2 Component reliability and system
availability

One of the main potential advantages identified for microgrids is the possibility of
achieving higher power supply availability as compared with conventional systems
fed by a main electric grid. Thus, in order to quantitatively assess LAPES value and
design constraints it is important to understand reliability and availability aspects of
microgrids. Hence, the goal of this chapter is to define and discuss key attributes related
to availability and reliability in LAPES.

2.1 Definitions

Consider first an entity — i.e., an item, such as a system component or a device.
Reliability R(?) of this entity is, then, defined as the probability that this item will operate
under specified conditions without failure from some initial time # = 0 when it is placed
into operation until a time ¢. The definition of failure of a component can take different
forms. For some components, such as a resistor or a capacitor or most other passive
circuit components or semiconductor devices, a failure implies that the component
cannot operate meeting its intended function — e.g., a capacitor is experiencing
a failure when it can no longer store electrical energy according to its given capacitance.
For other components, such as batteries, a failure occurs when the component can no
longer meet some performance requirements — e.g., a battery can be considered to have
failed when at a given nominal temperature its capacity falls below a given percentage of
its nominal capacity. That is, for the latter type of component, some level of performance
degradation is accepted without implying a failure condition. Notice that one key aspect
of the definition of reliability is that it is defined as a probability. Hence, it can only take
values between 0 and 1. Another key aspect of this definition is that the entity needs to
operate without failure during the entire period of time under evaluation. That is, the
repairing concept is implicitly not considered as part of the evaluation of component
reliability. The complementary concept to reliability is called unreliability F(z). Hence,
in a mathematical form it is

F=1-R (2.1)

That is, unreliability is the probability that an item fails to work continuously over
a stated time interval. The explicit statement in this definition that the item needs to work
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continuously is related to the notion that the item should not experience any failure, as
was mentioned in the definition of reliability. As a result of these notions, it is implicitly
assumed that the concept of reliability cannot be applied directly to repairable compo-
nents or systems.

For systems or repairable items, the concept that describes their behavior in terms of
the possibility of being in a failed state or not is called availability. The term availability
can be used in different senses, depending on the type of system or item under
consideration [1]:

1. Availability, 4, is the probability that an entity works on demand. This definition is
adequate for standby systems.

2. Availability, A(?) is the probability that an entity is working at a specific time ¢. This
definition is adequate for continuously operating systems.

3. Availability, 4, is the expected portion of the time that an entity performs its required
function. This definition is adequate for repairable systems.

The last definition is the one among the three that represents best the differences between
the definitions of reliability and availability. One of these differences was already
pointed out and relates to the notion that reliability is a concept that does not apply to
systems that may go out of service due to either unexpected or expected causes, and that
are brought back to service after some time has passed. Another of the differences
between the concepts of availability and reliability originates in the fact that many
systems can maintain operation within required parameters even when some of their
components are out of service, or, after a failure, when not all components that have
failed have been repaired. As was done for the definition of reliability, it is possible to
define a complement to availability; this complement is called unavailability U,,.

2.2 Basic theory and concepts

Once the concepts of reliability and availability are introduced, it is possible to explore
in more detail their application and use. This is the focus of this section.

2.2.1 Reliability

Reliability of an item is, typically, evaluated based on its failure characteristics. That is,
reliability is often calculated by evaluating unreliability first. Unreliability of an item can
be evaluated from

F(¢t) = Pr{a given item fails in [0, ]} (2.2)

where Pr{event} represents the probability of occurrence of a given event. Notice
that continuous operation is implicit in (2.2) and that F(¢) can be considered as
a cumulative distribution function of a random variable ¢ with a probability density
function f{¢) given by
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£l =20 23)
which implies that
f(¢t) = Pr{a given item fails in [¢,¢ + dt]} (2.4)
and
Flo) = J f(2)de (2.5)
0

Still, (2.3) to (2.5) do not provide a practical way of representing the reliability
characteristics of a circuit component. Thus, a hazard function A(?) is used in order to
characterize an item’s behavior in terms of transitioning from a working to a failed state.
This function provides a more practical perspective for characterizing an entity’s
reliability behavior by representing the expected rate at which failures occur.
Mathematically, A(?)dt indicates the probability that an item fails between ¢ and ¢ + dt
given that it has not failed until 7. That is, if the event 4 is “an item fails between t and t +
dr” and event B is “the same item has not failed until t,” then based on Bayes’ theorem,

Pr{B|A} Pr{d} Pr{4}
Pr{B} ~ Pr{B}

h(t)dt =Pr{4|B} = (2.6)
because Pr{B|A} = 1. Now, from (2.4) Pr{4} = f(¢), and from the combination of (2.1)
and (2.2) Pr{B} = 1 — F(¢). Hence,

h(t)dt = 1]—((2(;) (2.7)

Considering (2.5), if both sides of (2.7) are integrated along the interval 0 and ¢, then

r h(z)dr
0 (2.8)

Ft)y=1-—¢
Although seemingly counterintuitive, (2.8) provides a practical way of knowing F(¢)
from A(?). In practical applications, A(#) is relatively simple to evaluate when it is
stipulated that /(f) measures the anticipated number of failures of a given item during
an specified time period. That is, the unit of measurement for /(¢) is 1/hour, 1/year, or any
other equivalent unit. Evaluation of 4(#) leads to the well-known “bathtub curve” shown
in Figure 2.1, which is obtained by counting the number of failures occurring during
a given period for a large set of identical items that are placed into operation at the same
time and that operate under the same conditions.

Notice in Figure 2.1 that during the useful life period of electronic components, their
hazard function is constant. This constant value for /(f) is conventionally named the
constant failure rate 1. Hence, when /(%) is replaced in (2.8) by this constant value 4, F(¢)
becomes equal to
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Figure 2.1 Typical bathtub curves and their components for electronic components (solid lines) and

mechanical components (dotted lines). In practical applications the useful life period is much
longer than the other periods.

Fit)y=1-* (2.9)
Hence,
f(t) =de™ ™ (2.10)
and
R(t)y=e " (2.11)

Thus, the reliability of an item with a constant failure rate is represented by an
exponentially decaying function in which at time ¢ = 0 there is no chance of observing
a failure and in which there is almost a 37% chance of not observing a failure in the
component from the time it was put into operation to the time given by 1/4. The value of
1/4 has another very important meaning in reliability theory: consider (2.10); the
expected value for such a probability density function is

Elf(0) = j (e = (2.12)

which is denoted as the mean time to failure (MTTF) of the component under consideration.

222 Availability

Let’s consider now an entity that can be repaired and brought back into operation when it
fails. In this case, a failure rate A(¢) can be used to represent the failure process of such
a repairable entity. This failure rate is defined as
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U

Figure 2.2 Markov process representing the operational state S of a single entity.

Me)dt = Pr{item fails in [¢,¢ + df]}

= 2.13
Pr{item was working at ¢t = ¢} (2.13)

which is analogous to (2.6) except for the different description of what was called event
B in order to consider here the possibility that the item under evaluation has failed one or
more times since it was first put into operation a long time in the past. In the same way,
a repair rate u(¢) can be defined as

(6t = Pr{item is repaired in. 2, + di]} (2.14)
Pr{item was not working at ¢ = ¢}

in order to represent the random process involved with having the item transitioning
from a failed state to a working state. If the state of the item (failed or operating
normally) is considered to be independent of its past or future behavior — i.e., failures
and repairs are independent of previous or future failures and repairs — the entity’s
behavior can be mathematically represented by a Markov process like the one graphi-
cally represented in Figure 2.2, with transition rates 4 from the “working” state to the
“failed” state and u from the “failed” state to the “working” state. These transition rates
are, in general, assumed to be at a constant rate.

In Figure 2.2, and based on (2.13) and (2.14), the probability that a repairable item will
transition from the working state to the failed state is given by Adt, whereas the
probability associated to the converse transition is udt. Obviously, the probability of
remaining in the working state is given by (1— A)d¢ and the probability of remaining in
the failed state is (1— u)dz. Consider now the third definition of availability given in
Section 2.1. It follows that the instantaneous unavailability of the discussed entity can be
associated with the behavior of the item with respect to the failed state S = 1. That
is, if the probability of finding the entity at the failed state of # = ¢ + dt is identified as
Pr(t + df), then this probability equals the probability that the item was working at time
t and experienced a failure during the interval dt or that the item was already in the failed
state at time ¢ and it was not repaired during the immediately following interval dft.
In mathematical terms

Pry (¢ + dt) = Pr,,(t)Adt + Prs(1)(1-p)dt (2.15)
where Pr,,(7) is the probability that the item is at state S = 0 at time ¢. Thus,

Pry (¢ + dt) — Pry (1)
dt

= Pr,, ()4 — Pry(t)u (2.16)
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Since it is assumed that the time interval d¢ is infinitely small, the left side of (2.16) is,
by definition, the time derivative of Pr/(¢). Moreover, Pr/(t) = 1 — Pr,,(¢). Thus,

dPry (1)
dt

= —(A+ @)Pr/(£) + A (2.17)

which is a first-order differential equation. If it is assumed that at time 7 = 0 the item is
known to have been operating normally, then Pr(z = 0) = 0, and the solution for (2.17) is

Pr/() = liﬁ (1 - e*“*ﬂ”) (2.18)

which implies that

Pr, () = —— (ﬂ - ze*“*ﬂ)’) (2.19)
u

Both (2.18) and (2.19) can be plotted, yielding the graph in Figure 2.3. The steady-state
probabilities of finding the item under study in a failed or in a working state are also
shown in this figure. These two probabilities represent how likely it is to have the entity
under study operating normally or in a failed condition after placing the entity into
operation for the first time a long time in the past. That is, these steady-state values
indicate the availability and unavailability of the item under study:

A=—"— 2.20
Tz (2.20)
and
A
= 2.21
Tta (2.21)

Equation (2.20) confirms that availability depends on two processes. One of
those processes, the failure process, is (as is further discussed in Section 2.3) mostly
related to an item’s “hard” intrinsic and environmental conditions — such as operational
temperature — whereas the other, the repair process, is also related to “soft” external
factors — such as maintenance strategies, spare parts management, and logistical

Pr(?)
1
A
A+ u Prd?)
U Pr,.(%)
A+
-
14

Figure 2.3 Example of typical time dependency associated with failed and working conditions of an entity.
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processes. Clearly, the concept of reliability is embedded in that of availability. Hence, in
the same way that the concept of MTTF was previously defined, it is possible now to
define a mean up time (MUT) as the inverse of the failure rate 4 and a mean downtime
(MDT) as the inverse of the repair rate u. The MDT includes the processes of detecting
the failure, repairing the failure, and putting the item back into operation. The mean time
between failures (MTBF) is defined as the sum of the MUT and MDT. With these
definitions the availability and unavailability of an entity can be calculated based on

MUT
= VTBF (2.22)
and
MDT
= (2.23)
MTBF
respectively.
2.2.3 Availability calculation techniques in systems

In Section 2.2.2 a Markov process was used to explore the availability behavior of
a single item — i.e., a single component system. The same approach can be used for
multicomponent systems. Consider, for example, a system with two components
characterized by a Markov process with four states identified by S; to Sy, as shown in
Figure 2.4. As this figure shows, a state can also be identified by a binary number in
which the first digit represents the reliability condition of component A — the first digit is
0 if the component is in a state of normal operation and 1 if the component is in a failed
situation —and the second digit represents the condition of component B. The differential
equation that represents the behavior of the system is now given by

(i{-f) ' =P’A (2.24)

where the transition rates matrix A is

Figure 2.4 Markov process representation of the operational condition of a two-component system.
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—(/IA + ﬂ.B) Ad A 0
My _(:uA +/IB) 0 /IB
A= 2.25
Ug 0 —(up +24) A4 (2.25)
0 Up ey —(uy + p)

and where P’ is a transpose vector in which each coordinate is the probability
of finding the system in each of the four states. That is,

P’ = (Prs, (t) Prs,(¢t) Prg,(t) Prs,(f)) (2.26)

Equation (2.24) cannot be directly solved because A is singular. In order to solve it, it is
necessary to consider the additional condition that the sum of all coordinates of P equals
1. When this condition and initial conditions are considered, it is usually possible to
solve (2.24) with the added assumption that failure and repair rates are constant. Steady-
state solutions can also be found from (2.24) by simply solving the algebraic system of
equations that is obtained by making the left-hand side of (2.24) 0 and replacing one of
the equations by the algebraic condition that the sum of all coordinates of P equals 1.
The solutions for such a system of equations are shown in Table 2.1.

Table 2.1 also shows the expected time that the system remains in each of the states
S; and the frequency of finding the system in a given state. It has been shown in [1] that
the expected time that the system remains in state S; is given by

1 1
== (2.27)

— @ N,
> aij
j=1

i

where Ny is the total number of states in the Markov process representing the system
under study and a;; is the element in row i and column j of the matrix A. That is, the
denominator in (2.27) is the negative of the diagonal element corresponding to the
row and column of state S;, which is minus the total rate of departure from S,.

Table 2.1 Steady-state probabilities and relevant parameters for the four states in the Markov process
representation of a two-component system.

State Prg, (t—0) T ¢

s, S S ! _Matplla t )
(0 + 2a) (ug + Ap) Aa+ s (g + 24) (up + 25)

s, My ! bW +2p)
(g + Aa) (g + 2A5) Uy + 2B (g + 2a) (g + Ag)

s, 7 R 1 _MatsCa t )
(tty + Aa) (s + Ap) 24+ g (g + 24) (up + 25)

s, I ! Al tig)
(g + 2a) (g + As) tg + tp (g + 24) (up + 25)
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Equation (2.27) is obtained from knowing the probability density function of being at
state S;, which is [1]

Ir(Ti = 1) = —a;e"" (2.28)
Also from [1] it can be shown that the frequency of finding the system in state .S; is
¢; = —a;;Prs,(t — o) (2.29)

Although the Markov process representation provides many insights into the avail-
ability behavior of a system, its application may become tedious as the number of
components increases. One of the alternative methods to represent the availability
behavior of a system is through “availability success diagrams.” An availability success
diagram is a graphic representation of the availability relationships among components
in a system. Such a diagram has the following four parts:

1. A starting node

2. An ending node

3. A set of intermediate nodes
4. A set of edges

In the availability success diagram the edges represent the system components and the
nodes represent the system structure from an availability standpoint. This structure may
be different from a physical or an electrical topology. For example, if the system is an
electrical circuit in which there are two components that are electrically connected in
parallel but that are critical for the circuit operation —i.e., if one of those components fail,
the system is in a failed state — then in an availability success diagram they are
represented in a series connection. The expected system operating condition is repre-
sented with paths through the network. The system is in a working condition when all the
components along at least one path from the starting node to the end node are operating
normally. If there are enough failed components that it is not possible to find at least one
path from the starting node to the end node with all the components operating normally,
then the system is in a failed state.

Another method of representing and calculating system availability is the minimal cut
sets (mcs) method. An mcs is a group of failed components that places the system in
a failed state when all of its components are in a failed state — failure being characterized
in a LAPES by the impossibility of the system completely supplying the load — but
which returns the system to an operational state if any single one of its components is
repaired. Once the mcs of a system are identified, the unavailability of a system can be
calculated from

Mc
U, = Pr{ U K,} (2.30)
j=

where K; represents the M. mcs in the system. Calculating system unavailability using
the exact expression in (2.30) is a very tedious process involving identifying the
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probability of the logical union of many events. However, the calculation can be
simplified by recognizing that U, is bounded by

1

ZPr{K} fizlPr{KﬂK}<U <ZPr{K} (2.31)

i=2 j=1

Thus, if all considered components are highly available, then U, can be approximated to
Mc

Us = > Pr{K;} (2.32)
=1

where Pr{K;} is the probability of observing the mcs j happening. Such probability can
be calculated based on

Pr{K;} = 1:]1u1 (2.33)

where ¢; is the number of failed components in the mcs j, and u;; is the individual
unavailability of each of the ¢; components in mcs K. Based on (2.21), u;; is the ratio of
the failure rate 4, ; of component i in mes j to the sum of this same component failure rate
A;; and repair rate u; ;.

In order to complete the general discussion about availability calculation in systems
with multiple components, let’s consider some basic systems with commonly found
relationships among the components. For large systems comprising components that are
arranged in combinations of simpler well-known structures, it is usually possible to
calculate availability characteristics of each of the structures separately and then com-
bine the availability of all the structures in order to calculate the total system availability.
The three basic commonly used cases are described next.

2.2.3.1  Series systems
If the system is not repairable — e.g., a circuit board with all its components soldered —
the reliability can be evaluated based on what is commonly known as the “parts count”
approach, in which the failure rate of the system is simply the sum of the failure rates of
all the system components. That is,

Nc
Asis =Y 4 (2.34)
i=1
where /, is the failure rate of the i-th component among the N forming the system and

Agys is the total system failure rate. The MTTF for the system is, then, the inverse of
Agys, and the reliability Rgys(?) of the system is

Rgys(t) = e ' = 1‘[ ri(t) (2.35)

where r;(¢) is the reliability function of each of the components forming the system.
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Figure 2.5 Availability success diagrams for (a) two series components, (b) two parallel components, and
(¢) n + 1 redundant components.

If the system is repairable and has two components, the availability success diagram is
that in Figure 2.5(a). Since all components need to be operating for the system to be
working, the availability of the two-component system is given by the steady-state
probability of finding the Markov process represented by Figure 2.4 in state S;, which
is equal to the product of the availabilities of the two components A and B. For
n components the availability is given by

NC
ASYS = H a; (236)
i=1

where a; is the availability of each of the N components in the system. If all of these
availabilities are close to 1 it is simple to show that

Nc
Uasrs 2 Y u; (2.37)

i—1
which is analogous to (2.32) because in a series-connected system (from an availability
perspective) each and all of the mcs are represented by a single component of all in the
system. That is, Nc = M. The system’s failure rate Agys is still given by (2.34). It is
important to realize that in reality, in series systems there are no states representing the
failure of more than one system component because it is assumed that failures are
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independent of each other and they do not occur simultaneously, and because when one
component fails the system ceases to operate, preventing further failures — i.e., S4 in
Figure 2.4 is not actually observed in a two-component series system. Based on this
characteristic of series systems it can be found [1] that the system repair rate is

(27) (f)
(t <o) = (1)

which for a system with highly available components — i.e., MDT<<MUT - can be

approximated to
N¢
Mgys & ~—L 2 (2.39)

Mgys = (238)

2.2.3.2  Parallel systems
When system components are connected in parallel in an availability sense, all of the
components need to fail in order for the system to fail. That is, there is only one mcs that
includes all components in the system. Since there is only one mcs the expression in
(2.32) is now exact so

Ne

Ua,svs = 1 ui (2.40)

i=1

where u; is the unavailability of each of the components. For a two-component system,
the availability success diagram is that in Figure 2.5(b) and the unavailability is given by
the steady-state probability of S, in Figure 2.4. As a dual case with respect to the series
configuration the system repair rate is

Nc
Mgys = Zﬂi (2.41)
i=1

and the system failure rate is

(2.42)

2.2.3.3  n+1 redundant systems
Consider a system that has a number of equal components that all serve the same
function. Redundancy is a fault tolerance technique in which the system is equipped
with more than the necessary minimum number of these equal components in order to
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perform their required function adequately and keep the system operating. The most
common type of redundancy is the n+1 system, in which the minimum number of
components necessary to keep the system operating is n and one more component is
added for redundancy. Its availability success diagram is represented in Figure 2.5(b).
Based on the second definition of availability in Section 2.1, system availability is the
probability of observing the system to be working. In n+1 redundant systems, this
event — having the system working — is observed when all n+1 redundant components
are operating normally or when n of the n+1 components are operating normally.
Since there are "'C, ways in which n operating components can be selected from
a group of n+1 components, the availability can be mathematically calculated as

ASYS — n+1cnanu + i’l+1cn+lan+l (243)

where a and u are the availability and unavailability, respectively, of the n+1 equal
components in the #n+1 redundant arrangement and where

Hence,
Agys = (n+ 1)a"u + a"*! (2.45)

When (2.45) is plotted (see Figure 2.6), it is possible to observe one important char-
acteristic of n+1 redundant systems: as the minimum number of components #n is
increased, the system availability decreases; and for values of n large enough the system
availability Agys is less than the individual component availability a. Figure 2.6

Acy
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Figure 2.6  Availability of n + 1 redundant fuel cells versus the number of fuel cells necessary to operate
the system.
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exemplifies this property by considering fuel cells with @ = 0.97. As this figure shows,
for n > 8 the fuel cell arrangement availability is worse than that of a single fuel cell.
Hence, redundancy is a fault tolerance technique that needs to be used with care, as
increasing the number of components may compromise system availability instead of
improving it. Finally, the failure and repair rates in an n+1 redundant arrangement are
given by [1]

ni?(n+1)
Asys = ———— 2.46
T+ DA+ u (2.46)
and
2 n*lCn 12 n
Msys = — CCor)bu (2.47)
((icn+l)ﬂi/1n+lfi)
i=0
respectively.
2.3 Common metrics and performance standards

The previous analyses imply that in order to calculate the availability of a system it
is necessary to know the failure and repair rates of the components. Typical values
for repair rates of a specific component may not be available because the rates may
vary over a wide range of values that depend on the processes for maintenance,
logistics, and storage of spare parts. For example, in the generic microgrid scheme
in Figure 1.2, the power electronic interfaces between the sources and the distribu-
tion portion of the microgrid may be realized by various power electronic converter
modules in an n+1 redundant configuration. If one of those modules fails, then the
microgrid can still power the entire load unless another converter module fails.
Thus, the microgrid is fully operational, but with increased chances of experiencing
a failure until the failed component is repaired or replaced. Hence, it is important to
identify how long it takes to replace the damaged converter module. The approach
that leads to the shortest downtime is to have replacement parts on site, which
facilitates rapidly replacing the damaged module within minutes. However, having
spares on site implies some storage costs, particularly if the owner of the microgrid
with the failed module needs to manage other microgrids. In these cases the
maintenance manager may prefer to have fewer spares stored in a central ware-
house, leading to longer downtimes for converter modules. Downtimes may be even
longer (in the order of weeks) if the owner of the microgrid has no spare parts and
needs to order them when a part fails or needs to wait for the damaged part to be
sent to a manufacturing facility to be fixed and then for it to be sent back. That is,
downtimes may extend from a few minutes to several weeks. Such a disparity
usually leads to not having repair rates standardized or tabulated, as happens for
failure rates.
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Arguably, the most common source for failure rates of electronic and some
electrical equipment is US Military Handbook 217F [2]. This handbook contains
tables with data about the failure rates of most common electronic components and
information about how to adjust the given base failure rate 1, depending on the
operational conditions of the component. That is, the failure rate of a component (1)
is in general given as

N
A= (H ﬂi)/lb (2.48)
i=1
where 7; represents a series of factors that consider various relevant conditions for the
component under evaluation that affect its base failure rate. Consider as an example the
failure rate of a MOSFET used as a switch for a power electronic converter in
a microgrid. Its failure rate is calculated based on [2]

A= 77.'T7Z'A71'Q71'E/1b (249)

where 4, is 0.012 failures for every million hours of operation. The failure-rate adjusting
factors are:

— Temperature factor 77 This factor is given in a table and depends on the junction
operating temperature 7. It can also be calculated based on the Arrhenius model,
which is given by

Eq (L L)
ar=ek \Ir T; (2.50)

where Tp is a reference temperature usually equal to 298 K (25 °C), T';is the junction
temperature in kelvin (K), k is the Boltzman constant (k=8.617 10> ¢V/K), and E,, is
the failure activation energy, which in this case equals approximately 0.17 eV.

— Quality factor mp: This factor represents the quality of the component; generally
other standards must be examined in order to obtain the complete and exact
characteristics of each quality level. In the case of a MOSFET it can vary between
0.7 and 8.

— Application factor 7. This factor allows the effect that different applications
have on component reliability to be considered. For a MOSFET, 7, equals 2
when the rated power is between 2 and 5 W, 4 when the rated power is between
5 and 50 W, 8 when the rated power is between 50 and 250 W, and 10 for a rated
power above 250 W.

— Environmental factor zz. This factor considers the different stresses observed in
varying environmental conditions, such as operation at a fixed location on the
ground or moving on the ground, or operation in naval, airborne, or space applica-
tions. In the case of a MOSFET operating in a circuit at a fixed location on the
ground this factor equals 6.

Due to their relatively low reliability, another interesting example is that of electrolytic
aluminum capacitors. In these capacitors the failure rate is obtained from
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A= 7Z'CV7I'Q7I'E/11, (251)

where the base failure rate 4, is given in tables or calculated from

T 5
$\3 509(“)
,11,:0.00254[(%) +1le \338 (2.52)

where T, is the ambient temperature in K and S is the ratio of operating to rated voltages.
For example, for 7, = 20 °C and Sy = 0.9, 4, = 0.11 failures for every million hours of
operation, i.e., about 10 times that of the MOSFET. This is not an unreasonable value
because, typically, electrolytic capacitors are the least reliable components in a power
electronics circuit. In this example of an electrolytic capacitor, the three factors affecting
Ap are:

1. Capacitance factor mcyp: This factor considers that failure rates increase as the
capacitance increases because, among other reasons, of the more complex construc-
tion of the capacitor — typically aluminum electrolytic capacitors are built with
a cylindrical shape that adds more layers in order to increase the capacitance; as
the layers increase the chances of having a failure also increase. Mathematically, this
factor can be calculated based on

mey = 0.34C%18 (2.53)

2. Quality factor zy. It represents the same effect on reliability as the one mentioned for
the MOSFET. For a capacitor this factor is usually around 1, but in extreme cases it
may take values as low as 0.03 and as high as 10.

3. Environmental factor zz. The environmental factor has the same influence on the
failure rate as what was mentioned for the MOSFET. In the case of a static application
on the ground, 7z for a capacitor equals 2.

Notice that contrary to the repair rate, the failure rate is mostly dependent on
hardware-related intrinsic and objective characteristics and conditions. Hence, fail-
ure characteristics typically allow for a more systematic assessment of the MUT (or
MTTF if the object cannot be repaired) than of the MDT.

Other metrics that are often mentioned in order to evaluate power-supply reliability
characteristics are those based on IEEE Standard 1366 [3]. This standard is typically
applied to the distribution portions of electric power grids [3] and, hence, it is not well
suited to consider the effect of assets found in LAPES, such as local distributed
generation units or energy storage. Still, some works discussing availability in micro-
grids have nonetheless use availability metrics from IEEE 1366 for microgrids.
However, this approach presents several issues when the goal is to analyze availability
of a microgrid in a general sense. In order to better understand the limitations of the
metrics contained in IEEE 1366 as applied to LAPES, let’s present first some of the most
relevant availability indices in [3]. Consider first the metrics applicable to sustained
interruptions (those lasting more than five minutes):
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— System average interruption frequency index (SAIFI)

SAIFI Ztotal number of customers interrupted

2.54
total number of customers served ( )

That is, the numerator equals the sum of the “number of interrupted customers for
each sustained interruption event during the reporting period” [3].
— System average interruption duration index (SAIDI)

Z customer interruption durations Z 7:N;

total number of customers served Nr

SAIDI = (2.55)

where r; is the “restoration time for each interruption event,” N; is the “number of
interrupted customers for each sustained interruption event during the reporting
period,” and N7 is the “total number of customers served for the areas” under
consideration [3].

— Customer average interruption duration index (CAIDI)

> riN:  SAIDI

CAIDI = =— 2.56
SN, SAI (2:56)
— Average service availability Index (ASAI)
NrT, - ri]Vi
ASAL = 1 2 (2.57)

NrTyy

where Ty is the number of hours in a year (8760 in a non-leap year and 8784 in
a leap year). That is, the ASAI “represents the fraction of time that a customer has
received power during the defined reporting period” [3].

— Customers experiencing multiple interruptions (CEMI,,)

CNk>n

CEMI, = —
T

(2.58)

where CN,., is the total number of customers experiencing more than # sustained
interruptions.

Other metrics in [3] are based on other evaluation parameters, such as a load’s power
consumption. These are:

— Average system interruption frequency index (ASIFI)

L;
astrr = 2= (2.59)
Lt

where L; is the connected load apparent power (in kVA) “interrupted for each
interruption event” [3] and L7 is the total load apparent power (in kVA) served.
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— Average system interruption duration index (ASIDI)

> ik
ASIDI = —~"" (2.60)
Lr

Finally, some metrics in [3] are specified for momentary interruptions. They are:

— Momentary average interruption frequency index (MAIFT)
Z IviNi
MAIFI = &= —— (2.61)
Nr

where I);; is the “number of momentary interruptions” and N,,; is the “number of
interrupted customers for each momentary interruption event during the reporting
period” [3].

— Momentary average interruption event frequency index (MAIFIg)

I ENmi

MAIFI; = L (2.62)

Nr

where Iy is the “number of momentary interruptions events” [3].

— Customers experiencing multiple sustained interruption and momentary interrup-
tion events (CEMSMI,,)

CNTje>n

CEMSMI, =
T

(2.63)

where CNT}-,, is the “total number of customers who have experienced more than
n sustained interruptions and momentary interruption events during the report-
ing period.” [3].

Although [3] provides a uniform framework to evaluate the availability of the
distribution portion of power grids, it has some issues with use for LAPES. These
issues are related to the purpose of [3]. This purpose can be summarized as providing
a set of definitions that allows for uniformly reporting of distribution-side power
outages among utilities operating in different settings, with dissimilar planning
approaches, and with varying restoration practices and, in this way, allow for con-
sistent comparison of distribution-side outage statistics both within a given electric
utility and among various utilities. That is, [3] provides a uniform set of metrics and
thus is not a method for availability calculation, as sometimes is stated. As a result, [3]
is explicitly intended to be used a posteriori based on statistical data observed in
a given period. Still, using Monte Carlo simulations it is possible to evaluate the
expected availability behavior of a distribution portion of a grid. But the fact that [3]
applies only to the distribution portion of grids presents the first challenge in its
application to LAPES, because microgrids present a different technological platform,
in which local distributed generation units, energy storage, and loads are integrated in
a single system that may not be simple to divide in sections, as happens in power
distribution portions of large conventional power grids. As a result, technical
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inconsistencies appear when applying [3] metrics to microgrids, versus the conven-
tional approach of applying the same indices to standard power grids. Moreover,
the variety of approaches to developing microgrids — e.g., dc or ac power distribution
voltages — leads to lack of uniformity in the metrics indications obtained when
applying [3] to LAPES. For example, in microgrids it is possible to have a single
load, in which case indices such as SAIFI or ASIFI do not provide consistent
or valuable metrics. Another important aspect that limits the application of [3] to
microgrids is the fact that in calculating the indices of [3], statistics are calculated
excluding outages occurring in what is defined as a “major event day.” That is,
outages caused by natural disasters and other extreme events are not considered as
part of the calculation of the metrics. However, one of the uses that has been identified
for LAPES is precisely to improve power supply when extreme events happen.
Therefore, although in most cases it is technically possible to use [3] to calculate
availability metrics of microgrids’ distribution portion, the results will most likely
lack uniformity and their value may in most cases be limited. In reality, availability
metrics in microgrids tend to be closer to those indicated for transmission portions of
the grid in IEEE Standard 859 [4], which includes availability (expressed as service
time/reporting period time) as one of the indices considered and which considers
“major storm disasters” as one of its “exposure parameters.”

There exist other well-known reliability and availability standards and metrics guides
in addition to those just described. Two commonly used are Telcordia SR332 [5] and
IEC 61709 [6]. Telcordia SR332 tends to be a guide similar to [2] in the sense that it also
provides failure rate data for electronic components and indicates ways of adjusting base
values depending on uses and operational conditions. The main differences are that [5]
has been updated more recently than [2] and provides reliability estimations for civilian
applications that are not as pessimistic as those obtained with [2]. That is, [2] tends to
yield more conservative reliability values than [5]. In the case of [6], it is a standard with
a broader use worldwide. However, it is more limited than [5] and [2], because [6]
indicates how to obtain failure rates but does not provide failure rates data. In addition, it
specifies reference conditions for obtaining failure rates and indicates how to adjust
failure rates based on stress models.

24 Availability of LAPES

Arguably, development of modern LAPES has been driven by two main goals: interest in
integrating renewable energy sources at a local level and search for approaches to
improved power supply availability through ultra-available power systems. One of the
main requirements of ultra-available systems is that they maintain full system operation
when one or more failures occur. This characteristic is known as fault tolerance. A single
point of failure is a portion of a system that causes the entire system to fail when it fails.
Thus, fault-tolerant system design aims at eliminating single points of failure [7] [8].
Some common strategies to meet this goal [9] are:
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— use of redundant components

— diverse implementation of the system functions
— distribution of critical system functions

— use of hot-swappable components

As it was explained above with respect to a LAPES, redundancy refers to a design in
which the system has more than the minimum number of equal components required to
deliver power. Diversity is a concept related to redundancy. However, while a redundant
strategy involves using more equal components than the minimum required to perform
a given function, diversity implies using additional but different system components
than the minimum required to perform a given function. For example, having more
microturbine units than those required to power the load refers to the use of redundancy,
but adding microturbines to a cluster of fuel cells that can power the load alone refers to
diversifying sources for a LAPES. Systems with distributed functions divide main
system functions among various components. For example, in a LAPES with
a distributed architecture, power distribution and conversion functions are spread
among circuits and buses, and converters [10], respectively. Other important methods
used to achieve fault tolerance are the provision of adequate means for online repairs by
using modular hot-swappable components. In this way, availability is improved by
reducing the MDT.

Implementation of fault-tolerant systems is not exempt from challenges. In general,
system availability is increased at the expense of additional cost and complexity [11].
Hence, a balance has to be achieved in order to balance increased availability needs and
reduced costs requirements. Fault detection and clearance become more complicated,
especially in distributed systems. These challenges can be addressed. However,
a realistic and balanced approach requires quantifying the analysis so that technological
options can be assessed objectively. The rest of this chapter discusses how to quantify
LAPES availability based on works referenced in [12] and [13]. Due to its simplicity and
effectiveness, LAPES availability is evaluated using an mcs approach. Consider the
general representation of a LAPES in Figure 1.2. A general Markov process graphical
representation of this microgrid is shown in Figure 2.7. In this figure, each state
represents an operational condition of a LAPES based on the operational condition of
each of its components. As in Figure 2.2, 1 indicates a failed component, 0 an operating

Figure 2.7 Markov process representation of a LAPES operational condition.
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component, and x an unknown condition, which is not relevant to the discussion at hand.
The set W includes all the states representing conditions in which the LAPES is
operating, whereas the set F' includes the states in which the LAPES is in a failed
condition — i.e., it cannot power its entire load. The shaded states in F at the boundary
with W imply that a repair to any of its failed components drives the system into an
operational state. Hence, these shaded states are called minimal cut states (MCS)
because each of them is associated with an mcs.

Based on (2.33), evaluation of a LAPES’s availability using mcs requires calculat-
ing the unavailability of each of the mcs, which in turn requires knowing the
unavailabilities of each of the relevant components and their interactions in an
availability sense. Hence, the last part of this section discusses availability models
and calculations for relevant system components of a microgrid and evaluates the
effect that different circuit topologies for power electronic interfaces and various
power architectures have on LAPES availability. This analysis is based on material
presented primarily in [12] and [13]. Although specific assumptions are indicated at
points of the discussion where they are relevant, some general assumptions consid-
ered in the analysis are:

— Failures are considered to be independent of each other. That is, failure of one
component does not cause a failure in another component.

— For simplicity, it is assumed that the load is constant and known. Such a load can
also be associated with the expected (average) value of a variable load.
Nevertheless, this assumption is not required for the proposed models to be
valid. Instantaneously uncertain loads could also be considered.

— Also for simplicity, it is assumed that the entire load of the LAPES is a critical load,
so if any portion of the load is lost, then the LAPES is in a failed state. That is, the
LAPES is operational when the whole load is powered. Still, the analysis can easily
be applied to any particular distribution circuit ina LAPES. When only a particular
distribution circuit is considered, then the calculated availability will apply to such
circuit only and the implied assumption is that failed states are those that corre-
spond to cases in which it is not possible to have the entire load connected to the
distribution circuit under study powered.

— Yet another general assumption made in the analysis is that since stability study is
out of the scope of this chapter and discussed later in this book, the microgrid under
evaluation has been designed and engineered to ensure adequate stability.

— All local power generation units that are not powering loads are in hot standby.
An example of hot standby is a diesel generator idling; although it is not providing
electric power, the engine driving the electric generator is still running, but at no
load other than that originating in its internal losses processes.

241 Availability of local power generation units

Auvailability of local generation units depends on two factors: availability of the genera-
tion unit itself — i.e., the hardware component for that distributed generation unit — and
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availability of the energy source necessary for the operation of the power generation unit
under analysis. Examples of the latter include wind, natural gas, or diesel fuel. In terms
of energy sources, there are two types of power generation units: those that require
a delivery of such an energy source, which is typically contained in a fuel, and those that
can obtain or harvest energy locally, which is typically related to renewable energy
sources, such as wind or solar radiation.

2.4.1.1 Power generation units that require delivery of their energy sources
In these cases energy is delivered to the LAPES through some external infrastructure.
Since the LAPES’s operation then becomes dependent on these infrastructures in
order to receive energy for its sources, these infrastructures receive the name of
lifelines. Energy can be provided though the lifelines and into the power generation
units either through a continuous fuel-delivery process or a discontinuous delivery
process.

Continuous fuel delivery process

As represented in Figure 2.8, in most LAPES this model for fuel delivery applies
primarily to natural gas, which is delivered continuously, usually to on-site microtur-
bines, internal combustion engines, or fuel cells with local reformers. Natural gas
infrastructure is, then, the lifeline of the LAPES needing natural gas provision. From
an availability perspective, the natural gas distribution system can be considered to be
connected in series with each of these generation units, so the availability of the
combination of the continuously delivered fuel and each power generation unit equals
the product of each of their availabilities. Practical values for these availabilities, MUT,
and MDT are presented in Table 2.2. For example, the availability of power supplied by
the microturbine in Figure 2.8 is the product of the availability of the natural gas (1 — )
supplied to the microturbine and the availability of the microturbine (1 —upg).
Numerically, the availability is (1-2.5 107)(1-0.006), which equals approximately
0.9939.

Discontinuous fuel delivery process
Discontinuous fuel delivery processes are associated with various LAPES sources. For
example, one of the most common ways of powering microgrids is diesel engines that

Natural gas
infrastructure
(lifeline) LAPES
u,
Power :
electronic ™ Load(s)
interface :

Figure 2.8 A simple LAPES powered by a microturbine, which is fueled through a natural gas pipeline.
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Table 2.2 Availability-related parameters for key LAPES components. [13] [14]

Item and origin of the value MUT (hours) MDT (hours) Availability a
Reciprocating engine 823 5 0.9939
Microturbine 8000 50 0.993 789
Natural gas supply 2M 50 0.999 975
Diesel fuel supply 0.294 0.015
Converter 0.003 33310

n + 1 arrangement of seven converters 0.012 3107

PV generation system*** 3636 14 0.996

Wind turbine *** 1900 80 0.9595

PEM fuel cell (performance degradation) 4679.75 156 0.967 742

**% QOperational failure and repair rates considered for the times when sufficient energy is available as inputs to
these power generation systems.

Fuel Diesel
delivery A storage tank

process /-.\

Diesel
generator

Figure 2.9 Representation of the fueling system for an internal combustion engine driving an electrical
generator.

drive electric generators. Another example of a discontinuous fuel delivery process is
a microturbine that receives energy from a bio-fuel. Yet another example is a fuel cell
that receives hydrogen delivered in cylinders. In all these cases, fuel is delivered
according to a defined process and stored locally in a tank from where the local power
generation unit is fueled. Figure 2.9 shows a scheme of the infrastructure associated with
the diesel generator in the first example. The terms “diesel supply” or “fuel supply”
apply to the fuel flow at the generator’s engine fuel intake indicated by point B in
Figure 2.9, whereas “fuel delivery” refers to the end result of the logistical process
involving oil extraction, diesel refining, distribution, selling, and transportation and
actual delivery to the microgrid site, indicated by point A in Figure 2.9. If the diesel is
flowing at point B, then the fuel supply system is considered to be on, or at a working
state. If there is no flow of diesel at point B and the generator is commanded to run, then
the fuel supply is considered to be at a failed state. Likewise, when the fuel system in
Figure 2.9 is being refueled and diesel is flowing at point A, it is considered that the
delivery process is at a working state. On the contrary, if no fuel is flowing at A because
the system is waiting to be resupplied, then fuel delivery is considered to be at a failed
state. Based on this model, fuel supply depends on the diesel delivery process, on the
local energy storage (in the form of diesel contained in a tank with a capacity 7r¢), and

https://doi.org/10.1017/CB0O9781139002998.003 Published online by Cambridge University Press


https://doi.org/10.1017/CBO9781139002998.003

46 Component reliability and system availability

on how this stored fuel is consumed, i.e., the operational regime. Three operational
regimes can be usually considered for a power generation unit: continuous operation,
cycling operation, and standby until a power grid outage occurs. This last operational
regime is referred to in short as standby operation in the rest of this work, although
“standby” does not imply that the genset is permanently in standby mode, but rather that
it is in standby until a grid power outage occurs. Hence, based on the aforementioned
assumptions, only the first operational mode is applicable to LAPES.

As a general case for reference, let’s consider a diesel generator that requires periodic
delivery of fuel, which is stored on-site in a tank. In most cases diesel is delivered using
roads, so the transportation system becomes a lifeline of the LAPES. Since the LAPES
load is assumed to be known and constant, the tank capacity provides a known autonomy
indicated by Tr¢. For variable loads characterized by a probability distribution function,
the expected (average) value of such a probability distribution function can be consid-
ered for the calculations, because load changes will typically occur on a time scale much
shorter — i.e., in the order of minutes — than the time scale for 77— i.e., in the order of
hours or days. The fuel delivery process is characterized by a time #,;, which is the time
that the fuel is delivered to the LAPES site; #, is, then, a random variable that depends on
a fuel-delivery probability density distribution function f(¢;). Some of the possible
forms for f(¢;) are shown in Figure 2.10, which also shows three different instants
that are important for the analysis: the initial time 7; when a fuel delivery may occur, the
delivery time T when it is more likely that the fuel will have been delivered — e.g., due
to a contract specifying the time for the delivery to happen — and the maximum time 7},
which is the last instant when it is possible to receive a fuel delivery. Among the possible
forms for f,(¢;) shown in Figure 2.10, the exponential distribution may usually be
a common first choice due to its simplicity and the analogous processes indicated in
(2.10). However, the exponential distribution has some important issues. One of
these issues is that its maximum occurs at 7; = 0 instead of at the defined delivery time
Tp. Another problem is that it has no bound to the right because it is defined within
a semi-infinite time interval [7},00) — i.e., there are non-zero chances of having the fuel
delivered in a time instant infinitely distant in the future. A uniform distribution would

folta) _
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~ /
“‘ ‘::‘ Uniform
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Figure 2.10  Various possible forms for the fuel-delivery pdf f(z,).
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seem to be a somewhat more realistic representation of the fuel delivery process,
particularly for the case in which 7; # 0, and it still would be simple to apply.
However, a uniform distribution cannot represent the reality that fuel delivery will not
occur with equal probability for any instant of time. Another possible fuel delivery
distribution function, also shown in Figure 2.10, follows a triangular shape. Some of its
advantages are that it is more realistic than the other two previously discussed distribu-
tions, yet at the same time it does not cause excessive calculation complexities.
The triangular delivery distribution function represents a case in which there is a fuel
contract that establishes a delivery time when fuel is due, indicated by Tp, but it also
considers the real scenario that the fuel truck may arrive early, as indicated by the
interval between T; and T'p, or that problems along the delivery road may cause delays, so
that the fuel delivery may still occur until a maximum possible time 73, For simplicity, it
is assumed that the probability density varies linearly, first increasing from 7; to 7p,
when it reaches its maximum, and second decreasing from 7 to Tj,. Mathematically, the
triangular probability distribution function has the following form

0, 0<t; <Ti
2(tq — T;
W=T) __ pey<n
Ja(ta) = ¢ (Tw = T;))(Tp — T) (2.64)
—2(td — TM)

Tp<t;<T,
(TM_TI)(TM_TD)) D=td=1LpMm

and its corresponding cumulative probability distribution function is
0 0<t<Ti
(ta — T)° T.<t<Tp
Fy(ta) = (T — T,—)(TD; Ti) , T (2.65)
Fd(T )+ (_td+2TMtd+TD —ZTMTD)
D
(T = 1) (T — Tp)

Tp<t<Ty

In (2.64), T; and Tp are determined mostly from the negotiation process for a fuel
delivery contract. On the other hand, T}, is determined mostly by transportation infra-
structure performance and other factors leading to delivery delays. There are several
ways of characterizing T, A simple approach is to assume that there is a probability
Pop that the fuel will be delivered some time between T, and T, Hence,

Ip —T;

Fy(Tp) =1—Pop =
«(Tp) A

(2.66)

from which T}, can be easily obtained. Entire fields of study, such as those related to
logistics [15] or transportation sciences [16], have been dedicated to the analysis and
characterization of Pop or equivalent concepts. Some of these studies have been in the
context of normal conditions [17] [18] and some others in the context of emergency
conditions during disasters, which model both road network connectivity and
delays [19]. Obviously a detailed discussion of Py is out of the scope of this work,
but a simple, yet realistic approach for characterizing Pop can be realized by first
considering that
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ATp =Tp — T; (2.67)

Even from an intuitive point of view it is simple to understand that if 47, = 0 then
Pop = 1, because if a delivery cannot occur before 7; and no practical realistic
delivery can occur exactly at a specified time Tp, then it is certain that the delivery
will occur after Tp = T;. However, as 4T increases, it is logical to expect that the
chances of making the delivery within AT, increase, meaning Pop is reduced from 1.
In the simple model considered here for discussion purposes, it is assumed that there
is a delivery interval 4Tp y long enough to ensure that no deliveries will exceed Tp.
Moreover, it is assumed that Pop varies linearly from equaling 1 at AT, = 0 to
equaling 0 at ATp = ATp . Thus,

AT,
Pop=1——22 for 0SATp<ATpno (2.68)
ATD,O '
and
ATD ref
ATpy = ———— 2.69
Do 1 - POD,re/ ( )

where Pop ,.ris the probability of exceeding T, that corresponds to a known interval
ATp o For example, assume that T, = 168 hours, 7; = 144 hours, and Pop = 0.05
when AT = 24 hours. Then, T,,= 169.26 hours. Assume now that the time intervals
between fuel delivery trucks are independent and identically distributed. It is also
assumed that the truck replenishes the fuel tank instantaneously. Once a fuel delivery
truck leaves, the next one arrives at the LAPES site at a random time ¢; with an
identical probability density function f,(t;) as that for the previous truck. Since
refueling occurs instantaneously, the generator’s engine fuel supply from the diesel
tank at the engine’s fuel intake (point B in Figure 2.9) determines the unavailability
of the fuel supply system. That is, when the diesel tank is empty, the fuel supply
system is at a failed state. Since it is assumed that the load is constant and known (or
for a variable load represented by its expected value over Tr¢), the tank autonomy
Trc can be used in order to calculate the probability of emptying the fuel tank P,
which equals the probability of failure for the generator. The probability of emptying
the tank is the probability of having the fuel delivery truck arrive after a time 77 has
passed since the last refueling operation. Thus,

ta=Trc
Pr = P{td > ch} =1—Pp =1 —J . fd(l‘d)dl‘d (270)
ti=
where Pg+ is the probability of not emptying the fuel tank. Obviously, choosing a T7¢
long enough so that it exceeds 7, would ensure that Pr = 0, but problems may occur
when Pgp increases from the originally planned values due to particular situations or
events. For example, the chances of emptying the fuel tank may increase during extreme
events because T7c may be estimated for normal operating conditions based on values
for Pop and T, that are much lower values than those that apply when a natural disaster
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occurs. Obviously, 77 will not be chosen to be shorter than 7p. Hence, it is assumed that
Trc falls in the interval [Tp, Ty,].

Based on [13], in order to find the fuel supply unavailability yielded by the described
fuel supply model, assume that a very large number of refueling cycles have passed since
the first one. It can be expected that in 100P% percent of these cycles the fuel delivery
truck arrived after T7¢ with an expected fuel-supply downtime of MDTy counted from
the time when the generator stopped operating due to fuel starvation, which is the time
Trc. Obviously, with this same reasoning, it can be expected that in 100Pz« percent of
the cycles the fuel truck arrived before 77 passed so that the generator does not fail due
to fuel starvation. The ratio of the number of cycles when there is no generator failure
due to engine fuel starvation to the number of cycles with fuel starvation is denoted as
r and is calculated from

=,

r

(2.71)

Over many refueling cycles it can be expected that r cycles lasting on average Tz« are
immediately followed by one refueling cycle lasting a time 77c + Tx in which the
generator fails because it is out of fuel after running for T7¢ hours. Since it is assumed
that Trc is selected within the interval [Tp,Ty], MDI; for a generator fuel supply

model is
Ty —T
MDTy =Ty = % (2.72)
so MUTrequals
MUTf:}"TE* +TTC (273)
where for f(#;) given by (2.64) Tgx is
Tp Trc
(Ty — TD)J tt—T)dt + (Ip—T;) J t(Ty — t)dt
T; Tp
Tp = - T (2.74)
(T — T) J (t—T)dt + (Tp—T)) J (T — 0)dt
T; Tn

Once MDTyand MUT} are known from (2.72) and (2.73), the fuel supply unavail-
ability is

MDT;

= 2.75
= MUT, + MDT; (275)

The failure and repair rates, A-and uz respectively, equal the inverse of MUT and MDT,
respectively. For example, consider a LAPES in which 7 = Ty¢ = 72 hours, T; = 48
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hours, and T),= 82.28 hours because Py, = 0.3. Then, MUTequals 221.3 hours, MDTy
equals 3.4 hours, and the fuel supply availability a,= 1 —u,is 0.985.

2.4.1.2 Renewable energy sources

One of the advantages of renewable energy sources is that their operation is not
dependent on the performance of a lifeline. However, their intermittent output compli-
cates their application, particularly when the microgrid is operated disconnected
from a main grid. It also complicates availability analysis because some of the premises
and assumptions considered in the reliability analysis presented in this chapter are not
applicable to failure situations associated with renewable energy sources, such as
a failure of PV modules when there is not enough light to generate power. Another
difference from the previous sources is that renewable energy sources may experience
performance degradation; for example, when ice is accumulated on a wind turbine blade
or when dust is deposited on a PV panel. These situations present nonpermanent
conditions that would reduce the output of these sources but will not prevent them
from delivering power to a load, and thus may not be considered failure conditions
per se. Yet since output power is reduced, the chances of not being able to power the load
increases, and thus availability decreases.

In order to provide some context for the analysis, consider first a case in which a LAPES
has a PV array and that power output from the PV array and the load is sampled at regular
intervals. In each of these intervals the power balance equation is given by

Pitorealt] = Ppy[t] — L[{] (2.76)

where Ppy[t] is the power supplied by the PV array and L is the load. If the available
power from the PV array is greater than the demand of the load, Ppy[f] > L][#], then the
excess power is used to charge the batteries in the energy storage system associated with
this renewable energy source. If Ppy{t] < L[f], then the batteries provide the power
difference between L and Ppyuntil such point in time that they become fully discharged.
Thus, the presence of local energy storage is useful to manage the surplus or deficit
instantaneous power. This is useful to reduce or even eliminate the variability observed
from the perspective of the rest of the LAPES and can be designed using an economic-
based analysis.

If the batteries are fully charged and cannot store additional energy, then power output
from the PV array must be regulated so that Ppy[f] = L[f]. Alternatively, the surplus
power can be injected into the electrical power grid if conditions permit. If the available
power from the PV system is less than the requirements of the load, Ppy[f] < L[f], and
the batteries do not have sufficient energy storage capacity to provide the power deficit
between the PV source and the (Ppy) and the load (L), then the combined system formed
by the PV array and the batteries is considered to be in a failed state because the power
demand of the load cannot be met. The focus of the following analysis is to evaluate the
availability of the LAPES system comprised of the PV array and its associated batteries
as a dispatchable stand-alone generation unit. Thus interaction with an electrical grid
is not considered because such interaction would need to take into account a fourth
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power-flow term: power flow from the LAPES to the utility grid. Although all power
flow must be considered for each time interval, without loss of generality the explicit
time dependence is dropped in the rest of this section to simplify the notation.

Performance degradation of PV modules due to aging or other factors, such as dust,
can also be factored in (2.76) by considering that

Ppyqg=(1—0)Ppy; (2.77)

where Ppy; is the ideal PV array power output and ¢ is a performance degradation factor.
Reliability characteristics of PV modules can also be reflected in a similar way, by
considering that a PV array’s expected power output equals the availability of the PV
array apy multiplied by Ppy

Ppy = apyPpy 4 (2.78)

For PV systems, the performance degradation factor J can take values between 0.002
and 0.007 per year [20], whereas a typical availability value for PV arrays is shown in
Table 2.2. Wind power generation can be considered in the same way that PV power
generation is. In terms of performance degradation, the factor J may take various values
depending on the degradation process. For icing 6 may vary between 0.14 and 0.2 [21],
whereas for dust accumulation d may reach values up to 0.55 over a nine-month period in
areas with high dust concentration and no rain [22]. Availability values for wind turbines
are also indicated in Table 2.2.

The combined PV array/energy storage system is modeled using a Markov chain,
shown in Figure 2.11, in which each state represents a state of charge or energy level of
the energy storage system [23]. In Figure 2.11, each state transition, characterized by
a probability p; or p_,, represents a charge or discharge process. For example, state 1
symbolizes the energy level of the storage system when it is fully discharged, and state
N symbolizes its energy level when it is fully charged. If it is assumed that the energy
storage devices have linear charge and discharge processes, the energy difference
between any two adjacent states is A, so the power involved in such a process is
A divided by the time step 7, between two consecutive steps in the Markov chain.
Hence, p_; generally represents the probability of a transition among states with an
energy efflux of /A in T}, and p; represents the probability of a transition among states
with an energy influx of /A in T, with 7 taking values from 1 to N— 1. Then, the one-step
transition probability matrix, P, associated with the Markov chain is

Figure 2.11  Markov chain for the PV array/energy storage system.
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q-1 D1 P2 D3

g1 0 p1 p

g2 pa1 0 p

g-3 p—2 p-1 0 ...

P=|. . . . . (2.79)

0 )2 p)
-1 0 q

L P2 P-1 q1{yxn

where

g =1-Y p (2.80)

ies
G=1-Yp, (2581)
ieS
k—1
gr=1- (Zpi +>° pi) (2.82)
i=1 ieS
k—1
qG=1- (Zpi + Zp-,) (2.83)
i=1 ie§

The transition probability terms indicated by the terms g, correspond to the particular
cases when there is excess PV-generated power or a demand for energy beyond the
battery capacity range. As with the other terms, a negative subscript corresponds to
a battery discharge process and a positive subscript indicates a battery charge process.

Actual data from a particular location under study for each of both components Pp)
and L in (2.76) can, then, be used as the basis of a Monte Carlo simulation in order to
obtain probabilities of observing different values for Pp. That is, actual data is used to
generate a discretized profile with a suitable d