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Energy and nitrogen intake, expenditure and retention at 20° in
growing fowl given diets with a wide range of energy and protein
contents

BY M.G.MacLEOD
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(Received 9 October 1989 — Accepted 5 July 1990)

Heat production (HP) and the intake and retention of energy and nitrogen were measured at 20° in
growing female broiler fowl given diets with metabolizable energy (ME) contents ranging from 8 to 15
MJ/kg at each of two crude protein (nitrogen x 6:25; CP) contents (130 and 210 g/kg). ME intake was
partially controlled by the birds, but increased by 30 % over the range of dietary ME concentration. CP
intake varied directly with dietary CP:ME ratio, indicating that control of energy intake took priority
and that food intake did not increase in order to enhance amino acid intake on low-CP diets.
Maintenance energy requirement and fasting HP were not affected by diet. Although the HP of fed birds
was significantly affected by dietary energy source, there was no evidence for regulatory diet-induced
thermogenesis as energy intake increased. Total energy retention doubled on the higher-energy diets as
a result of increased intake and retention efficiency in the absence of any compensation by diet-induced
thermogenesis, The proportion of energy retained as fat was negatively correlated with dietary CP:ME
ratio. It was concluded that the growing female broiler fowl responded to large differences in energy
intake and dietary CP concentration not by changes in rate of energy dissipation as heat but by changes
in the quantity of energy retained and in the partition of retained energy between body protein and body
fat.

Energy intake: Nitrogen metabolism: Thermogenesis: Broiler fowl

The domestic fowl (Gallus domesticus) controls its energy intake over a range of dietary
crude protein (nitrogen x 6:25; CP):metabolizable energy (ME) ratios (Hill & Dansky,
1954). There is a tendency, however, for energy intake to increase with ME concentration,
even when the CP:ME ratio is held constant (Fisher & Wilson, 1974). This tendency has
been accentuated by reducing the CP:ME ratio (Davidson et al. 1961, 1964, 1968).
Davidson et al. (1964) described an increase in calculated heat production (HP) in response
to increased ME intake on a low CP: ME diet, although they were later unable to confirm
this result by direct measurement of heat loss (Davidson et al. 1968). This diet-related and
possibly regulatory increase in HP is comparable with observations in mammals (Miller &
Payne, 1962; Rothwell & Stock, 1979, 1982; Gurr et al. 1980; Coyer et al. 1987). The
observations in mammals have also not proved universally repeatable (Hervey & Tobin,
1982; Barr & McCracken, 1984). In both avian and mammalian species, changes in dietary
CP:ME ratio have more commonly been shown to be accommodated by changes in body
composition (Bartov er al. 1974; McCracken & McAllister, 1984). In the context of
regulatory thermogenesis, it may be pertinent that an effector of diet-induced thermogenesis
analogous to the brown adipose tissue of some mammals has yet to be identified in the fowl
(Johnston, 1971); the tropical origin of Gallus domesticus may have offered no selective
advantage in evolving such a tissue for a thermoregulatory role.

The experiment reported in the present paper was designed to measure the extent to
which any changes in energy and protein intake produced by a wide range of CP: ME ratios
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Table 1. Compositions of base formulations used in producing the experimental diets

Composition (g/kg) High protein (H) Low protein (L)

Maize 410 660
Soya-bean meal 423 231
Fish meal 70 38
Meat-and-bone meal 70 38
Limestone flour 7 8
Choline chloride 4 5
Dicalcium phosphate 4 5
Sodium chloride 4 S
Vitamin supplement® 4 5
Mineral supplement* 4 S

* Composition of supplements (mg/g supplement): vitamins: retinol 720 ug, cholecalcifero! 8 ug, tocopherol
10-0, menaphthone 0-52, riboflavin 1-6, nicotinic acid 11-2, pantothenic acid 4-0; minerals: copper 1-40, iodine
016, iron 32, magnesium 120, manganese 40, zinc 20.

Table 2. Composition of experimental diets

Base H* Base L*  Starch  Maize oil  Cellulose Sand CP} TME® CP: TME
Diet  (g/kg) (gke)  (g/kg) (g/kg) (g/kg) (g/kg) (g/ke) (MI/kg)  (g:MI)

L1 0 650 0 0 350 0 130 76 17
L2 0 650 0 0 177 173 132 79 1-7
L3 0 650 290 0 60 0 13:5 124 i1
L4 0 650 0 115 235 0 133 11-5 1-2
LS 0 650 90 200 60 0 155 147 1
H1 710 0 0 0 290 0 209 89 23
H2 710 0 0 0 117 173 20-4 7-5 27
H3 710 0 290 0 0 0 210 121 17
H4 710 0 0 115 175 0 211 134 1-6
HS 710 0 90 200 0 0 265 14-5 1-8

CP, crude protein (nitrogen x 6-25; TME, true metabolizable energy; H, high protein; L, low protein.
* For details of composition, see Table 1.
1 Measured by the techniques described on pp. 626-627.

were accommodated by changes in HP, in energy retention or in body composition. The
experiment therefore incorporated two factors previously cited as stimuli of diet-induced
thermogenesis : high energy intake and low dietary protein content.

MATERIALS AND METHODS
Formulation of diets

Three target ME concentrations (8, 13 and 15 MJ/kg) were formulated at each of two CP
concentrations (130 and 210 g/kg) (Tables 1 and 2). For each CP concentration there were
two diets at 8 MJ /kg, which differed in that one had only cellulose (of wood origin; CEPO,
Sweden) as a diluent, while the other had a mixture of cellulose with mineral sand: this
comparison was to test for limitation of intake by volume. At each CP concentration, there
were also two diets at 13 MJ/kg, which differed in whether the energy was added to the base
diet as starch or as maize oil. The remaining diet at each CP concentration (15 MJ/kg) was

formulated by adding 200 g maize oil to each kg base mix.
The lysine contents of the low- and high-CP diets were 67 and 12:0 g/kg respectively;
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methionine + cystine contents were 45 and 6-8 g/kg. The high-CP diets therefore supplied
amino acid:ME ratios ranging from the requirement for maximum growth rate
{Agricultural Research Council, 1975) on the 15 MJ/kg diet to 2 x requirement on the 7-5
MJ/kg diets. The low-CP diets had sub-optimal amino acid:ME ratios in all but the 8
MlJ/kg diets.
Experimental design and statistical analysis

The experiment was performed as a randomized block design with five time blocks. The ten
diets were assigned randomly within each block. There were, therefore, five replicates of
each diet. A total of 100 birds was used, giving ten (as five pairs) on each diet. Analysis of
results was by two-way analysis of variance.

Birds and initial treatment

Female broiler chicks (1 d old) from a commercial line (D. B. Marshall, Newbridge, Ltd)
were obtained in batches at 14 d intervals (so that they were of identical age in each time
block) and reared to 21 d of age on a common diet. At 21 d of age they were randomly
allocated (in pairs) to cages in a poultry house kept at 20°. The lighting pattern was 23 h
light-1 h dark, giving an approximation to a commercial lighting cycle. At 21 d of age they
were also given one of the ten experimental diets ad /ib. At 28 d old, the birds were moved
(still in pairs) to randomly allocated calorimetry chambers for energy and N metabolism
measurements, which took place when the birds were between 29 and 36 d of age.

Experimental protocol

HP was measured by means of the indirect calorimetry apparatus and methods described
by Lundy ef al. (1978) with improvements to the gas analysis system (MacLeod et al. 1985).
The birds were fasted for their first 48 h in the calorimeter chambers. The first 24 h allowed
the birds to reach a basal level of metabolism; fasting HP (HP,) and endogenous faecal and
urinary energy and N losses were measured for the second 24 h. A day of ad lib. feeding was
then allowed before energy and N balances were measured in the fed state during days 4,
5 and 6. Stability of results between days 4 and 6 was taken to indicate that 1 d of recovery
was sufficient after fasting.

Excreta collection and calculation of ME

Excreta were collected in polymethacrylate (Perspex) trays placed on the fioors of the
calorimetric chambers. Daily collections were made over 3 d during feeding and over the
second day of fasting. The samples were stored at —20° in sealed aluminium dishes until
they were freeze-dried and ground for analysis. True ME (TME) intake (I,,,,.) (Sibbald,
1976) was calculated as

I = Iy —((faecal + urinary) energy) + (endogenous (faecal + urinary) energy),
where I, is gross energy intake.

Chemical analysis of food and droppings

N contents were measured by the Kjeldahl method, using Buchi digestion and distillation.
Fat contents were measured by petroleum ether extraction following hydrolysis in 3 M-
hydrochloric acid. Energy contents were measured by adiabatic bomb calorimetry.

Calculation of energy retention and partition
Total energy retention (R;) was calculated as

R, = I,—((faecal + urinary) energy)—HP,
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N retention (Ry) was determined as
Ry = I, —((faecal +urinary) N),

where 7 is N intake, and CP retention as 6-25 R,. Energy retained as CP was given by
237 x 625 R,. Energy retained as fat could, therefore, be calculated by subtracting energy
retained as CP from R;. Retention of fat by weight was then calculated by dividing fat
energy by 39-2. The values of 23-7 and 39-2 kJ /g used for the energy contents of protein and
fat are those quoted by Znaniecka (1967).

RESULTS
Food intake
Control of energy intake was indicated by a decrease of about 30 % in dry matter intake
(Table 3) as TME concentration increased (r—0-756; df 47; P < 0-001). Control was not
exact, however, and this reduction in food consumption still permitted an increase of about
30% in TME intake (r 0-768; df 47; P < 0-001). Because of the tendency for net efficiency
of energy utilization for maintenance and growth (k,, ,; Table 4) to increase with dietary
fat content, the intake of net energy between lowest and highest TME concentrations
increased by about 40 %.

There was no effect of CP concentration on food intake apart from an interaction (P <
0-05) with the effect of dietary TME concentration when intakes were expressed in terms
of metabolic body size (kg body-weight (W)*7%),

N intake (Table 3) was significantly affected by dietary CP concentration (P < 0-001).
The absence of significant control of N intake was indicated by the similarity in the ratios
of N intakes (0-64) and dietary N concentrations (0-62) on the L and H diets. Further
confirmation came from the close correlation (r 0-767, df 47, P < 0-001) between N intake
and CP:ME ratio.

Energy expenditure

HP per bird (but not per kg W°™) was significantly affected (P < 0-05) by dietary
concentrations of both energy and protein (Table 4). HP was maximal with the
intermediate-energy high-carbohydrate diets L3 and H3 rather than those in which energy
intake was highest. For the latter diets (L4, L5, H4, H5) net utilization efficiencies (k,, ,
calculated for each bird-pair as AR, /Al .; Table 4) were significantly higher than those
for the other diets, except L3. Therefore, although k., was significantly (P < 0-001)
affected by the carbohydrate and fat contents of the diet, it was not influenced by dietary
CP concentration.

Significant dietary effects on HP, per bird (Table 4) resulted from differences in body-
weight and were absent when the measurements were expressed in terms of W7,
Maintenance TME requirement per kg W™ (Table 4), calculated as the I, required to
give zero retained energy (i.e. HP,/k,, ), was similarly unaffected by either dietary CP or
dietary energy concentrations.

Respiratory quotient (RQ: Table 4) was significantly (P < 0-001) affected by dietary
carbohydrate, fat and CP contents. The effect of added fat was particularly noticeable.
Birds in all treatments had a mean RQ of about 0-72 during fasting.

Ry
R, and gross efficiency of energy retention were significantly affected by dietary energy
(P < 0-001) but not by CP concentration (Table 5). There was a very strong correlation

between R, and TME concentration (r 0-782; df 47; P < 0-001).
The amount of energy retained as fat (Table 5) was strongly associated with dietary
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energy (P < 0001). The effect of CP concentration was less distinct and attained
significance (P < 0-05) only when results were adjusted for W®™, There were strong
negative correlations between CP: TME ratio and both rate of fat retention (r 0-755; df 47;
P < 0-001) and proportion of energy retained as fat (r 0-806; df 47; P < 0-001). The rate
of energy retention in the form of protein was significantly affected both by dietary CP
(P < 0-001) and by dietary energy characteristics (P < 0-05). There was also a significant
interaction (P < 0-01) between the latter two factors.

A comparison of the partial energetic efficiencies (k. and k) and costs (1/k;, and 1/k,)
of protein and fat deposition on the grouped low-protein (L) and high-protein (H) diets was
made by multiple regression analysis. The equations are shown below, the coefficients for
R being equal to 1/, and 1/k, respectively. Standard errors of coefficients and constants
are shown in parentheses next to the corresponding mean. The proportion of variation
accounted for by the regression is in parentheses after each equation.

L diets (df 24): Iy = 455 (sE 168)+2:13 Ry, (sE 0:24)+ 098 Ry, (SE 0:07) (0:99)
H diets (df 24): Iy, = 488 (SE 22:5)+ 175 Ry, , (SE 0-17)+097 R, (sE 0:08) (0-99)
all diets (df 49): Iy, = 475 (58 123)+ 178 Ry, , (5E 0-11)+ 101 R, , (SE 0:04) (0-98)

Partial energetic efficiency of protein deposition, k;, was, therefore, 0-47 (i.e. 1/2:13) on
L diets and 0-57 on H diets. Combining both sets of diets gave 0-56. Although there was
a tendency for the energy cost of protein deposition to be higher (and &, lower) on the L
diets, this tendency was not statistically significant. The values for k. were close to unity
in all cases.

Ry

Gross efficiency of Ry, partial efficiency of Ry (calculated as ARy/Al,) and N
maintenance requirement (calculated as I, where Ry = 0) were all significantly (P < 0-001)
affected by dietary energy concentration (Table 6). Both indices of efficiency tended to
increase with dietary energy, while maintenance requirement tended to decrease. Only
maintenance requirement, however, was significantly influenced by dietary CP (P < 0-05),
being positively correlated with CP concentration (r 0:736, df 47, P < 0-001) and with
CP:TME ratio (r 0-576; df 47; P < 0-001). Gross efficiency of R was negatively correlated
with N maintenance requirement (r—0-797; df 47; P < 0-001) and positively with partial
efficiency of R, retention (r 0-938; df 47; P < 0-001).

Losses of fat and protein during fasting
When measurements were expressed on a kg W7 basis, there was no significant effect of
either dietary CP or dietary energy on total losses of body energy reserves during fasting
(Table 7). However, dietary energy had highly significant effects (P < 0-001) on partition of
energy loss between fat and protein, a greater proportion being lost as fat on the higher-
energy diets. Dietary CP concentration had a significant effect (P < 0-01) only on the
absolute quantity of energy lost as protein.

DISCUSSION
Intakes
The variation in I, . and net energy intake indicated imperfect control of voluntary intake.
I, at 1:8-3 times maintenance energy requirement, ranged from just below to well above
typical intakes for birds of this type and age. There was, therefore, a range of response from
slight energy restriction on diets L1, L2, HI and H2 to energy hyperphagia on diets L4, L35,
H4 and HS. The gradient of the relationship between energy intake and dietary TME
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Table 6. Efficiencies of nitrogen retention and N maintenance requirement of growing fowl

N maintenance
requirement

TME CP Gross efficiency Partial efficiency (g/bird  (g/kg W7
Diet* (MJ/kg) (g/kg) of N retention of N retention per d) per d)
L1 76 130 0-34 051 093 1-44
L2 79 132 0-46 0-60 0-64 0-89
L3 124 135 0-51 0-66 0-52 0-72
L4 115 133 043 0-60 0-57 0-83
LS 147 155 0-54 0-67 045 0-59
HI 89 209 0-36 0-51 123 1-75
H2 75 20-4 034 046 116 1-48
H3 121 210 046 0-57 0-71 0-90
H4 134 211 0-56 065 0-52 0-74
HS5 14-5 265 0-57 0-66 0-56 072
SEM 0-036 0-035 0111 0-161
LSD 0-083 0-081 0-254 0-371
L diets mean 0-45 0-61 0-62 090
H diets mean 0-46 0-57 0-84 I-11
Protein level effect NS NS P < 001 P <005
Energy concentration/source P < 0-001 P < 0001 P <0001 P <0001

Interaction P <005 NS NS NS

L1-LS, low protein; HI-HS, high protein; TME, true metabolizable energy; CP, crude protein (N x 6:25);
W' metabolic body size; SEM, standard error of the mean; LsSD, least significant difference; NS, not significant.
* For details of composition, see Tables 1 and 2.

concentration (calculated from the results in Table 3) was 66 kJ/bird for every MJ/kg
increase in TME intake. This gradient is close to the upper end of the range of those
reviewed by Fisher & Wilson (1974). Its steepness may have resulted partly from a
combination of a negative effect of cellulose and sand diluents on palatability and a positive
effect of added fat (Cherry, 1982). The range of energy intakes was still controlled to well
below the 2-fold range of dietary TME concentration. Measured TME concentrations of
the high-cellulose diets L1, L2, H1 and H2 were similar to those calculated on the basis of
a value of 0 MJ/kg for added cellulose, indicating that there was no appreciable
contribution of cellulolysis to TME. A different source of cellulose, bird age or dietary
history might have produced a different result (Duke ez al. 1984). Control of energy intake
took priority over any control of CP intake, allowing CP intake to vary in direct proportion
to dietary CP: TME ratio. Energy overconsumption was therefore not used by the birds as
a means of increasing amino acid intake. A similar result over a 12-fold range of CP
concentrations was described by Harris et al. (1988) in the Zucker rat.

HP

Despite the wide range of energy and CP intakes produced by the experimental design,
there was no evidence of a regulatory change in HP in response either to high-energy or
low-CP diets and intakes. HP reached a peak on the high-carbohydrate diets (L3 and H3)
and tended to be lowest on the high-fat diets, on which energy intakes were maximal. The
HP of fasting birds varied even less with diet. These results were consistent with a low heat
increment from fat and inconsistent with regulatory diet-induced thermogenesis. This was
confirmed by the results for &, _ (efficiency of utilization of total ME for maintenance and
growth). On the other hand, the similarity of k,, , for the two levels of CP is difficult to
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reconcile with classical ideas of the cost of protein synthesis (Millward er al. 1976) but
agrees with the results of Close ef al. (1983) with pigs and Coyer et al. (1987) with rats;
it does not fit simple models for estimating the net energy of feedstuffs, in which protein is
given a k value of 0-20 lower than that of carbohydrate (de Groote, 1974). Although there
was a large range of protein accretion rates, especially between the high and low CP
concentrations, there was no indication of the relationship between fasting HP and protein
accretion which might have been predicted from the results of Keller (1980), who described
a correlation between fasting HP and growth rate in the chicken.

Ry

The 2-fold range of Ry at each CP concentration resulted from the combination of
increased intake and increased &, , in the absence of regulatory diet-induced thermogenesis.
Most of the variation in retention was in the form of fat, but protein retention also
increased with TME concentration, presumably because less protein was required as a
source of energy. The strong correlation between proportion of energy gained as fat and
CP:TME ratio confirmed the susceptibility of the growing fowl’s body composition to
dietary influences. The equality of gross efficiencies of TME retention between protein
levels was unexpected in the light of the differing compositions of Ry and the different
theoretical energetic efficiencies of protein and fat deposition.

As the HP results suggested, there was no significant change in the energy cost of protein
accretion between high-CP and low-CP diets. This result contrasts with the doubling of
energy costs of protein deposition in rats fed on diets containing between 166 and 68 g
CP/kg (Coyer et al. 1987) but agrees with results from pigs fed between 258 and 153 g
CP/kg (Close ef al. 1983). The mean level of &, was similar to that of 0-51 found by Petersen
(1970) in growing chickens. As in the last three papers quoted, the calculated energy cost
of protein synthesis (about 2 kJ/kJ protein) was considerably higher than stoichiometric
calculation would predict (1-15 kJ/kJ; Millward et al. 1976). Only part of this discrepancy
is likely to be due to resynthesis associated with protein turnover and, as Coyer et al. (1987)
suggest, much of it may be attributable to parallel but causally unrelated increases in HP.
The high k. on all diets is probably a result of the collinearity between protein and fat
deposition, which is known to limit the reliability of the multiple-regression technique for
estimating k, and k. (Roux et al. 1976).

Female broilers were used for the present study. The influence of this choice on the result
may be important but can only be determined by further experiment.

RN

The catabolism of amino acids as an energy source was indicated by the high N
maintenance requirement and low gross and partial efficiencies of R, observed as CP: TME
ratio increased. A wide range of protein intake inevitably resulted from the precedence
given to control of energy intake; the contribution of protein to energy intake therefore
increased greatly as the energy concentration of the diet decreased. Conversely, the
proportion of non-protein energy decreased, leaving amino acids to function increasingly
as energy substrates through either oxidation, gluconeogenesis or lipogenesis. Evans &
Scholz (1971) demonstrated that chicks have a well-developed ability to increase the rate
of gluconeogenesis from protein when fed on a high-protein, carbohydrate-limited diet.
The differences in rate of amino acid deamination persisted even during fasting in the
present experiment and contributed to the higher maintenance requirement for N on the
high-protein diets.
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CONCLUSIONS

Growing female fowl responded to large differences in voluntary energy intake and dietary
protein concentration by changes in the quantity and chemical form of retained energy but
not in the rate of energy dissipation as heat.
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