Canad. Math. Bull. Vol. 15 (3), 1972

ANOTHER WEAK STONE-WEIERSTRASS THEOREM FOR C*-ALGEBRAS

BY

GEORGE A. ELLIOTT

1. The purpose of this article is to present a new generalization of the classical Stone-Weierstrass theorem for commutative C^* -algebras.

Under the assumption that B is a sub-C*-algebra of A separating the pure states of A and zero, Kaplansky has conjectured that B=A [4, p. 246]. He gave a proof for the case that A is postliminary ([4, Theorem 7.2]; see also [2, 11.1.8]). Glimm, Akemann, and Sakai have established the conjecture in the presence of various other additional hypotheses, most of which hold in the commutative case ([3], [1], [7]).

We note that it involves no loss of generality to assume that A is generated by B together with a single self-adjoint element. Our additional assumption is that this element can be chosen so that the derivation it defines leaves B invariant.

THEOREM. Let A be a C*-algebra, and let B be a sub-C*-algebra of A separating the pure states of A and zero. Suppose that A is generated by B together with a single self-adjoint element x_0 such that $x_0x - xx_0 \in B$ for all $x \in B$. Then B=A.

The proof resembles Sakai's proof [6] that every derivation of a simple C^* -algebra with unit is inner.

2. **Proof of Theorem 1.** Suppose that $B \neq A$. Then there exists a nonzero selfadjoint bounded linear functional on A which is zero on B. Denote by K the set of all such functionals of norm ≤ 1 , together with zero. K is convex and weak* compact, and so has a nonzero extreme point, say f. In what follows, we shall deduce the absurdity that f=0.

Let f^+ and f^- denote positive linear functionals on A such that $f=f^+-f^-$ and $||f||=||f^+||+||f^-||$ [2, 2.6.4]. Set $f^++f^-=g$, and let π be the representation of A defined by g [2, 2.4.4].

Let us first show that $\pi(B)''$ is a factor. To be able to use the argument of Lemma 1 of [6], we need only know that the centre of $\pi(B)''$ is contained in the centre of $\pi(A)''$. This follows easily from the fact that any derivation of $\pi(B)''$ (in particular that defined by $\pi(x_0)$) must be zero on the centre of $\pi(B)''$.

By [5], there exists an element T_0 of $\pi(B)''$ which defines the same derivation of $\pi(B)''$ as $\pi(x_0)$. Denote by C the C*-algebra generated by $\pi(x_0) - T_0$ and 1. Since

Received by the editors October 7, 1970.

 $\pi(B)''$ is a factor and C is in its commutant, the algebra generated by $\pi(B)''$ and C is their tensor product. Hence by Theorem 1 of [9], the C*-algebra generated by $\pi(B)''$ and C is their C*-algebra tensor product. Denote it by R.

We wish to show that C is the scalars. To do this it suffices to show that C has a unique character. If χ is a character of C then with R as above there exists a unique involutive algebra morphism from R to $\pi(B)''$ which fixes each element of $\pi(B)''$ and reduces to χ on C. Denote this morphism by φ_{χ} . We have

$$\chi(\pi(x_0) - T_0) = \varphi_{\chi}(\pi(x_0) - T_0) = \varphi_{\chi}(\pi(x_0)) - T_0.$$

Hence

(1)
$$\chi(\pi(x_0) - T_0) + \operatorname{Sp} T_0 = \operatorname{Sp} \varphi_{\chi}(\pi(x_0)).$$

If we can show that $\varphi_{\chi} \mid \pi(A)$ is injective, then we shall have [2,1.3.10]

(2)
$$\operatorname{Sp} \phi_{\mathbf{x}}(\pi(x_0)) = \operatorname{Sp} \pi(x_0).$$

From (1) and (2) it follows that χ is unique.

Denote $\varphi_{\chi} | \pi(A)$ by *P*. To show that *P* is injective it suffices to show that its transpose *P'* is surjective. Since *P* preserves adjoints it is enough that *P'* should take the self-adjoint elements of the dual of $\pi(B)''$ onto the self-adjoint elements of the dual of $\pi(A)$. Since the image by *P'* of the unit ball of the self-adjoint part of the dual of $\pi(B)''$ is compact, by the Krein-Milman theorem it is enough to prove that this image contains all extreme points of the unit ball of the self-adjoint part of the dual of $\pi(A)$. These are all either pure states of $\pi(A)$ or their negatives. If *p* is a pure state of $\pi(A)$, then $p_0 = p | \pi(B)$ is a pure state of $\pi(B) [2, 11.1.7]$; it follows that *p* is the unique state extension of p_0 to $\pi(A)$. Let p_1 be a state extension of p_0 to $\pi(B)''$. Then $P'p_1$ is a state of $\pi(A)$; since it extends p_0 , it must be equal to *p*.

From the fact that C is the scalars we get $\pi(x_0) - T_0 \in \pi(B)''$. Hence $\pi(B)'' = \pi(A)''$ (A is generated by B together with x_0). In view of [2, 2.5.1 (iii)], we can now conclude by a continuity argument that f_1 and f_2 (which agree on B) agree on all of A. Thus we have $f=f_1-f_2=0$, the promised absurdity.

3. **Problems.** 3.1. If A is a simple C^* -algebra and B is a nonzero sub- C^* -algebra such that A is generated by B together with a single self-adjoint element which defines a derivation of B, then it can be shown that B separates the pure states of A. Theorem 1 then is applicable, and Sakai's theorem [6] that every derivation of a simple C^* -algebra with unit is inner follows without difficulty. Is it possible to prove that B separates the pure states of A without using the fact that every derivation of a von Neumann algebra is inner?

3.2. If A is a C*-algebra and B is a sub-C*-algebra of A separating pure states of A and zero, and if π is a representation of A, must the centre of $\pi(B)''$ be contained in the centre of $\pi(A)''$? (If A is separable then an affirmative answer can be obtained using direct integral theory.) If so then a new proof of the Stone-Weierstrass theorem for type I C*-algebras (Kaplansky's result, by virtue of the fact [8]

356

that a type I C^* -algebra is postliminary) can be obtained by replacing paragraphs four to six of the proof of Theorem 1 with a result of Akemann [1, Lemma III.2]: if $\pi|B$ is a type I factor representation then $\pi(B)'' = \pi(A)''$.

References

1. C. Akemann, The general Stone-Weierstrass problem, J. Functional Analysis 4 (1969), 277-294.

2. J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.

3. J. Glimm, A Stone-Weierstrass theorem for C*-algebras, Ann. of Math. 72 (1960), 216-244. 4. I. Kaplansky, The structure of certain operator algebras, Trans. Amer. Math. Soc. 70 (1951),

219-255.

5. S. Sakai, Derivations of W*-algebras, Ann. of Math. 83 (1966), 273-279.

6. ——, Derivations of simple C*-algebras, J. Functional Analysis 2 (1968), 202-206.

7. —, On the Stone-Weierstrass theorem of C*-algebras, Tôhoku Math. J. 22 (1970), 191–199.
8. —, A characterization of type I C*-algebras, Bull. Amer. Math. Soc. 72 (1965), 508–512.

9. M. Takesaki, On the cross-norm of the direct product of C*-algebras, Tôhoku Math. J. 16 (1964), 111-122.

QUEEN'S UNIVERSITY, KINGSTON, ONTARIO