 0 0 0 0 ε

⎤⎥⎥⎥⎥⎥⎦ , (B4)

such that the error with respect to the true squared kinetic energy is O(ε), according to

RHPR = 1
2

∣∣∣R̃xx + R̃yy + R̃zz

∣∣∣2
+ ε

1
2

[
|R̃xx|2 + |R̃xy|2 + |R̃xz|2 + |R̃yy|2 + |R̃yz|2 + |R̃zz|2

−(R̃yy + R̃zz)R̃H
xx − (R̃xx + R̃zz)R̃H

yy − (R̃xx + R̃yy)R̃H
zz

]
. (B5)

For computational purposes, we chose ε = 0.001.
In order to examine the rank-1 streamwise mode shapes that are produced via the new

Reynolds stress resolvent, it is useful to first remind ourselves of the large- and small-scale
mode shapes produced by the earlier approach.

Figure 10 shows the map of both mode shapes using the earlier method, where
figure 10(a) is the same map of the large-scale mode shapes shown in figure 3(a), and
figure 10(b) shows the shape of the Reynolds stress modes. Both large and small scales
exhibit regions of attached and detached modes, varying with convection velocity, c. This
is consistent with the assumption of Jacobi et al. (2021) that the Reynolds modes obtain a
similar shape to the large-scale, isolated velocity modes.

Turning to the new approach, figure 11 shows the map of both mode shapes in which the
Reynolds stresses were calculated via the resolvent first, utilizing the pseudo-energy norm.
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Figure 10. Amplitude of (a) ψ1,1 and (b) ξ1,1 mode for taking SVD of (2.12) shown in § 2. The magnitude
was normalized by the maximum across all heights for each wave speed. The red dashed line represents the
wall-normal location of the outer energy peak, yop. The cyan lines represent the local mean velocity profile.
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Figure 11. Amplitude of (a) ψ1,1 and (b) ξ1,1 mode for the alternative approach discussed in Appendix B.
The magnitude was normalized by the maximum across all heights for each wave speed.

The Reynolds stresses shown in figure 11(b) continue to exhibit attached and detached
mode shapes, depending on c. However, the associated large-scale motions, calculated
from the Reynolds stress modes, are all detached, for all convection velocities. In
particular, the large-scale modes with low convection velocities appear to have the bulk
of their energy in the outer flow.

Besides not bearing any resemblance to physical large-scale modes, the fact that these
large-scale modes are all detached makes it impossible to unwrap a meaningful phase from
the wall, using the piecewise mode superposition discussed in § 4. Thus, this approach of
applying the resolvent to the Reynolds stress directly was not pursued further.

Appendix C. Rationale for local critical mode dominance

The basic rationale for considering just a single critical mode at each height, instead of
the full superposition of all modes at all frequencies (or, equivalently, phase-speeds), is
that the critical mode is assumed to dominate the other modes at its critical wall location.
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To make this more precise, we can write the superposition process by starting from the
basic resolvent formalism (superposition), which is given in (3.1)

û( y, kx) ≈ kx

∫∫
ckz

Γ (kz, c)Ũ1( y, kx, kz, c) dkz dc, (C1)

and then substitute the (unweighted), rank-1 approximate resolvent mode into the
superposition, where Ũ1( y, kx, kz, c) ≈ σ1( y, kx, kz, c)ψ̃1,1( y, kx, kz, c) by

û( y, kx) ≈ kx

∫∫
ckz

Γ (kz, c)σ1( y, kx, kz, c)ψ̃1,1( y, kx, kz, c) dkz dc, (C2)

where σ1 and ψ̃1,1 are defined as in § 2.4.
If we assume that the resolvent mode is critical and that this critical mode has its

maximum amplitude in a region of width ε = (kx(dū/dy)|cRe)−1/3 (Jacobi et al. 2021),
then in the limit of very high Reynolds number, we can approximate the resolvent mode
as ψ̃1( y, kx, kz, c) ≈ ψ1( y, kx, kz, c)δ(c − ū( y)), where the Dirac delta distribution takes
the place of the distribution function representing the true width of the critical layer.
Substituting into the superposition integral above, we obtain

û( y, kx) ≈ kx

∫
kz

Γ (kz, ū( y))σ1( y, kx, kz, ū( y))ψ1( y, kx, kz, ū( y)) dkz. (C3)

And thus we see that choosing the critical mode, with phase speed c = ū( y) at each
y-location is equivalent to the full superposition, under the assumption that the resolvent
mode is critical (and not a wall mode), and that the critical layer is very thin (in the limit
of large Reynolds number). Of course, neither of these assumptions is exactly correct, but
this is the basis for the modelling simplifications in order to consider just a single critical
mode at each wall-normal location.

In reality, the maximum amplitude of the modes does not occur at precisely the location
where the local mean velocity and phase velocity match, particularly for wall attached
modes, and thus we employ the semi-empirical weighting scheme (in terms of χ ) to select
the optimal phase speed, c∗( y) /= ū( y), as derived in (4.4)–(4.12).

Appendix D. Other velocity components

Talluru et al. (2014) measured the amplitude modulation coefficient results for all three
small-scale velocity components correlated with the streamwise large scales and reported
that all three correlation coefficient profiles appeared very similar. Prior to that, Jacobi
& McKeon (2013) measured the cross-correlation phase maps for the streamwise large
scales with wall-normal small scales, and reported that the sense of phase was also the
same as that of the purely streamwise case. Therefore, we also examined whether the phase
difference predicted between Ũ and the small scales R̃yy and R̃zz followed these empirical
reports, given the success of the prediction for R̃xx above.

However, the composite mode weighting utilized above was developed based on the
empirical similarity between the low-rankness measure and the streamwise spectral energy
density; it seems reasonable to assume that this weighting is therefore best suited for
streamwise fluctuations and may not be appropriate for small-scale fluctuations in other
directions. Therefore, for these other Reynolds stress components, we considered both
the composite profile approach as well as a few select examples from the single mode
approach, utilizing a range of convection velocities. We also considered the possibility that
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Figure 12. (a) Phase difference between Ũ mode and R̃yy mode. The four colours of the thinner solid lines
represent the four phase speeds in figure 3; the composite mode is denoted by the thick black solid line.
(b) Phase difference between Ũ mode and R̃zz mode with fixed phase speed c/U0 = 0.69 for (kx, kz) = (0.75, 6)
and (4, 32) for solid and dashed red lines, respectively. The circles are the DNS points for the Ũ vs R̃xx
comparisons above, which should be similar to the other Reynolds stress components, according to Talluru
et al. (2014).

the appropriate filter wavenumbers, kf , may vary across velocity components; in particular
that the spanwise component might be better filtered at a significantly smaller scale (higher
wavenumber) than the streamwise and wall-normal components.

Figure 12(a) shows the phase-difference profiles predicted for Ũ vs R̃yy, utilizing both
the single mode and composite mode approximations, where the single mode employs
the range of convection velocities illustrated in figure 3(a). As expected, the composite
mode weighting does not capture the correct phase profile shape or sign, but the single
velocity modes indicate that a better choice of c could result in a better prediction, if a new
weighting were developed for the R̃yy component.

Similarly, figure 12(b) shows the phase-difference profiles predicted for Ũ vs R̃zz,
utilizing both the single mode and composite mode approximations, where the single mode
employs two different wavenumbers, kx = 0.75 as above, and a much smaller scale with
kx = 4. Here again, the composite mode weighting fails to capture the correct phase profile
shape or sign; in particular it predicts that the large and small scales are out of phase at the
wall. But a new weighting formula that incorporates different wavenumbers, kx, maybe be
able to rectify this discrepancy, as alluded to in the figure.

Because the emphasis of the current study was on the streamwise components, Ũ and
R̃xx, that are commonly reported experimentally, the development of weighting models for
the other velocity and stress components has not yet been pursued.
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