
2 Component reliability and system
availability

One of the main potential advantages identified for microgrids is the possibility of
achieving higher power supply availability as compared with conventional systems
fed by a main electric grid. Thus, in order to quantitatively assess LAPES value and
design constraints it is important to understand reliability and availability aspects of
microgrids. Hence, the goal of this chapter is to define and discuss key attributes related
to availability and reliability in LAPES.

2.1 Definitions

Consider first an entity – i.e., an item, such as a system component or a device.
Reliability R(t) of this entity is, then, defined as the probability that this item will operate
under specified conditions without failure from some initial time t = 0 when it is placed
into operation until a time t. The definition of failure of a component can take different
forms. For some components, such as a resistor or a capacitor or most other passive
circuit components or semiconductor devices, a failure implies that the component
cannot operate meeting its intended function – e.g., a capacitor is experiencing
a failure when it can no longer store electrical energy according to its given capacitance.
For other components, such as batteries, a failure occurs when the component can no
longer meet some performance requirements – e.g., a battery can be considered to have
failed when at a given nominal temperature its capacity falls below a given percentage of
its nominal capacity. That is, for the latter type of component, some level of performance
degradation is accepted without implying a failure condition. Notice that one key aspect
of the definition of reliability is that it is defined as a probability. Hence, it can only take
values between 0 and 1. Another key aspect of this definition is that the entity needs to
operate without failure during the entire period of time under evaluation. That is, the
repairing concept is implicitly not considered as part of the evaluation of component
reliability. The complementary concept to reliability is called unreliability F(t). Hence,
in a mathematical form it is

F ¼ 1� R ð2:1Þ

That is, unreliability is the probability that an item fails to work continuously over
a stated time interval. The explicit statement in this definition that the item needs to work
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continuously is related to the notion that the item should not experience any failure, as
was mentioned in the definition of reliability. As a result of these notions, it is implicitly
assumed that the concept of reliability cannot be applied directly to repairable compo-
nents or systems.

For systems or repairable items, the concept that describes their behavior in terms of
the possibility of being in a failed state or not is called availability. The term availability
can be used in different senses, depending on the type of system or item under
consideration [1]:

1. Availability, A, is the probability that an entity works on demand. This definition is
adequate for standby systems.

2. Availability, A(t) is the probability that an entity is working at a specific time t. This
definition is adequate for continuously operating systems.

3. Availability, A, is the expected portion of the time that an entity performs its required
function. This definition is adequate for repairable systems.

The last definition is the one among the three that represents best the differences between
the definitions of reliability and availability. One of these differences was already
pointed out and relates to the notion that reliability is a concept that does not apply to
systems that may go out of service due to either unexpected or expected causes, and that
are brought back to service after some time has passed. Another of the differences
between the concepts of availability and reliability originates in the fact that many
systems can maintain operation within required parameters even when some of their
components are out of service, or, after a failure, when not all components that have
failed have been repaired. As was done for the definition of reliability, it is possible to
define a complement to availability; this complement is called unavailability Ua.

2.2 Basic theory and concepts

Once the concepts of reliability and availability are introduced, it is possible to explore
in more detail their application and use. This is the focus of this section.

2.2.1 Reliability

Reliability of an item is, typically, evaluated based on its failure characteristics. That is,
reliability is often calculated by evaluating unreliability first. Unreliability of an item can
be evaluated from

FðtÞ ¼ Prfa given item fails in ½0; t�g ð2:2Þ

where Pr{event} represents the probability of occurrence of a given event. Notice
that continuous operation is implicit in (2.2) and that F(t) can be considered as
a cumulative distribution function of a random variable t with a probability density
function f(t) given by
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f ðtÞ ¼ dFðtÞ
dt

ð2:3Þ

which implies that

f ðtÞ ¼ Prfa given item fails in ½t; t þ dt�g ð2:4Þ

and

FðtÞ ¼
ðτ
0
f ðτÞdτ ð2:5Þ

Still, (2.3) to (2.5) do not provide a practical way of representing the reliability
characteristics of a circuit component. Thus, a hazard function h(t) is used in order to
characterize an item’s behavior in terms of transitioning from a working to a failed state.
This function provides a more practical perspective for characterizing an entity’s
reliability behavior by representing the expected rate at which failures occur.
Mathematically, h(t)dt indicates the probability that an item fails between t and t + dt
given that it has not failed until t. That is, if the event A is “an item fails between t and t +
dt” and event B is “the same item has not failed until t,” then based on Bayes’ theorem,

hðtÞdt ¼ Pr A jBf g ¼ PrfB jAg PrfAg
PrfBg ¼ PrfAg

PrfBg ð2:6Þ

because Pr{B|A} = 1. Now, from (2.4) Pr{A} = f(t), and from the combination of (2.1)
and (2.2) Pr{B} = 1 – F(t). Hence,

hðtÞdt ¼ f ðtÞ
1� FðtÞ ð2:7Þ

Considering (2.5), if both sides of (2.7) are integrated along the interval 0 and t, then

FðtÞ ¼ 1� e
�
ðt
0
hðτÞdτ

ð2:8Þ

Although seemingly counterintuitive, (2.8) provides a practical way of knowing F(t)
from h(t). In practical applications, h(t) is relatively simple to evaluate when it is
stipulated that h(t) measures the anticipated number of failures of a given item during
an specified time period. That is, the unit of measurement for h(t) is 1/hour, 1/year, or any
other equivalent unit. Evaluation of h(t) leads to the well-known “bathtub curve” shown
in Figure 2.1, which is obtained by counting the number of failures occurring during
a given period for a large set of identical items that are placed into operation at the same
time and that operate under the same conditions.

Notice in Figure 2.1 that during the useful life period of electronic components, their
hazard function is constant. This constant value for h(t) is conventionally named the
constant failure rate λ. Hence, when h(t) is replaced in (2.8) by this constant value λ, F(t)
becomes equal to
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FðtÞ ¼ 1 –e� λt ð2:9Þ

Hence,

f ðtÞ ¼ λe� λt ð2:10Þ

and

RðtÞ ¼ e� λt ð2:11Þ

Thus, the reliability of an item with a constant failure rate is represented by an
exponentially decaying function in which at time t = 0 there is no chance of observing
a failure and in which there is almost a 37% chance of not observing a failure in the
component from the time it was put into operation to the time given by 1/λ. The value of
1/λ has another very important meaning in reliability theory: consider (2.10); the
expected value for such a probability density function is

E½f ðtÞ� ¼
ð∞
0
tf ðtÞdt ¼ 1

λ
ð2:12Þ

which is denoted as themean time to failure (MTTF) of the component under consideration.

2.2.2 Availability

Let’s consider now an entity that can be repaired and brought back into operation when it
fails. In this case, a failure rate λ(t) can be used to represent the failure process of such
a repairable entity. This failure rate is defined as

Figure 2.1 Typical bathtub curves and their components for electronic components (solid lines) and
mechanical components (dotted lines). In practical applications the useful life period is much
longer than the other periods.
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λðtÞdt ¼ Prfitem fails in ½t; t þ dt�g
Prfitem was working at t ¼ tg ð2:13Þ

which is analogous to (2.6) except for the different description of what was called event
B in order to consider here the possibility that the item under evaluation has failed one or
more times since it was first put into operation a long time in the past. In the same way,
a repair rate µ(t) can be defined as

μðtÞdt ¼ Prfitem is repaired in ½t; t þ dt�g
Prfitem was not working at t ¼ tg ð2:14Þ

in order to represent the random process involved with having the item transitioning
from a failed state to a working state. If the state of the item (failed or operating
normally) is considered to be independent of its past or future behavior – i.e., failures
and repairs are independent of previous or future failures and repairs – the entity’s
behavior can be mathematically represented by a Markov process like the one graphi-
cally represented in Figure 2.2, with transition rates λ from the “working” state to the
“failed” state and µ from the “failed” state to the “working” state. These transition rates
are, in general, assumed to be at a constant rate.

In Figure 2.2, and based on (2.13) and (2.14), the probability that a repairable itemwill
transition from the working state to the failed state is given by λdt, whereas the
probability associated to the converse transition is µdt. Obviously, the probability of
remaining in the working state is given by (1– λ)dt and the probability of remaining in
the failed state is (1– µ)dt. Consider now the third definition of availability given in
Section 2.1. It follows that the instantaneous unavailability of the discussed entity can be
associated with the behavior of the item with respect to the failed state S = 1. That
is, if the probability of finding the entity at the failed state of t = t + dt is identified as
Prf(t + dt), then this probability equals the probability that the item was working at time
t and experienced a failure during the interval dt or that the item was already in the failed
state at time t and it was not repaired during the immediately following interval dt.
In mathematical terms

Prf ðt þ dtÞ ¼ PrwðtÞλdt þ Prf ðtÞð1–μÞdt ð2:15Þ

where Prw(t) is the probability that the item is at state S = 0 at time t. Thus,

Prf ðt þ dtÞ � Prf ðtÞ
dt

¼ PrwðtÞλ� Prf ðtÞμ ð2:16Þ

Figure 2.2 Markov process representing the operational state S of a single entity.
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Since it is assumed that the time interval dt is infinitely small, the left side of (2.16) is,
by definition, the time derivative of Prf(t). Moreover, Prf(t) = 1 – Prw(t). Thus,

dPrf ðtÞ
dt

¼ �ðλþ μÞPrf ðtÞ þ λ ð2:17Þ

which is a first-order differential equation. If it is assumed that at time t = 0 the item is
known to have been operating normally, then Prf(t = 0) = 0, and the solution for (2.17) is

Prf ðtÞ ¼ λ
λþ μ

�
1� e�ðλþμÞt

�
ð2:18Þ

which implies that

PrwðtÞ ¼ 1

λþ μ

�
μ� λe�ðλþμÞt

�
ð2:19Þ

Both (2.18) and (2.19) can be plotted, yielding the graph in Figure 2.3. The steady-state
probabilities of finding the item under study in a failed or in a working state are also
shown in this figure. These two probabilities represent how likely it is to have the entity
under study operating normally or in a failed condition after placing the entity into
operation for the first time a long time in the past. That is, these steady-state values
indicate the availability and unavailability of the item under study:

A ¼ μ
λþ μ

ð2:20Þ

and

Ua ¼ λ
λþ μ

ð2:21Þ

Equation (2.20) confirms that availability depends on two processes. One of
those processes, the failure process, is (as is further discussed in Section 2.3) mostly
related to an item’s “hard” intrinsic and environmental conditions – such as operational
temperature – whereas the other, the repair process, is also related to “soft” external
factors – such as maintenance strategies, spare parts management, and logistical

Figure 2.3 Example of typical time dependency associated with failed and working conditions of an entity.
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processes. Clearly, the concept of reliability is embedded in that of availability. Hence, in
the same way that the concept of MTTF was previously defined, it is possible now to
define a mean up time (MUT) as the inverse of the failure rate λ and a mean downtime
(MDT) as the inverse of the repair rate µ. The MDT includes the processes of detecting
the failure, repairing the failure, and putting the item back into operation. The mean time
between failures (MTBF) is defined as the sum of the MUT and MDT. With these
definitions the availability and unavailability of an entity can be calculated based on

A ¼ MUT
MTBF

ð2:22Þ

and

Ua ¼ MDT
MTBF

ð2:23Þ

respectively.

2.2.3 Availability calculation techniques in systems

In Section 2.2.2 a Markov process was used to explore the availability behavior of
a single item – i.e., a single component system. The same approach can be used for
multicomponent systems. Consider, for example, a system with two components
characterized by a Markov process with four states identified by S1 to S4, as shown in
Figure 2.4. As this figure shows, a state can also be identified by a binary number in
which the first digit represents the reliability condition of component A – the first digit is
0 if the component is in a state of normal operation and 1 if the component is in a failed
situation – and the second digit represents the condition of component B. The differential
equation that represents the behavior of the system is now given by

dP
dt

� �T

¼ PTA ð2:24Þ

where the transition rates matrix A is

Figure 2.4 Markov process representation of the operational condition of a two-component system.
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A ¼
�ðλA þ λBÞ λA λB 0

μA �ðμA þ λBÞ 0 λB
μB 0 �ðμB þ λAÞ λA
0 μB μA �ðμA þ μBÞ

0BB@
1CCA ð2:25Þ

and where PT is a transpose vector in which each coordinate is the probability
of finding the system in each of the four states. That is,

PT ¼ PrS1ðtÞ PrS2ðtÞ PrS3ðtÞ PrS4ðtÞð Þ ð2:26Þ

Equation (2.24) cannot be directly solved because A is singular. In order to solve it, it is
necessary to consider the additional condition that the sum of all coordinates of P equals
1. When this condition and initial conditions are considered, it is usually possible to
solve (2.24) with the added assumption that failure and repair rates are constant. Steady-
state solutions can also be found from (2.24) by simply solving the algebraic system of
equations that is obtained by making the left-hand side of (2.24) 0 and replacing one of
the equations by the algebraic condition that the sum of all coordinates of P equals 1.
The solutions for such a system of equations are shown in Table 2.1.

Table 2.1 also shows the expected time that the system remains in each of the states
Si and the frequency of finding the system in a given state. It has been shown in [1] that
the expected time that the system remains in state Si is given by

�Ti ¼ 1

�aii
¼ 1PNs

j¼1
j≠i

aij

ð2:27Þ

where NS is the total number of states in the Markov process representing the system
under study and aij is the element in row i and column j of the matrix A. That is, the
denominator in (2.27) is the negative of the diagonal element corresponding to the
row and column of state Si, which is minus the total rate of departure from Si.

Table 2.1 Steady-state probabilities and relevant parameters for the four states in the Markov process
representation of a two-component system.

State PrSiðt→∞Þ T i ϕi

S1
μAμB

ðμA þ λAÞðμB þ λBÞ
1

λA þ λB

μAμBðλA þ λBÞ
ðμA þ λAÞðμB þ λBÞ

S2
λAμB

ðμA þ λAÞðμB þ λBÞ
1

μA þ λB

λAμBðμA þ λBÞ
ðμA þ λAÞðμB þ λBÞ

S3
μAλB

ðμA þ λAÞðμB þ λBÞ
1

λA þ μB

μAλBðλA þ μBÞ
ðμA þ λAÞðμB þ λBÞ

S4
λAλB

ðμA þ λAÞðμB þ λBÞ
1

μA þ μB

λAλBðμA þ μBÞ
ðμA þ λAÞðμB þ λBÞ
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Equation (2.27) is obtained from knowing the probability density function of being at
state Si, which is [1]

fTiðTi ¼ τÞ ¼ �aiie
aiiτ ð2:28Þ

Also from [1] it can be shown that the frequency of finding the system in state Si is

ϕi ¼ �aiiPrSiðt → ∞Þ ð2:29Þ

Although the Markov process representation provides many insights into the avail-
ability behavior of a system, its application may become tedious as the number of
components increases. One of the alternative methods to represent the availability
behavior of a system is through “availability success diagrams.” An availability success
diagram is a graphic representation of the availability relationships among components
in a system. Such a diagram has the following four parts:

1. A starting node
2. An ending node
3. A set of intermediate nodes
4. A set of edges

In the availability success diagram the edges represent the system components and the
nodes represent the system structure from an availability standpoint. This structure may
be different from a physical or an electrical topology. For example, if the system is an
electrical circuit in which there are two components that are electrically connected in
parallel but that are critical for the circuit operation – i.e., if one of those components fail,
the system is in a failed state – then in an availability success diagram they are
represented in a series connection. The expected system operating condition is repre-
sented with paths through the network. The system is in a working condition when all the
components along at least one path from the starting node to the end node are operating
normally. If there are enough failed components that it is not possible to find at least one
path from the starting node to the end node with all the components operating normally,
then the system is in a failed state.

Another method of representing and calculating system availability is the minimal cut
sets (mcs) method. An mcs is a group of failed components that places the system in
a failed state when all of its components are in a failed state – failure being characterized
in a LAPES by the impossibility of the system completely supplying the load – but
which returns the system to an operational state if any single one of its components is
repaired. Once the mcs of a system are identified, the unavailability of a system can be
calculated from

Ua ¼ Pr [MC

j¼1
Kj

� �
ð2:30Þ

where Kj represents the Mc mcs in the system. Calculating system unavailability using
the exact expression in (2.30) is a very tedious process involving identifying the
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probability of the logical union of many events. However, the calculation can be
simplified by recognizing that Ua is bounded by

XMc

i¼1

PrfKig �
XMc

i¼2

Xi�1

j¼1

Pr Ki∩Kj

� 	
≤Ua ≤

XMc

i¼1

PrfKig ð2:31Þ

Thus, if all considered components are highly available, thenUa can be approximated to

Ua ffi
XMC

j¼1

PrfKjg ð2:32Þ

where Pr{Kj} is the probability of observing the mcs j happening. Such probability can
be calculated based on

Pr Kj

� 	 ¼ ∏
cj

i¼1
ui;j ð2:33Þ

where cj is the number of failed components in the mcs j, and ui,j is the individual
unavailability of each of the cj components in mcs Kj. Based on (2.21), ui,j is the ratio of
the failure rate λi,j of component i in mcs j to the sum of this same component failure rate
λi,j and repair rate µi,j.

In order to complete the general discussion about availability calculation in systems
with multiple components, let’s consider some basic systems with commonly found
relationships among the components. For large systems comprising components that are
arranged in combinations of simpler well-known structures, it is usually possible to
calculate availability characteristics of each of the structures separately and then com-
bine the availability of all the structures in order to calculate the total system availability.
The three basic commonly used cases are described next.

2.2.3.1 Series systems
If the system is not repairable – e.g., a circuit board with all its components soldered –
the reliability can be evaluated based on what is commonly known as the “parts count”
approach, in which the failure rate of the system is simply the sum of the failure rates of
all the system components. That is,

ΛSYS ¼
XNC

i¼1

λi ð2:34Þ

where λi is the failure rate of the i-th component among the NC forming the system and
ΛSYS is the total system failure rate. The MTTF for the system is, then, the inverse of
ΛSYS, and the reliability RSYS(t) of the system is

RSYSðtÞ ¼ e�ΛSYS t ¼ ∏
NC

i¼1
riðtÞ ð2:35Þ

where ri(t) is the reliability function of each of the components forming the system.
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If the system is repairable and has two components, the availability success diagram is
that in Figure 2.5(a). Since all components need to be operating for the system to be
working, the availability of the two-component system is given by the steady-state
probability of finding the Markov process represented by Figure 2.4 in state S1, which
is equal to the product of the availabilities of the two components A and B. For
n components the availability is given by

ASYS ¼ ∏
NC

i¼1
ai ð2:36Þ

where ai is the availability of each of the NC components in the system. If all of these
availabilities are close to 1 it is simple to show that

Ua;SYS ffi
XNC

i¼1

ui ð2:37Þ

which is analogous to (2.32) because in a series-connected system (from an availability
perspective) each and all of the mcs are represented by a single component of all in the
system. That is, NC = Mc. The system’s failure rate ΛSYS is still given by (2.34). It is
important to realize that in reality, in series systems there are no states representing the
failure of more than one system component because it is assumed that failures are

(a)

(b)

(c)

Figure 2.5 Availability success diagrams for (a) two series components, (b) two parallel components, and
(c) n + 1 redundant components.
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independent of each other and they do not occur simultaneously, and because when one
component fails the system ceases to operate, preventing further failures – i.e., S4 in
Figure 2.4 is not actually observed in a two-component series system. Based on this
characteristic of series systems it can be found [1] that the system repair rate is

ΜSYS ¼

XNC

i¼1

λi

 !
∏
NC

i¼1
μi

� �
∏
NC

i¼1
ðλi þ μiÞ

� �
� ∏

NC

i¼1
μi

� � ð2:38Þ

which for a system with highly available components – i.e., MDT<<MUT – can be
approximated to

ΜSYS ffi

XNC

i¼1

λi

 !
XNC

i¼1

λi
μi

 ! ð2:39Þ

2.2.3.2 Parallel systems
When system components are connected in parallel in an availability sense, all of the
components need to fail in order for the system to fail. That is, there is only one mcs that
includes all components in the system. Since there is only one mcs the expression in
(2.32) is now exact so

Ua;SYS ¼ ∏
NC

i¼1
ui ð2:40Þ

where ui is the unavailability of each of the components. For a two-component system,
the availability success diagram is that in Figure 2.5(b) and the unavailability is given by
the steady-state probability of S4 in Figure 2.4. As a dual case with respect to the series
configuration the system repair rate is

ΜSYS ¼
XNC

i¼1

μi ð2:41Þ

and the system failure rate is

ΛSYS ¼

XNC

i¼1

μi

 !
∏
NC

i¼1
λi

� �
∏
NC

i¼1
ðλi þ μiÞ

� �
� ∏

NC

i¼1
λi

� � ð2:42Þ

2.2.3.3 n+1 redundant systems
Consider a system that has a number of equal components that all serve the same
function. Redundancy is a fault tolerance technique in which the system is equipped
with more than the necessary minimum number of these equal components in order to
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perform their required function adequately and keep the system operating. The most
common type of redundancy is the n+1 system, in which the minimum number of
components necessary to keep the system operating is n and one more component is
added for redundancy. Its availability success diagram is represented in Figure 2.5(b).
Based on the second definition of availability in Section 2.1, system availability is the
probability of observing the system to be working. In n+1 redundant systems, this
event – having the system working – is observed when all n+1 redundant components
are operating normally or when n of the n+1 components are operating normally.
Since there are n+1Cn ways in which n operating components can be selected from
a group of n+1 components, the availability can be mathematically calculated as

ASYS ¼ nþ1Cna
nuþ nþ1Cnþ1a

nþ1 ð2:43Þ

where a and u are the availability and unavailability, respectively, of the n+1 equal
components in the n+1 redundant arrangement and where

kCn ¼ n
k

� �
¼ k!

ðn� kÞ!n! ð2:44Þ

Hence,

ASYS ¼ ðnþ 1Þanuþ anþ1 ð2:45Þ

When (2.45) is plotted (see Figure 2.6), it is possible to observe one important char-
acteristic of n+1 redundant systems: as the minimum number of components n is
increased, the system availability decreases; and for values of n large enough the system
availability ASYS is less than the individual component availability a. Figure 2.6

Figure 2.6 Availability of n + 1 redundant fuel cells versus the number of fuel cells necessary to operate
the system.
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exemplifies this property by considering fuel cells with a = 0.97. As this figure shows,
for n > 8 the fuel cell arrangement availability is worse than that of a single fuel cell.
Hence, redundancy is a fault tolerance technique that needs to be used with care, as
increasing the number of components may compromise system availability instead of
improving it. Finally, the failure and repair rates in an n+1 redundant arrangement are
given by [1]

ΛSYS ¼ nλ2ðnþ 1Þ
ðnþ 1Þλ þ μ

ð2:46Þ

and

ΜSYS ¼ 2ðn−1Cnþ1Þλ2μnXn�1

i¼0

�
ðiCnþ1Þμiλnþ1�i

� ð2:47Þ

respectively.

2.3 Common metrics and performance standards

The previous analyses imply that in order to calculate the availability of a system it
is necessary to know the failure and repair rates of the components. Typical values
for repair rates of a specific component may not be available because the rates may
vary over a wide range of values that depend on the processes for maintenance,
logistics, and storage of spare parts. For example, in the generic microgrid scheme
in Figure 1.2, the power electronic interfaces between the sources and the distribu-
tion portion of the microgrid may be realized by various power electronic converter
modules in an n+1 redundant configuration. If one of those modules fails, then the
microgrid can still power the entire load unless another converter module fails.
Thus, the microgrid is fully operational, but with increased chances of experiencing
a failure until the failed component is repaired or replaced. Hence, it is important to
identify how long it takes to replace the damaged converter module. The approach
that leads to the shortest downtime is to have replacement parts on site, which
facilitates rapidly replacing the damaged module within minutes. However, having
spares on site implies some storage costs, particularly if the owner of the microgrid
with the failed module needs to manage other microgrids. In these cases the
maintenance manager may prefer to have fewer spares stored in a central ware-
house, leading to longer downtimes for converter modules. Downtimes may be even
longer (in the order of weeks) if the owner of the microgrid has no spare parts and
needs to order them when a part fails or needs to wait for the damaged part to be
sent to a manufacturing facility to be fixed and then for it to be sent back. That is,
downtimes may extend from a few minutes to several weeks. Such a disparity
usually leads to not having repair rates standardized or tabulated, as happens for
failure rates.
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Arguably, the most common source for failure rates of electronic and some
electrical equipment is US Military Handbook 217F [2]. This handbook contains
tables with data about the failure rates of most common electronic components and
information about how to adjust the given base failure rate λb depending on the
operational conditions of the component. That is, the failure rate of a component (λ)
is in general given as

λ ¼ ∏
N

i¼1
πi

� �
λb ð2:48Þ

where πi represents a series of factors that consider various relevant conditions for the
component under evaluation that affect its base failure rate. Consider as an example the
failure rate of a MOSFET used as a switch for a power electronic converter in
a microgrid. Its failure rate is calculated based on [2]

λ ¼ πTπAπQπEλb ð2:49Þ

where λb is 0.012 failures for every million hours of operation. The failure-rate adjusting
factors are:

– Temperature factor πT: This factor is given in a table and depends on the junction
operating temperature TJ. It can also be calculated based on the Arrhenius model,
which is given by

πT ¼ e

Ea

k
1

TR
� 1

TJ

� �
ð2:50Þ

where TR is a reference temperature usually equal to 298 K (25 °C), TJ is the junction
temperature in kelvin (K), k is the Boltzman constant (k = 8.617 10‒5 eV/K), andEa is
the failure activation energy, which in this case equals approximately 0.17 eV.

– Quality factor πQ: This factor represents the quality of the component; generally
other standards must be examined in order to obtain the complete and exact
characteristics of each quality level. In the case of a MOSFET it can vary between
0.7 and 8.

– Application factor πA. This factor allows the effect that different applications
have on component reliability to be considered. For a MOSFET, πA equals 2
when the rated power is between 2 and 5 W, 4 when the rated power is between
5 and 50 W, 8 when the rated power is between 50 and 250 W, and 10 for a rated
power above 250 W.

– Environmental factor πE. This factor considers the different stresses observed in
varying environmental conditions, such as operation at a fixed location on the
ground or moving on the ground, or operation in naval, airborne, or space applica-
tions. In the case of a MOSFET operating in a circuit at a fixed location on the
ground this factor equals 6.

Due to their relatively low reliability, another interesting example is that of electrolytic
aluminum capacitors. In these capacitors the failure rate is obtained from

2.3 Common metrics and performance standards 37

https://doi.org/10.1017/CBO9781139002998.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139002998.003


λ ¼ πCVπQπEλb ð2:51Þ

where the base failure rate λb is given in tables or calculated from

λb ¼ 0:00254
SV
0:5

� �3

þ 1

" #
e
5:09

Ta
358

� �5

ð2:52Þ

where Ta is the ambient temperature in K and SV is the ratio of operating to rated voltages.
For example, for Ta = 20 °C and SV = 0.9, λb = 0.11 failures for every million hours of
operation, i.e., about 10 times that of the MOSFET. This is not an unreasonable value
because, typically, electrolytic capacitors are the least reliable components in a power
electronics circuit. In this example of an electrolytic capacitor, the three factors affecting
λb are:

1. Capacitance factor πCV. This factor considers that failure rates increase as the
capacitance increases because, among other reasons, of the more complex construc-
tion of the capacitor – typically aluminum electrolytic capacitors are built with
a cylindrical shape that adds more layers in order to increase the capacitance; as
the layers increase the chances of having a failure also increase. Mathematically, this
factor can be calculated based on

πCV ¼ 0:34C0:18 ð2:53Þ

2. Quality factor πQ. It represents the same effect on reliability as the one mentioned for
the MOSFET. For a capacitor this factor is usually around 1, but in extreme cases it
may take values as low as 0.03 and as high as 10.

3. Environmental factor πE. The environmental factor has the same influence on the
failure rate as what wasmentioned for theMOSFET. In the case of a static application
on the ground, πE for a capacitor equals 2.

Notice that contrary to the repair rate, the failure rate is mostly dependent on
hardware-related intrinsic and objective characteristics and conditions. Hence, fail-
ure characteristics typically allow for a more systematic assessment of the MUT (or
MTTF if the object cannot be repaired) than of the MDT.

Other metrics that are often mentioned in order to evaluate power-supply reliability
characteristics are those based on IEEE Standard 1366 [3]. This standard is typically
applied to the distribution portions of electric power grids [3] and, hence, it is not well
suited to consider the effect of assets found in LAPES, such as local distributed
generation units or energy storage. Still, some works discussing availability in micro-
grids have nonetheless use availability metrics from IEEE 1366 for microgrids.
However, this approach presents several issues when the goal is to analyze availability
of a microgrid in a general sense. In order to better understand the limitations of the
metrics contained in IEEE 1366 as applied to LAPES, let’s present first some of the most
relevant availability indices in [3]. Consider first the metrics applicable to sustained
interruptions (those lasting more than five minutes):
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– System average interruption frequency index (SAIFI)

SAIFI ¼
X

total number of customers interrupted

total number of customers served
ð2:54Þ

That is, the numerator equals the sum of the “number of interrupted customers for
each sustained interruption event during the reporting period” [3].

– System average interruption duration index (SAIDI)

SAIDI ¼
X

customer interruption durations

total number of customers served
¼
X

riNi

NT
ð2:55Þ

where ri is the “restoration time for each interruption event,” Ni is the “number of
interrupted customers for each sustained interruption event during the reporting
period,” and NT is the “total number of customers served for the areas” under
consideration [3].

– Customer average interruption duration index (CAIDI)

CAIDI ¼
X

riNiX
Ni

¼ SAIDI

SAIFI
ð2:56Þ

– Average service availability Index (ASAI)

ASAI ¼ NTTH=Y �
X

riNi

NTTH=Y
ð2:57Þ

where TH/Y is the number of hours in a year (8760 in a non-leap year and 8784 in
a leap year). That is, the ASAI “represents the fraction of time that a customer has
received power during the defined reporting period” [3].

– Customers experiencing multiple interruptions (CEMIn)

CEMIn ¼ CNk>n

NT
ð2:58Þ

where CNk>n is the total number of customers experiencing more than n sustained
interruptions.

Other metrics in [3] are based on other evaluation parameters, such as a load’s power
consumption. These are:

– Average system interruption frequency index (ASIFI)

ASIFI ¼
X

Li

LT
ð2:59Þ

where Li is the connected load apparent power (in kVA) “interrupted for each
interruption event” [3] and LT is the total load apparent power (in kVA) served.
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– Average system interruption duration index (ASIDI)

ASIDI ¼
X

riLi

LT
ð2:60Þ

Finally, some metrics in [3] are specified for momentary interruptions. They are:

– Momentary average interruption frequency index (MAIFI)

MAIFI ¼
X

IM iNmi

NT
ð2:61Þ

where IMi is the “number of momentary interruptions” and Nmi is the “number of
interrupted customers for each momentary interruption event during the reporting
period” [3].

– Momentary average interruption event frequency index (MAIFIE)

MAIFIE ¼
X

IMENmi

NT
ð2:62Þ

where IME is the “number of momentary interruptions events” [3].
– Customers experiencing multiple sustained interruption and momentary interrup-

tion events (CEMSMIn)

CEMSMIn ¼ CNTk>n

NT
ð2:63Þ

where CNTk>n is the “total number of customers who have experienced more than
n sustained interruptions and momentary interruption events during the report-
ing period.” [3].

Although [3] provides a uniform framework to evaluate the availability of the
distribution portion of power grids, it has some issues with use for LAPES. These
issues are related to the purpose of [3]. This purpose can be summarized as providing
a set of definitions that allows for uniformly reporting of distribution-side power
outages among utilities operating in different settings, with dissimilar planning
approaches, and with varying restoration practices and, in this way, allow for con-
sistent comparison of distribution-side outage statistics both within a given electric
utility and among various utilities. That is, [3] provides a uniform set of metrics and
thus is not a method for availability calculation, as sometimes is stated. As a result, [3]
is explicitly intended to be used a posteriori based on statistical data observed in
a given period. Still, using Monte Carlo simulations it is possible to evaluate the
expected availability behavior of a distribution portion of a grid. But the fact that [3]
applies only to the distribution portion of grids presents the first challenge in its
application to LAPES, because microgrids present a different technological platform,
in which local distributed generation units, energy storage, and loads are integrated in
a single system that may not be simple to divide in sections, as happens in power
distribution portions of large conventional power grids. As a result, technical
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inconsistencies appear when applying [3] metrics to microgrids, versus the conven-
tional approach of applying the same indices to standard power grids. Moreover,
the variety of approaches to developing microgrids – e.g., dc or ac power distribution
voltages – leads to lack of uniformity in the metrics indications obtained when
applying [3] to LAPES. For example, in microgrids it is possible to have a single
load, in which case indices such as SAIFI or ASIFI do not provide consistent
or valuable metrics. Another important aspect that limits the application of [3] to
microgrids is the fact that in calculating the indices of [3], statistics are calculated
excluding outages occurring in what is defined as a “major event day.” That is,
outages caused by natural disasters and other extreme events are not considered as
part of the calculation of the metrics. However, one of the uses that has been identified
for LAPES is precisely to improve power supply when extreme events happen.
Therefore, although in most cases it is technically possible to use [3] to calculate
availability metrics of microgrids’ distribution portion, the results will most likely
lack uniformity and their value may in most cases be limited. In reality, availability
metrics in microgrids tend to be closer to those indicated for transmission portions of
the grid in IEEE Standard 859 [4], which includes availability (expressed as service
time/reporting period time) as one of the indices considered and which considers
“major storm disasters” as one of its “exposure parameters.”

There exist other well-known reliability and availability standards and metrics guides
in addition to those just described. Two commonly used are Telcordia SR332 [5] and
IEC 61709 [6]. Telcordia SR332 tends to be a guide similar to [2] in the sense that it also
provides failure rate data for electronic components and indicates ways of adjusting base
values depending on uses and operational conditions. The main differences are that [5]
has been updated more recently than [2] and provides reliability estimations for civilian
applications that are not as pessimistic as those obtained with [2]. That is, [2] tends to
yield more conservative reliability values than [5]. In the case of [6], it is a standard with
a broader use worldwide. However, it is more limited than [5] and [2], because [6]
indicates how to obtain failure rates but does not provide failure rates data. In addition, it
specifies reference conditions for obtaining failure rates and indicates how to adjust
failure rates based on stress models.

2.4 Availability of LAPES

Arguably, development of modern LAPES has been driven by twomain goals: interest in
integrating renewable energy sources at a local level and search for approaches to
improved power supply availability through ultra-available power systems. One of the
main requirements of ultra-available systems is that they maintain full system operation
when one or more failures occur. This characteristic is known as fault tolerance. A single
point of failure is a portion of a system that causes the entire system to fail when it fails.
Thus, fault-tolerant system design aims at eliminating single points of failure [7] [8].
Some common strategies to meet this goal [9] are:

2.4 Availability of LAPES 41

https://doi.org/10.1017/CBO9781139002998.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139002998.003


– use of redundant components
– diverse implementation of the system functions
– distribution of critical system functions
– use of hot-swappable components

As it was explained above with respect to a LAPES, redundancy refers to a design in
which the system has more than the minimum number of equal components required to
deliver power. Diversity is a concept related to redundancy. However, while a redundant
strategy involves using more equal components than the minimum required to perform
a given function, diversity implies using additional but different system components
than the minimum required to perform a given function. For example, having more
microturbine units than those required to power the load refers to the use of redundancy,
but adding microturbines to a cluster of fuel cells that can power the load alone refers to
diversifying sources for a LAPES. Systems with distributed functions divide main
system functions among various components. For example, in a LAPES with
a distributed architecture, power distribution and conversion functions are spread
among circuits and buses, and converters [10], respectively. Other important methods
used to achieve fault tolerance are the provision of adequate means for online repairs by
using modular hot-swappable components. In this way, availability is improved by
reducing the MDT.

Implementation of fault-tolerant systems is not exempt from challenges. In general,
system availability is increased at the expense of additional cost and complexity [11].
Hence, a balance has to be achieved in order to balance increased availability needs and
reduced costs requirements. Fault detection and clearance become more complicated,
especially in distributed systems. These challenges can be addressed. However,
a realistic and balanced approach requires quantifying the analysis so that technological
options can be assessed objectively. The rest of this chapter discusses how to quantify
LAPES availability based on works referenced in [12] and [13]. Due to its simplicity and
effectiveness, LAPES availability is evaluated using an mcs approach. Consider the
general representation of a LAPES in Figure 1.2. A general Markov process graphical
representation of this microgrid is shown in Figure 2.7. In this figure, each state
represents an operational condition of a LAPES based on the operational condition of
each of its components. As in Figure 2.2, 1 indicates a failed component, 0 an operating

Figure 2.7 Markov process representation of a LAPES operational condition.
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component, and x an unknown condition, which is not relevant to the discussion at hand.
The set W includes all the states representing conditions in which the LAPES is
operating, whereas the set F includes the states in which the LAPES is in a failed
condition – i.e., it cannot power its entire load. The shaded states in F at the boundary
with W imply that a repair to any of its failed components drives the system into an
operational state. Hence, these shaded states are called minimal cut states (MCS)
because each of them is associated with an mcs.

Based on (2.33), evaluation of a LAPES’s availability using mcs requires calculat-
ing the unavailability of each of the mcs, which in turn requires knowing the
unavailabilities of each of the relevant components and their interactions in an
availability sense. Hence, the last part of this section discusses availability models
and calculations for relevant system components of a microgrid and evaluates the
effect that different circuit topologies for power electronic interfaces and various
power architectures have on LAPES availability. This analysis is based on material
presented primarily in [12] and [13]. Although specific assumptions are indicated at
points of the discussion where they are relevant, some general assumptions consid-
ered in the analysis are:

– Failures are considered to be independent of each other. That is, failure of one
component does not cause a failure in another component.

– For simplicity, it is assumed that the load is constant and known. Such a load can
also be associated with the expected (average) value of a variable load.
Nevertheless, this assumption is not required for the proposed models to be
valid. Instantaneously uncertain loads could also be considered.

– Also for simplicity, it is assumed that the entire load of the LAPES is a critical load,
so if any portion of the load is lost, then the LAPES is in a failed state. That is, the
LAPES is operational when the whole load is powered. Still, the analysis can easily
be applied to any particular distribution circuit in a LAPES.When only a particular
distribution circuit is considered, then the calculated availability will apply to such
circuit only and the implied assumption is that failed states are those that corre-
spond to cases in which it is not possible to have the entire load connected to the
distribution circuit under study powered.

– Yet another general assumption made in the analysis is that since stability study is
out of the scope of this chapter and discussed later in this book, the microgrid under
evaluation has been designed and engineered to ensure adequate stability.

– All local power generation units that are not powering loads are in hot standby.
An example of hot standby is a diesel generator idling; although it is not providing
electric power, the engine driving the electric generator is still running, but at no
load other than that originating in its internal losses processes.

2.4.1 Availability of local power generation units

Availability of local generation units depends on two factors: availability of the genera-
tion unit itself – i.e., the hardware component for that distributed generation unit – and
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availability of the energy source necessary for the operation of the power generation unit
under analysis. Examples of the latter include wind, natural gas, or diesel fuel. In terms
of energy sources, there are two types of power generation units: those that require
a delivery of such an energy source, which is typically contained in a fuel, and those that
can obtain or harvest energy locally, which is typically related to renewable energy
sources, such as wind or solar radiation.

2.4.1.1 Power generation units that require delivery of their energy sources
In these cases energy is delivered to the LAPES through some external infrastructure.
Since the LAPES’s operation then becomes dependent on these infrastructures in
order to receive energy for its sources, these infrastructures receive the name of
lifelines. Energy can be provided though the lifelines and into the power generation
units either through a continuous fuel-delivery process or a discontinuous delivery
process.

Continuous fuel delivery process
As represented in Figure 2.8, in most LAPES this model for fuel delivery applies
primarily to natural gas, which is delivered continuously, usually to on-site microtur-
bines, internal combustion engines, or fuel cells with local reformers. Natural gas
infrastructure is, then, the lifeline of the LAPES needing natural gas provision. From
an availability perspective, the natural gas distribution system can be considered to be
connected in series with each of these generation units, so the availability of the
combination of the continuously delivered fuel and each power generation unit equals
the product of each of their availabilities. Practical values for these availabilities, MUT,
and MDTare presented in Table 2.2. For example, the availability of power supplied by
the microturbine in Figure 2.8 is the product of the availability of the natural gas (1 − uf)
supplied to the microturbine and the availability of the microturbine (1 − uDG).
Numerically, the availability is (1–2.5 10‒5)(1–0.006), which equals approximately
0.9939.

Discontinuous fuel delivery process
Discontinuous fuel delivery processes are associated with various LAPES sources. For
example, one of the most common ways of powering microgrids is diesel engines that

Power
electronic
interface

Load(s)

LAPES

Natural gas
infrastructure

(lifeline)

uƒ uDG 

uc

Figure 2.8 A simple LAPES powered by a microturbine, which is fueled through a natural gas pipeline.
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drive electric generators. Another example of a discontinuous fuel delivery process is
a microturbine that receives energy from a bio-fuel. Yet another example is a fuel cell
that receives hydrogen delivered in cylinders. In all these cases, fuel is delivered
according to a defined process and stored locally in a tank from where the local power
generation unit is fueled. Figure 2.9 shows a scheme of the infrastructure associated with
the diesel generator in the first example. The terms “diesel supply” or “fuel supply”
apply to the fuel flow at the generator’s engine fuel intake indicated by point B in
Figure 2.9, whereas “fuel delivery” refers to the end result of the logistical process
involving oil extraction, diesel refining, distribution, selling, and transportation and
actual delivery to the microgrid site, indicated by point A in Figure 2.9. If the diesel is
flowing at point B, then the fuel supply system is considered to be on, or at a working
state. If there is no flow of diesel at point B and the generator is commanded to run, then
the fuel supply is considered to be at a failed state. Likewise, when the fuel system in
Figure 2.9 is being refueled and diesel is flowing at point A, it is considered that the
delivery process is at a working state. On the contrary, if no fuel is flowing at A because
the system is waiting to be resupplied, then fuel delivery is considered to be at a failed
state. Based on this model, fuel supply depends on the diesel delivery process, on the
local energy storage (in the form of diesel contained in a tank with a capacity TTC), and

Table 2.2 Availability-related parameters for key LAPES components. [13] [14]

Item and origin of the value MUT (hours) MDT (hours) Availability a

Reciprocating engine 823 5 0.9939
Microturbine 8000 50 0.993 789
Natural gas supply 2 M 50 0.999 975
Diesel fuel supply 0.294 0.015
Converter 0.003 3.33 10‒4

n + 1 arrangement of seven converters 0.012 3 10‒6

PV generation system*** 3636 14 0.996
Wind turbine *** 1900 80 0.9595
PEM fuel cell (performance degradation) 4679.75 156 0.967 742

*** Operational failure and repair rates considered for the times when sufficient energy is available as inputs to
these power generation systems.

A
Diesel

storage tank

B
Diesel

generator

Fuel
delivery
process

Figure 2.9 Representation of the fueling system for an internal combustion engine driving an electrical
generator.
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on how this stored fuel is consumed, i.e., the operational regime. Three operational
regimes can be usually considered for a power generation unit: continuous operation,
cycling operation, and standby until a power grid outage occurs. This last operational
regime is referred to in short as standby operation in the rest of this work, although
“standby” does not imply that the genset is permanently in standby mode, but rather that
it is in standby until a grid power outage occurs. Hence, based on the aforementioned
assumptions, only the first operational mode is applicable to LAPES.

As a general case for reference, let’s consider a diesel generator that requires periodic
delivery of fuel, which is stored on-site in a tank. In most cases diesel is delivered using
roads, so the transportation system becomes a lifeline of the LAPES. Since the LAPES
load is assumed to be known and constant, the tank capacity provides a known autonomy
indicated by TTC. For variable loads characterized by a probability distribution function,
the expected (average) value of such a probability distribution function can be consid-
ered for the calculations, because load changes will typically occur on a time scale much
shorter – i.e., in the order of minutes – than the time scale for TTC – i.e., in the order of
hours or days. The fuel delivery process is characterized by a time td, which is the time
that the fuel is delivered to the LAPES site; td is, then, a random variable that depends on
a fuel-delivery probability density distribution function fd(td). Some of the possible
forms for fd(td) are shown in Figure 2.10, which also shows three different instants
that are important for the analysis: the initial time Tiwhen a fuel delivery may occur, the
delivery time TD when it is more likely that the fuel will have been delivered – e.g., due
to a contract specifying the time for the delivery to happen – and the maximum time TM,
which is the last instant when it is possible to receive a fuel delivery. Among the possible
forms for fd(td) shown in Figure 2.10, the exponential distribution may usually be
a common first choice due to its simplicity and the analogous processes indicated in
(2.10). However, the exponential distribution has some important issues. One of
these issues is that its maximum occurs at Ti = 0 instead of at the defined delivery time
TD. Another problem is that it has no bound to the right because it is defined within
a semi-infinite time interval [Ti,∞) – i.e., there are non-zero chances of having the fuel
delivered in a time instant infinitely distant in the future. A uniform distribution would

Triangular

Uniform
 withTi ≠ 0 

Uniform
 withTi = 0

Exponential

0 Ti

fd(td)

TD TM
t

Figure 2.10 Various possible forms for the fuel-delivery pdf fd(td).
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seem to be a somewhat more realistic representation of the fuel delivery process,
particularly for the case in which Ti ≠ 0, and it still would be simple to apply.
However, a uniform distribution cannot represent the reality that fuel delivery will not
occur with equal probability for any instant of time. Another possible fuel delivery
distribution function, also shown in Figure 2.10, follows a triangular shape. Some of its
advantages are that it is more realistic than the other two previously discussed distribu-
tions, yet at the same time it does not cause excessive calculation complexities.
The triangular delivery distribution function represents a case in which there is a fuel
contract that establishes a delivery time when fuel is due, indicated by TD, but it also
considers the real scenario that the fuel truck may arrive early, as indicated by the
interval between Ti and TD, or that problems along the delivery roadmay cause delays, so
that the fuel delivery may still occur until a maximum possible time TM. For simplicity, it
is assumed that the probability density varies linearly, first increasing from Ti to TD,
when it reaches its maximum, and second decreasing from TD to TM. Mathematically, the
triangular probability distribution function has the following form

fdðtdÞ ¼

0; 0 ≤ td < Ti
2ðtd � TiÞ

ðTM � TiÞðTD � TiÞ ; Ti ≤ td ≤ TD

�2ðtd � TMÞ
ðTM � TiÞðTM � TDÞ ; TD ≤ td ≤ TM

8>>>><>>>>: ð2:64Þ

and its corresponding cumulative probability distribution function is

FdðtdÞ ¼

0 0 ≤ t < Ti
ðtd � TiÞ2

ðTM � TiÞðTD � TiÞ Ti ≤ t ≤ TD

FdðTDÞ þ ð�t2d þ 2TMtd þ T2
D � 2TMTDÞ

ðTM � TiÞðTM � TDÞ TD ≤ t ≤ TM

8>>>><>>>>: ð2:65Þ

In (2.64), Ti and TD are determined mostly from the negotiation process for a fuel
delivery contract. On the other hand, TM is determined mostly by transportation infra-
structure performance and other factors leading to delivery delays. There are several
ways of characterizing TM. A simple approach is to assume that there is a probability
POD that the fuel will be delivered some time between TD and TM. Hence,

FdðTDÞ ¼ 1� POD ¼ TD � Ti
TM � Ti

ð2:66Þ

from which TM can be easily obtained. Entire fields of study, such as those related to
logistics [15] or transportation sciences [16], have been dedicated to the analysis and
characterization of POD or equivalent concepts. Some of these studies have been in the
context of normal conditions [17] [18] and some others in the context of emergency
conditions during disasters, which model both road network connectivity and
delays [19]. Obviously a detailed discussion of POD is out of the scope of this work,
but a simple, yet realistic approach for characterizing POD can be realized by first
considering that
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ΔTD ¼ TD � Ti ð2:67Þ

Even from an intuitive point of view it is simple to understand that if ΔTD = 0 then
POD = 1, because if a delivery cannot occur before Ti and no practical realistic
delivery can occur exactly at a specified time TD, then it is certain that the delivery
will occur after TD = Ti. However, as ΔTD increases, it is logical to expect that the
chances of making the delivery within ΔTD increase, meaning POD is reduced from 1.
In the simple model considered here for discussion purposes, it is assumed that there
is a delivery interval ΔTD,0 long enough to ensure that no deliveries will exceed TD.
Moreover, it is assumed that POD varies linearly from equaling 1 at ΔTD = 0 to
equaling 0 at ΔTD = ΔTD,0. Thus,

POD ¼ 1� ΔTD
ΔTD;0

for 0 ≤ΔTD ≤ΔTD;0 ð2:68Þ

and

ΔTD;0 ¼ ΔTD;ref
1� POD;ref

ð2:69Þ

where POD,ref is the probability of exceeding TD that corresponds to a known interval
ΔTD,ref. For example, assume that TD = 168 hours, Ti = 144 hours, and POD = 0.05
when ΔTD = 24 hours. Then, TM = 169.26 hours. Assume now that the time intervals
between fuel delivery trucks are independent and identically distributed. It is also
assumed that the truck replenishes the fuel tank instantaneously. Once a fuel delivery
truck leaves, the next one arrives at the LAPES site at a random time td with an
identical probability density function fd(td) as that for the previous truck. Since
refueling occurs instantaneously, the generator’s engine fuel supply from the diesel
tank at the engine’s fuel intake (point B in Figure 2.9) determines the unavailability
of the fuel supply system. That is, when the diesel tank is empty, the fuel supply
system is at a failed state. Since it is assumed that the load is constant and known (or
for a variable load represented by its expected value over TTC), the tank autonomy
TTC can be used in order to calculate the probability of emptying the fuel tank PE,
which equals the probability of failure for the generator. The probability of emptying
the tank is the probability of having the fuel delivery truck arrive after a time TTC has
passed since the last refueling operation. Thus,

PE ¼ P td > TTCf g ¼ 1� PE� ¼ 1�
ðtd¼TTC

td¼0
fdðtdÞdtd ð2:70Þ

where PE* is the probability of not emptying the fuel tank. Obviously, choosing a TTC
long enough so that it exceeds TM would ensure that PE = 0, but problems may occur
when POD increases from the originally planned values due to particular situations or
events. For example, the chances of emptying the fuel tank may increase during extreme
events because TTC may be estimated for normal operating conditions based on values
for POD and TM that are much lower values than those that apply when a natural disaster
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occurs. Obviously, TTCwill not be chosen to be shorter than TD. Hence, it is assumed that
TTC falls in the interval [TD,TM].

Based on [13], in order to find the fuel supply unavailability yielded by the described
fuel supplymodel, assume that a very large number of refueling cycles have passed since
the first one. It can be expected that in 100PE percent of these cycles the fuel delivery
truck arrived after TTC with an expected fuel-supply downtime of MDTf counted from
the time when the generator stopped operating due to fuel starvation, which is the time
TTC. Obviously, with this same reasoning, it can be expected that in 100PE* percent of
the cycles the fuel truck arrived before TTC passed so that the generator does not fail due
to fuel starvation. The ratio of the number of cycles when there is no generator failure
due to engine fuel starvation to the number of cycles with fuel starvation is denoted as
r and is calculated from

r ¼ PE�

PE
ð2:71Þ

Over many refueling cycles it can be expected that r cycles lasting on average TE* are
immediately followed by one refueling cycle lasting a time TTC + TE in which the
generator fails because it is out of fuel after running for TTC hours. Since it is assumed
that TTC is selected within the interval [TD,TM], MDTf for a generator fuel supply
model is

MDTf ¼ TE ¼ TM � TTC
3

ð2:72Þ

so MUTf equals

MUTf ¼ rTE� þ TTC ð2:73Þ

where for fd(td) given by (2.64) TE* is

TE� ¼
ðTM � TDÞ

ðTD
Ti

tðt � TiÞdt þ ðTD � TiÞ
ðTTC
TD

tðTM � tÞdt

ðTM � TDÞ
ðTD
Ti

ðt � TiÞdt þ ðTD � TiÞ
ðTTC
TD

ðTM � tÞdt
ð2:74Þ

Once MDTf and MUTf are known from (2.72) and (2.73), the fuel supply unavail-
ability is

uf ¼ MDTf
MUTf þMDTf

ð2:75Þ

The failure and repair rates, λf and µf, respectively, equal the inverse ofMUTf andMDTf,
respectively. For example, consider a LAPES in which TD = TTC = 72 hours, Ti = 48
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hours, and TM = 82.28 hours because POD = 0.3. Then,MUTf equals 221.3 hours,MDTf
equals 3.4 hours, and the fuel supply availability af = 1 – uf is 0.985.

2.4.1.2 Renewable energy sources
One of the advantages of renewable energy sources is that their operation is not
dependent on the performance of a lifeline. However, their intermittent output compli-
cates their application, particularly when the microgrid is operated disconnected
from a main grid. It also complicates availability analysis because some of the premises
and assumptions considered in the reliability analysis presented in this chapter are not
applicable to failure situations associated with renewable energy sources, such as
a failure of PV modules when there is not enough light to generate power. Another
difference from the previous sources is that renewable energy sources may experience
performance degradation; for example, when ice is accumulated on a wind turbine blade
or when dust is deposited on a PV panel. These situations present nonpermanent
conditions that would reduce the output of these sources but will not prevent them
from delivering power to a load, and thus may not be considered failure conditions
per se. Yet since output power is reduced, the chances of not being able to power the load
increases, and thus availability decreases.

In order to provide some context for the analysis, consider first a case in which a LAPES
has a PVarray and that power output from the PVarray and the load is sampled at regular
intervals. In each of these intervals the power balance equation is given by

Pstored½t� ¼ PPV ½t� � L½t� ð2:76Þ

where PPV[t] is the power supplied by the PV array and L is the load. If the available
power from the PV array is greater than the demand of the load, PPV ½t� > L½t�, then the
excess power is used to charge the batteries in the energy storage system associated with
this renewable energy source. If PPV[t] < L[t], then the batteries provide the power
difference between L and PPV until such point in time that they become fully discharged.
Thus, the presence of local energy storage is useful to manage the surplus or deficit
instantaneous power. This is useful to reduce or even eliminate the variability observed
from the perspective of the rest of the LAPES and can be designed using an economic-
based analysis.

If the batteries are fully charged and cannot store additional energy, then power output
from the PV array must be regulated so that PPV ½t� ¼ L½t�. Alternatively, the surplus
power can be injected into the electrical power grid if conditions permit. If the available
power from the PV system is less than the requirements of the load, PPV ½t� < L½t�, and
the batteries do not have sufficient energy storage capacity to provide the power deficit
between the PV source and the (PPV) and the load (L), then the combined system formed
by the PVarray and the batteries is considered to be in a failed state because the power
demand of the load cannot be met. The focus of the following analysis is to evaluate the
availability of the LAPES system comprised of the PVarray and its associated batteries
as a dispatchable stand-alone generation unit. Thus interaction with an electrical grid
is not considered because such interaction would need to take into account a fourth
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power-flow term: power flow from the LAPES to the utility grid. Although all power
flow must be considered for each time interval, without loss of generality the explicit
time dependence is dropped in the rest of this section to simplify the notation.

Performance degradation of PV modules due to aging or other factors, such as dust,
can also be factored in (2.76) by considering that

PPV ;d ¼ ð1� δÞPPV ;i ð2:77Þ

where PPV,i is the ideal PVarray power output and δ is a performance degradation factor.
Reliability characteristics of PV modules can also be reflected in a similar way, by
considering that a PV array’s expected power output equals the availability of the PV
array aPV multiplied by PPV,d

PPV ¼ aPVPPV ;d ð2:78Þ

For PV systems, the performance degradation factor δ can take values between 0.002
and 0.007 per year [20], whereas a typical availability value for PV arrays is shown in
Table 2.2. Wind power generation can be considered in the same way that PV power
generation is. In terms of performance degradation, the factor δmay take various values
depending on the degradation process. For icing δ may vary between 0.14 and 0.2 [21],
whereas for dust accumulation δmay reach values up to 0.55 over a nine-month period in
areas with high dust concentration and no rain [22]. Availability values for wind turbines
are also indicated in Table 2.2.

The combined PV array/energy storage system is modeled using a Markov chain,
shown in Figure 2.11, in which each state represents a state of charge or energy level of
the energy storage system [23]. In Figure 2.11, each state transition, characterized by
a probability pi or p‒i, represents a charge or discharge process. For example, state 1
symbolizes the energy level of the storage system when it is fully discharged, and state
N symbolizes its energy level when it is fully charged. If it is assumed that the energy
storage devices have linear charge and discharge processes, the energy difference
between any two adjacent states is Δ, so the power involved in such a process is
Δ divided by the time step Ts between two consecutive steps in the Markov chain.
Hence, p‒i generally represents the probability of a transition among states with an
energy efflux of iΔ in Ts, and pi represents the probability of a transition among states
with an energy influx of iΔ in Ts, with i taking values from 1 to N – 1. Then, the one-step
transition probability matrix, P, associated with the Markov chain is

Figure 2.11 Markov chain for the PVarray/energy storage system.
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P ¼

q�1 p1 p2 p3 . . .
q�1 0 p1 p2 . . .
q�2 p�1 0 p1 . . .
q�3 p�2 p�1 0 . . .

..
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. . .

.

0 p1 q2
p�1 0 q1
p�2 p�1 q1
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N�N

ð2:79Þ

where

q�1 ¼ 1�
X
i2 S

pi ð2:80Þ

q1 ¼ 1�
X
i2 S

p�i ð2:81Þ

q�k ¼ 1�
Xk�1

i¼1

p�i þ
X
i2 S

pi

 !
ð2:82Þ

qk ¼ 1�
Xk�1

i¼1

pi þ
X
i2 S

p�i

 !
ð2:83Þ

The transition probability terms indicated by the terms qk correspond to the particular
cases when there is excess PV-generated power or a demand for energy beyond the
battery capacity range. As with the other terms, a negative subscript corresponds to
a battery discharge process and a positive subscript indicates a battery charge process.

Actual data from a particular location under study for each of both components PPV

and L in (2.76) can, then, be used as the basis of a Monte Carlo simulation in order to
obtain probabilities of observing different values for PB. That is, actual data is used to
generate a discretized profile with a suitable distribution for each of both the load and
the daytime incident PV power. These profiles are then used to generate multiple runs
of random loads and incident PV power as part of a Monte Carlo process. In each run,
the randomly generated value for L is subtracted from the randomly generated value
for PPV, yielding one value for PB. A histogram can then be generated by accounting
for the frequency at which each allowed value for PB appears among the many Monte
Carlo runs. In reality, (2.76) can be adjusted by separating loads profiles during
daytime and nighttime in order to consider the fact that PPV is always 0 during the
night – a deterministic component of PV power generation. Then, the power balance
equation becomes

PB ¼ PPV � Lday � Lnight ð2:84Þ

which implies that the night load is effectively shifted to daytime as a battery charging
load for the PVarray. Equation (2.84) can also be modified to consider wind generation
in a hybrid system, as
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PB ¼ ðPPV þ PW ; day � LdayÞ þ ðPW ; night � LnightÞ ð2:85Þ

Once the histogram for PB is known from the Monte Carlo runs, it can be used to
obtain the values for the probabilities pi and p–i of each Markov chain transition in
Figure 2.11. In turn, once the one-step transition probability matrix P is known, the
limiting probabilities vector π can be found from [24]

π ¼ πP ð2:86Þ
where each of the components in π represents the long-term steady-state probabilities
that the energy storage system is at a certain energy state – e.g., π1 represents the
probability that energy storage is at state 1. Finally, unavailability uRW of the system
formed by the combination of the renewable sources and the energy storage devices can
be calculated assuming that the load is not fully powered when energy storage is at state
i and the load requires an energy of iΔ or more during the existing time Ts between two
consecutive transitions of theMarkov chain. Considering all possible transitions from all
possible states for the considered time step Ts, the unavailability is

uRW ¼
X

i2f1;N�1g
p�i

X
j≤ i

πj

 !
ð2:87Þ

Energy storage capacity affects unavailability through N and Δ, because the
capacity is

CRW ¼ ðN � 1ÞΔ ð2:88Þ
That is, by changing Δ it is possible to change P, which in turn modifies π, which results
in a different value for uRW.

Consider the following case as an example: A microgrid with a 100 kW load is
operated in the city of Austin, Texas. In order to provide some generation overhead,
assume that a PV array of 1.225 MW is used to power this LAPES, which implies an
average power generation of 293.63 kW (variance = 68.2) from 7:00 am to 7:00 pm.
Figure 2.12 shows the result of following the described method in order to calculate the
availability for different energy storage capacities. If it is desired to achieve an avail-
ability of four nines (99.99%), then the equivalence of 0.9 days of energy storage is
needed,which equals 1.16MWhof battery energy storage (equal to 0.9 × 24 hrs. × 100 kW).
If a five-nine availability (99.999%) is sought, then Figure 2.12 indicates that 1.15 days
of equivalent energy storage capacity is needed, meaning a battery capacity of
2.7 MWh obtained for a time step TS of one hour, and with Δ/TS and N equal to
10 kWand 277, respectively. This example highlights two issues with renewable energy
sources: the large energy storage capacity needed to achieve high availabilities and the
large physical footprint needed to achieve the necessary power levels. One way of
reducing the necessary energy storage capacity is to use diverse power sources. For
example, when 225 kW of wind power generation is added, with an average daily
generated power of 110.82 kW – so each group of wind or PV generators can sustain
the load alone – the necessary energy storage to achieve an availability of five nines
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decreases to about 0.5 days worth of load power, or 1.2 MWh. In terms of footprint,
without wind generators the 1.225 MW PVarray occupies an area of 6,125 m2 in Austin
because it is assumed that 200W PVmodules are used, which have a footprint of about 1
m2 when they are installed with a tilt equal to the latitude of Austin of 30°. In order to
reduce the footprint, it is possible to reduce the PV array capacity but availability is
impacted. For example, a 25% reduction in the PVarray capacity to 918.75 kWoccupies
4,593.75 m2, but for the same energy storage of about 2.7 MWh mentioned above, the
availability is reduced from five nines to about two nines, or 99% (Figure 2.13).

Failure and repair rates for renewable energy sources can be obtained by assuming
that Figure 2.11 represents the embedded Markov chain for a two-state Markov process
in which state S0 represents a failure condition for the renewable-energy power source
plus energy storage and state S1 represents the opposite situation. The equivalent
Markov process is described, then, by

Figure 2.12 Availability obtained for varying energy storage capacities combined with a PVarray or with
a PVarray and wind generators.

Figure. 2.13 Availability obtained for varying energy storage capacities combined with two PVarrays with
different maximum power ratings.
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_πT
RW ðtÞ ¼ πTRW ðtÞM ¼ ðπRW ;W ðtÞ πRW ;FðtÞÞ �λRW λRW

μRW �μRW

� �
ð2:89Þ

where the superscript index T represents a transpose operation, πRW,W(t) is the prob-
ability of having the system operating in state S1 at time t, πRW,F(t) is the same
probability for S0, and M is the transition rate matrix for the two-state equivalent
Markov process with failure rate λRW and repair rate µRW. The Markov chain and
Markov process are related by [24]

M ¼ γðP� IÞ ð2:90Þ

where I is the identity matrix and γ is obtained from [24]

γ ¼ 1

TS

p11
1� p11

ð2:91Þ

where p11 is the element of P in row 1 and column 1; i.e., it equals q–1. Hence, for the
100 kW load powered by the combination of a 1.225 MW PV array and batteries with
a sufficient capacity to reach an availability of five nines, λRW = 5.252 10–6 and µRW =
0.5252, whereas for the hybrid system combining the same PV array, 225 kW of wind
generation, and sufficient batteries to achieve an availability of five nines, λRW =
8.189 10‒6 and µRW = 0.8189. When the target availability is two nines, λRW = 5.2 10‒3

and µRW = 0.512 when only the PVarray is present, and λRW = 7.3 10‒3 and µRW = 0.7219
when the PVarray is combined with wind energy.

2.4.2 Availability of power electronic interfaces

Power electronic interfaces (ac-dc rectifiers, dc-ac inverters, or dc-dc converters) impact
the overall availability of a LAPES due to the individual availability as well as the way
these devices are interconnected. This portion of Chapter 2 focuses on the former, the
individual power converter, whereas the next section discusses the latter, interconnec-
tion of a plurality of power converters. The availability of each power electronic inter-
face is given by (2.20) or (2.22). As it was mentioned, the MUT is mostly dependent on
technical factors, such as design and manufacturing quality, and operational conditions.
In comparison, the MDT is dependent on logistical, spares stocking, and maintenance
policies and processes. The MDT is also dependent on system and power electronic
interface design: a plug-and-play modular-based design tends to reduce the MDT by
simplifying the process of replacing failed components.

One of the complex aspects of designing power electronic interfaces for LAPES
intended for high availability operation are the tradeoffs between achieving high avail-
ability and, at the same time, meeting other important design objectives, such as
reducing capital cost. Consider that a LAPES contains a critical load PL. A failure
condition exists when it is not possible to meet the entire power requirement of the
load. Assume also that it is possible to express the cost for each ith power electronic
interface as a function of the rated power (for example, the relationship can be linearly
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proportional ci=W ), and that the availability of each power electronic interface module
is a. If a central (unique module) power electronic interface is used, then the total capital
cost is $PLc and the power conversion system availability A equals a since there is only
one converter. Now, consider that an n+1 redundant arrangement of similar power
electronic modules are used in order to improve availability. The availability of the
power conversion system is given by (2.45), which, as Figure 2.6 shows, decreases as
n increases. It is also possible to find that the capital cost follows the same trend –
decreasing as n increases – because the power pm of each module equals PL divided by n,
so the capital cost is

C ¼ c
PL

n
ð2:92Þ

which decreases as n increases. A similar trade-off can be found with respect to the goal
of achieving higher power efficiency. As Figure 2.14 exemplifies, the power efficiency
of power electronic interfaces is typically lower with lower load. With no failed power
interfaces modules, the power output of each of them is

po ¼ PL

nþ 1
ð2:93Þ

so the ratio of the power output to the rated power is

po
pm

¼ nþ 1

n
ð2:94Þ

which also decreases as n increases. Several approaches have been proposed to address
issues related to the effects of reduced power efficiency at lighter loads. One is to
improve the efficiency profile of power electronic interfaces to make it “flatter,” using
alternative control or circuit topologies design approaches. However, these solutions
tend to add more control complexity or more components, which may lead to higher
failure rates based on the parts-count calculation. Another approach that is commonly
used in some applications, such as communication systems power plants, is to place
modules that are not necessary to power the load in hot standby and to make the modules
that are powering the load share it. However, this approach requires coordinating the

Figure 2.14 Typical efficiency profile for a power electronic interface.
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power output of each module so the load is equally shared. The simplest approach to
achieve such coordination is to have a communication link among the power electronic
interface modules, but this communication link may affect system availability by
becoming a single point of failure. Although there are autonomous controllers that
avoid the need for such a communication link, they add complexity and more parts,
leading to a usually modest increase in the failure rate of each module.

2.4.3 Influence of power distribution architectures on availability

Differing wiring layouts and module topologies of power electronic interfaces affect
how power distribution architectures influence system availability. Although the dis-
tribution portions of conventional power grids typically have a radial architecture,
LAPES allow for alternative designs in order to improve certain operational parameters
or characteristics (such as fault tolerance) due to their confined domain. Still, a radial
configuration, such as the one in Figure 2.15, can be used, and in fact is typically the
most common approach in microgrids. Two other possible power distribution architec-
tures, ring configurations and ladder configurations, are shown in Figure 2.16 and
Figure 2.17, respectively. Contrary to a radial power distribution architecture, in ring
or ladder distribution architectures power can flow from local generators to loads
through more than one path, and for this reason they are typically used in applications
in which operation needs to be maintained even when at least one power path fails or is
damaged (such as in microgrids for military bases). An analysis of the availability for
these three power distribution architectures – radial, ring, and ladder – was presented
in [25] following an mcs approach. This study concluded, as would be intuitively
expected, that a radial power distribution architecture yields the lowest availability,
while an equivalent well designed ladder power distribution architecture yields the
highest availability. However, trade-offs between achieving low capital costs and high
availability are observed in the design of the power distribution architecture, because
although the ladder configuration achieves the highest availability of the three discussed
approaches, it also tends to be the one with the highest capital cost – e.g., compare the
wiring requirements and the number of circuit breakers in the three configurations –
whereas the radial configuration tends to be the one with the lowest cost.
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Figure 2.15 Radial power distribution architecture.
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Figure 2.16 Ring power distribution architecture.

Figure 2.17 Ladder power distribution architecture.
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Different circuit topology approaches for power electronic interfaces can also affect
system availability through the influence that some circuit topologies have on the power
distribution architecture configuration. As it is shown in Table 2.2, most distributed
generation technologies have availabilities no better than about two nines, which is
a considerably low baseline availability value that, in turn, makes it difficult to reach
availabilities in the order of five nines or more as required by critical loads. Obviously,
one solution is to have redundant local generation units of the same type, but this
solution may increase the capital investment for a LAPES considerably, because many
distributed generation technologies tend to have a relatively high cost per installed watt.
Moreover, adding redundancy may not improve availability if the local power genera-
tion units are also depending on a lifeline with low availability. Another solution is to
add energy storage devices connected to the microgrid main bus – a solution that will be
explored in more detail in the next section. However, added energy storage may also
have high capital costs. Yet another solution is to have diverse power sources of different
technologies. In order to achieve ultrahigh availabilities the most probable suitable
approach is to have a combination of these three different approaches: diversity and
redundancy applied to the local power generation units and added energy storage. This
combined approach has been already mentioned as a suitable solution when we men-
tioned that energy storage capacity in PV systems may be reduced by combining wind
generation with solar-based generation. Hence, a cost-effective realization of a LAPES
that combines these three strategies for high availability needs to consider how to
integrate these diverse power sources (and in some cases energy storage) without adding
significant capital cost from power electronic interfaces. But, as it was mentioned in the
previous section, there exists a trade-off between achieving high availabilities and
reducing the capital cost in power electronic interfaces. Finding a balanced approach
to this trade-off between availability and cost may become more difficult when
integrating diverse power sources. Thus, availability analysis cannot be decoupled
from understanding the role that converter circuit topologies have on power distribution
architecture designs and on LAPES availability.

A possible approach to studying the role of power electronic interface topologies in
LAPES architecture and availability is discussed in [12]. In this study, an mcs approach
is used in order to quantitatively calculate availability of microgrids considering three
types of power electronic interfaces: a center single-input converter (SIC), represented
in Figure 2.18, a redundant combination of a few modular SICs, and a redundant
configuration of multiple-input converters (MICs), shown in Figure 2.19. Although
MICs are discussed in detail in Chapter 4, in order to provide an understanding for the
availability discussion provided here it is sufficient to explain that MICs are realized by
dividing their homologous SICs into an output stage and an input stage and then
multiplying the input stages that are connected to the same point to the common output
stage. By sharing a common output stage MICs may reduce the capital cost of power
electronic interfaces integrating diverse power sources with respect to the case of
modular SICs. Moreover, as Figure 2.19 suggests, MICs create a meshed power
distribution architecture that provides multiple power paths between sources and
loads. The conclusion from the calculations in [12] is that power architectures with
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Figure 2.18 A LAPES with power distribution architecture with single-input converters interfacing individual
local power generation units with the LAPES main bus.
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Figure 2.19 A LAPES with power distribution architecture with multiple-input converters interfacing local
power generation units with the LAPES main bus.
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MICs seem like a good compromise approach by providing the possibility of reducing
capital cost in power electronic interfaces with respect to the case of modular SICs with
only a marginal reduction in availability. Although less costly, configurations with center
SICs have availabilities an order of magnitude worse than those calculated for modular
SICs or MICs.

Power electronic circuits can also beused inpower distribution nodeswithout necessarily
interfacing sources or loads. In [26],multiple-inputmultiple-output bidirectional converters
(MIMO-BCs), also called active power distribution nodes (APDNs), are proposed in order
to address some issues that advanced power electronic distribution architectures present,
such as those in Figures 2.16 and 2.17, in which circuit protection coordination with
conventional devices, such as circuit breakers, is difficult to plan. In addition to providing
amore flexible control of power flows, use of distribution-level converters can also address
difficult fault current interruption in dc power distribution architectures. Moreover, when
embedded distributed energy storage is placed in theMIMO-BCs, power availability can be
enhanced because the embedded energy storage can provide energy backup to selected
circuits. Furthermore, the conclusion in [26] is that although a higher parts count inMIMO-
BCs leads to a lower availability than conventional approacheswith circuit breakers, the use
of embedded energy storage can overcome this lower availability in MIMO-BCs circuits,
whereas the lower availability in circuit breakers that originates in alternative operational
conditions, such as difficulties in interrupting dc fault currents, cannot be offset with any
simple approach. Obviously, then cost becomes a concern as a configuration with MIMO-
BCs and embedded energy storage has a higher hardware cost than a configuration with
circuit breakers. However, the study in [26] also showed that the higher initial cost of
MIMO-BCs with embedded energy storage could be compensated for, as the downtime
costs in applications with critical loads is reduced as availability increases.

In order to assess the convenience in terms of availability of using power electronic
interfaces over circuit breakers, [26] also presented an availability circuit breaker model
that is shown in Figure 2.20. In this model, the circuit breaker has two parts: the
interrupting device itself and the cable/conductor it is protecting. In Figure 2.20 λC is the
failure rate of the conductor, ρID is the interrupting device failure-to-open probability, μC is

Figure 2.20 Availability model for a circuit breaker.
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the conductor repair rate, λID is the interrupting device failure rate, and μID is the
interrupting device repair rate. The interrupting device failure-to-open probability repre-
sents the fact that circuit breakersmay also fail to isolate faults by not opening.Once all the
parameters in Figure 2.20 are known, the availability of a circuit breaker can be calculated
using the approach explained in Section 2.2.3 and detailed in [26], inwhich the availability
is the long-term probability of being at state S0.

2.4.4 Effect on availability of adding energy storage to a microgrid main bus

One effective way of improving availabilities of microgrids is to add energy storage –
typically batteries – connected to the main bus or power distribution grid feeding the
LAPES loads. The principle for improved availability through this strategy is simple: if
there is a critical failure in any other portion of the system, by adding batteries connected
at the loads’ input the batteries can still power the load while the critical failure is
repaired and the local power sources are able to power the load again. It is important to
emphasize a significant difference of this energy storage system from source-level
energy storage – e.g., stored diesel for an internal combustion engine generator or
batteries for a PV system. The energy storage system discussed in this section and
represented on the right of the microgrid power distribution grid in Figure 1.2 is
connected on the load side of any power electronic interface used to integrate the local
power generation units. Consider now Figure 2.7. From [1] and [27], the probability
density function fMGµ(t) associated with the probability of leaving the set F at time t + dt
after being in F from t = 0 is

fMGμðtÞ ¼ μFWe
�μFW t ð2:95Þ

where µFW is the sum of all the transition rates from F toW. Since, as Figure 2.7 shows,
each of the minimal cut states at the boundary between F andW can be associated with
an mcs, µFW can be calculated once the mcs are known, because repairing any of the
components in an mcs drives the system from F to W. For example, as detailed in [13],
the transition rate of an availability series arrangement of components from the MCSs
intoW is the sum of the repair rates of the components in the series configuration. Then,
the probability of discharging the batteries while the system is in F since t = 0 is the
probability of leaving F at a time longer than the battery backup time TBAT. Hence,

PBD ¼ P t > TBATf g ¼ 1�
ðτ¼TBAT

τ¼0
fMGμðτÞdτ ¼ e�μFWTBAT ð2:96Þ

Themicrogrid failure probability PMGf(t) is, then, the probability that the system failed at
t = 0 and the batteries discharged to their minimum state of charge value. If it is assumed
that the microgrid had been turned into operation a very long time in the past, then PMGf

(t) equals the unavailability of the LAPES UMG without distribution-level batteries,
which is obtained, for example, from combining (2.32) and (2.33) – i.e., UMG equals Ua

in (2.32) if an mcs approach is used to calculate the microgrid availability up to the
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output of the power electronic interfaces between sources and the microgrid power
distribution grid. Thus, the microgrid unavailability with added batteries at the distribu-
tion level is

UMG;T ¼ UMGe
�μFWTBAT ð2:97Þ

2.4.5 Additional considerations in terms of LAPES availability

The assumption that all local power generation units that are not powering loads are in
hot standby (the fifth assumption in Section 2.4) is an important one in order to analyze
LAPES availability. Although this assumption represents a real operational mode that is
expected in most microgrids, it is possible that in some circumstances some generators
are in “cold” standby: that is, they need to go through a start process in order to be able to
take load. Hence, it is relevant to provide a method to assess availability with sources in
standby.

Availability calculation of a power source in standby involves assuming that the
system under study is not only the source in standby, but is actually the combination of
a primary source and the standby source that starts to operate if the primary source
fails. That is, the operation of the standby power source is dependent on the status of
the primary source powering the load. Hence, since the system is composed of two
components with an interdependent operation and each of these two components may
be in a failed or a working condition, system availability can be modeled as the four-
state Markov process represented in Figure 2.21. As it was defined before, in this
Markov process each state is represented by two digits. The digit on the right identifies
the status of the standby power generation source and the digit on the left characterizes
the condition of the primary power source. A 1 is an indication of a failure and a 0
indicates a normal operating condition. The combined system formed by the primary
source and the standby source is in a failed state when both of these sources are in
a failed condition. From a calculation point of view, the unavailability of this com-
bined system uSB is given by [28]

uSB ¼ λPSðλSBS þ ρSBSμPSÞ
μPSðμPS þ μSBSÞ

ð2:98Þ

Figure 2.21 Markov availability model for a system with a primary source and a secondary standby generator.
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where λSBS and μSBS are the failure and repair rates, respectively, of the series combina-
tion of the generator in standby and its lifeline, λPS and μPS are the failure and repair
rates, respectively, of the primary source, and ρSBS is the failure-to-start probability for
the standby power source. This failure-to-start probability represents the possibility that
the generator in cold standby may experience a problem that prevents it from starting
when it is called into service. Obviously, the higher the failure-to-start probability, the
higher the unavailability is.

One of the main values of quantifying microgrid availability is performing objec-
tive comparisons among various technology options based on a lifetime cost evalua-
tion that includes not only capital, financial, and operation and maintenance costs, but
it also considers expected downtime cost – the cost associated with the loss of power
to a given load. One approach to such evaluation is discussed in [29], in which risk
assessment is used as the basic tool for technological assessment that includes
microgrids. A detailed discussion of risk assessment is out of the scope of this
work. However, it is relevant to mention that risk can be defined as the expected
impact that a well-defined event may have on a system over an indicated period of
time. Mathematically risk, R, is defined as

R ¼ PrfEventgI ð2:99Þ

where I is the impact of the event. Impact is often considered as a monetary metric. In the
case of downtime cost evaluations, the event could be that the system under study loses
power for a given period of time due to some triggering event and the impact is the cost
associated with having the load inoperable due to loss of power during the period of time
being considered as part of the event definition. That is, the probability considered
in (2.99) is associated with the unavailability of the evaluated LAPES and the risk R is
the downtime cost considered as part of lifetime cost evaluations. It is important to
mention that although risk analysis is an objective assessment tool, oftentimes planners
may introduce subjective factors related to human psychology, culture, societies, history,
and other factors. All of these factors may affect how humans perceive risk in terms of
the probability and impact evaluation. For example, as discussed in [30] [31], before
a natural disaster affects a given region, inhabitants of that area tend to perceive risk with
a bias against the probability term – i.e., they see the event as less likely to occur or less
likely that they will be impacted if it does occur – but after they are affected by a disaster
they tend to focus their bias on the impact and tend to believe that the next time such an
event happens their impact will be greater than what they expected it to be before the
event happened.

2.5 Application of microgrids for resilient power supply during
extreme events

One of the potential applications of microgrids introduced at the beginning of this
chapter is improving the power supply when an extreme event happens.
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The discussion in this chapter provides the tools to quantitatively assess potential
advantages of microgrids over other solutions, such as powering a local area directly
from a bulk power grid with or without support of a backup power solution, usually from
diesel gensets. As Figure 2.22 illustrates, when a natural disaster (such as a hurricane or
an earthquake) happens, it is possible to observe that conventional power grid outages
are extensive and intense. Many times such power outages affect most or all customers
in large areas for many days or even weeks. Yet such a severe loss of power is observed
even in areas where there is relatively little damage, such as the ones in Figures 2.23 and
2.24. In fact, with most disasters severe power grid outages can be observed even when
less than 1% of its components are damaged. Such relatively little damage is often
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Figure 2.22 Power grid performance during Superstorm Sandy. From left to right: Time to restore service to
98% of the lost loads, peak percentage of customers that lost service during the storm, and
damaged infrastructure percentage.

Figure 2.23 High Island, Texas, after Hurricane Ike.
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observed in most of the area affected by a disaster, whereas severe damage, such as that
in Figures 2.25 and 2.26, usually happens in less than 10% of the area affected by an
extreme event. The fact that extensive and significant power outages happen with
relatively few damaged power grid components suggests that the power grid is a very
brittle system. This brittleness is caused by a number of factors and power grid
characteristics, which include:

– predominantly centralized distribution architecture and control as seen by users
– passive transmission and distribution
– very extensive network (long paths and many components)

Figure 2.24 Union Beach, New Jersey, after Superstorm Sandy.

Figure 2.25 Crystal Beach, Texas, after Hurricane Ike.
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– need for continuous balance of generation and demand
– difficulties in integrating meaningful levels of electric energy storage
– aging infrastructure

In recent years, and due to recent natural disasters, such as the 2011 earthquake and
tsunami in Japan and 2012 Superstorm Sandy in the United States, there has been an
increased focus on power grid performance characterized by the term “resilience.” Yet in
general there has not been a clear definition of what resilience is as it applies to power grids
or how it could bemeasured. However, recently it has been proposed [32] to use availability
as an analogous measure of power supply resiliency. Such an approach has also been
suggested for communications systems [33]. When applied to the power supply, resilience
Re of an area with NT customers or loads can be measured as

Re ¼ 1

NTT

XNT

i¼1

TU ;i ð2:100Þ

where T is the period of time under consideration, TU,i is the part of T that a customer i is
able to receive electric power – i.e., an “up” time – and TD,i is the remaining portion of
T when a customer i may not able to receive electric power – i.e., a “down” time.
The time T is chosen depending on which context resiliency is measured in. For
example, it could be the interval from the time a disaster happens to the time that service
is restored to all customers able to receive electric power. As is pointed out in [32], while
TU,i is mostly dependent on hardware-related issues and how a power system is designed
and built, TD,i is also dependent on “soft” factors, such as logistical, repair, spares-
storing, and maintenance-management processes, and personnel training. Hence,
LAPES and power systems in general can be considered human-cyber-physical systems,
in which human-driven processes are also components of the system and analogous to
electric power apparatus.

The metric in (2.100) is in agreement with the definition of resilience given both in
US Presidential Power Directive 21 and in the report [34] prepared by the US National
Academy of Sciences. The former defines resilience as “the ability to prepare for and adapt

Figure 2.26 Area around Arahama Elementary School near Sendai, Japan.
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to changing conditions and withstand and recover rapidly from disruptions” whereas
the latter defines resiliency as “ability to prepare and plan for, recover from, and more
successfully adapt to adverse events.” That is, in (2.100) TU,i provides a measure of
the withstanding characteristics, whereas TD,i provides a measure of recovery speed.
Moreover, it is possible to find that the definition of resilience in (2.100) is not only
related to availability metrics but it is specifically analogous to the ASAI in (2.57).
The main reason the ASAI and Re are analogous but not equivalent is that calculation
of resilience through (2.100) does not require computing times based on an infinite
number of extreme event cycles, whereas availability calculations, such as the ASAI,
implicitly presume that times are calculated based on an infinite number of failure
and repair cycles.

Section 2.4.1.1 showed that availability of microgrids can be affected by performance
of lifelines. In general, the existence of a lifeline establishes a dependency relationship
between a microgrid, or, in general, some dependent infrastructure and its lifeline.
In [35], dependency between two infrastructures is defined in general as a “unidirec-
tional relationship between two infrastructures through which the state of one
infrastructure (lifeline) influences to the state of the other (dependent) infrastructure.”
As it was previously explained, in microgrids the dependency is established when local
power generation sources require energy to be transferred from the lifeline to the
microgrid’s source. However, as discussed in [13] [32] [35], the concept of availability
can be used in order to provide a measure for degree of dependency. Consider an ideal
microgrid with perfectly available components, so that its availability depends only on
its lifeline availability. If the microgrid has energy storage devices in order to maintain
operation in case its lifeline experiences a loss of service, then the microgrid unavail-
ability is given by (2.97). Ideally, if the total capacity of the energy storage device is
infinite – that is, TBAT in (2.97) is infinite (although here the stored energy may not
necessarily be in batteries; energy could also be stored, for example, in diesel stored in
a local tank) – then the microgrid unavailability is 0 regardless of the unavailability of
the lifeline. This observation suggests that the amount of energy that is stored locally in
order to achieve a target availability level could be used as a measure of degree of
dependency DD. That is, DD could be defined as

DD ¼ � 1

μD
ln

Ut

UL

� �
ð2:101Þ

whereUL is the unavailability of the lifeline,Ut is a target availability – e.g., five nines in
communication sites – and µD is the equivalent repair rate related to the inverse of the
lifeline downtime measured at the connection point with the load or microgrid. Due to
the analogous metrics between availability and resiliency, it is, then, also possible to
define a measure for local resiliency RL as

RL ¼ 1� ð1� ReÞe�μDTS ð2:102Þ

where TS is the capacity of the locally stored energy at the load or microgrid measured
with respect to the autonomy it provides during a lifeline loss of service and Re is the
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lifeline resiliency, which is analogous to 1 – UL. Hence, in an extreme ideal case, if
a lifeline has a perfect ideal resiliency of 1, it is not possible to establish a dependency –
i.e., DD is 0 – and local resiliency is 1. Such observation can be explained based on the
definition of dependency indicated above and the fact that a lifeline will not influence the
performance of its dependent infrastructure (or load) if the lifeline always has the same
“on” state that cannot be altered by any means. Moreover, both (2.101) and (2.102) show
explicitly that the concepts of availability, resiliency, and dependency (or lifeline
performance) are intrinsically related.

These concepts of resiliency can be considered from the perspective of a microgrid
load, with the microgrid as its lifeline. Since there is no sufficient relevant data of
microgrid operation during natural disasters, assume this is one of the cases of conven-
tional power grids serving loads in a past notable disaster. Assume also that the load is an
ideal communication site with a resiliency of 1 except for its lifeline – the power grid.
As is standard for most communication networks, the target availability for such a site is
five nines, but, as a reference, it could be assumed that the stored energy at the site allows
for its operation for one day without power supplied from the electric grid. Since
resiliency and availability are analogous concepts, a target resiliency of five nines is
considered in this case study. Assume first that this site was located in Ascension Parish
and suffered the effects of Hurricane Isaac in 2012, where a peak of about 56% of the
electric loads lost power. At this location, where most of the power is distributed in
aerial cables mounted on poles, it is possible to compute approximately T = 18.2 days,
TD = 1.1 days, Re = 0.96,DD = 6.1 days, and RL = 0.99. In contrast, if the site was located
in Manhattan, New York City, when Superstorm Sandy affected the area, causing
about 40% of the loads to lose service, then the resiliency parameters are approximately
T = 18.75 days, TD = 1.4 days, Re = 0.92, DD = 12.48 days, and RL = 0.96. When
comparing these two cases, it is possible to conclude that the power grid in Manhattan
seems to have been able to withstand the storm better than the power grid in Ascension
Parish because in Manhattan a smaller portion of the load lost service. This observation
is to be expected, because most of the power in Manhattan is distributed through buried
conductors or cables in underground conduits. However, since buried cables take longer
to repair than overhead infrastructure, service restoration in Ascension Parish was faster
than in Manhattan, resulting in a more resilient power grid in Ascension Parish during
Isaac than in Manhattan during Sandy. For this reason, the communications site’s degree
of dependence on the power grid was greater in Manhattan during Sandy than in
Ascension Parish during Isaac.

There are several ways in which utilities try to improve resiliency during extreme
events. Number of failures is reduced by implementing infrastructure-hardening pro-
grams, such as trimming trees, using reinforced poles, or burying cables and other
components. However, burying infrastructure has a considerably high cost and may
not be effective with earthquakes – and, as the previous example shows, although the
failure rate is reduced, when a failure happens, repair times even in normal conditions
are longer (i.e., there are longer down times). When an outage happens as a result of
a disaster, some of the utility restoration strategies include the use of mobile transfor-
mers (Figure 2.27) and implementation of adhoc LAPES through the use of mobile
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gensets directly connected to the distribution grid (Figure 2.28). More recently, some
other solutions that have been proposed are part of the new so-called smart grids that are
discussed in more detail in Chapter 9. These smart-grid technologies, such as smart
meters, allow for detecting outage locations faster, but this somewhat faster outage
location detection will not avoid the need for electric utilities to eventually deploy crews

Figure 2.27 Mobile transformer and portable voltage regulators in the parking lot of the Peninsula Family
Health Center in Far Rockaway, New York, after Superstorm Sandy.

Figure 2.28 A portable diesel genset connected on the power grid side of an apartment complex in Galveston,
Texas, after Hurricane Ike.
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to repair the damage causing the outage. Another example of a smart grid–related
technologies is to rely on grid-tied photovoltaic generation systems even during exten-
sive power outages. However, as is detailed in Chapter 9, at the residential level these
photovoltaic systems cannot operate during power outages, making them unsuitable for
disaster conditions. Thus, most of these electric utility–based solutions tend to provide
limited improvement to power grid resiliency during disasters, because they do not
address the inherent issues present in conventional power grids that are listed above.

Since electric utilities’ approaches to improving power supply resiliency during
disasters are limited, electricity users have implemented alternative solutions.
The most common and traditional approach is to use standby diesel generators.
However, power grids’ relatively low resiliency and standby gensets’ relatively high
failure-to-start probability sets an availability ceiling in normal conditions of about four
nines, which is often insufficient for many critical loads, such as communication
facilities. It can be anticipated that such an availability ceiling in normal conditions is
much higher than the maximum resiliency value at the grid tie expected during extreme
events, which could be at best on the order of one-nine. In order to reach the desired
power resiliency level, the solution is for these loads to add energy storage – i.e.,
batteries – but such a solution is usually costly, because significant stored energy is
usually needed. This context is where microgrids present an alternative solution with
potential for achieving high resiliency levels.

Still, microgrid resiliency is not necessarily always high. Microgrids need to be
well designed in order to achieve high resiliency levels. The main issues with an
adequate microgrid design that is resilient to natural disasters are related primarily to
local power sources’ performance during such extreme events [13]. As has been
discussed in this chapter, there are two types of local power sources: those that
depend on a lifeline, and those that do not depend on a lifeline and that are usually
based on renewable energy sources. The main issue affecting resiliency in disaster
conditions for local power sources dependent on a lifeline is that the lifeline may be
affected by the extreme event, such as the road in Figure 2.29. It is important to point

Figure 2.29 Louisiana Highway 23 south of New Orleans after Hurricane Isaac (2012).
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out that lifelines are affected differently depending on the hazard being considered.
For example, natural gas networks are usually affected little by hurricanes but are
significantly affected by earthquakes. Thus, an effective design needs to consider
the expected hazard at the microgrid location, and if possible a local power source
technology should be chosen that relies on a lifeline that is affected the least by the
potential hazard at the microgrid location. The issues affecting renewable energy
sources are large footprints and partially stochastic power outputs. The approaches
to addressing these issues in both types of local power sources are the same:
diversify local power source technology and add energy storage to the microgrid.
However, it is important to point out that there is a limit to how much energy
storage can improve resiliency in LAPES powered by renewable energy sources
only. This limit depends on excess generated power that can be used to recharge
batteries. That is, although some added energy storage can address footprint and
variable output issues of renewable energy sources without compromising resi-
liency, it is possible to find that adding energy storage capacity beyond a certain
limit will not further improve resiliency because there will not be sufficient
generated power in renewable energy sources to charge the energy storage devices
above such a limit.

Obviously, the solutions explored here for enhanced power supply resiliency under
the effects of extreme events, in particular from microgrids, are applicable to areas
that may likely experience long power outages after a disaster but where the damage
is minor. As it was mentioned above, damage assessments conducted after several
recent natural disasters indicate that these areas with little damage but extensive
power grid outages cover at least more than 90% of the areas affected by a natural
disaster. For the rest of the areas, where damage is moderate to extreme, use of
microgrids or other approaches may not be the most recommendable solution,
because even when a microgrid can be designed to escape damage it is likely that
an important portion of its load may be lost due to the disaster, and power-grid outage
restoration by conventional means may be completed before most of the lost load is
recovered.

When evaluating power technologies for enhanced power supply resiliency under
the effects of an extreme event, it is also important to mention that the effects of
disasters may last significantly longer than the event itself. Natural disaster effects
can be divided into at least three phases: when the event is actually happening, the
immediate aftermath, and the long-term aftermath. The events at the Fukushima #1
Nuclear Power Plant as a result of the March 11, 2011 earthquake and tsunami in
Japan are an example of this characterization of events. The first phase occurred
when the earthquake happened, triggering a tsunami that overcame the defenses at
the nuclear power plant and damaged its cooling circuits. This first phase lasted for
about two hours. The second phase lasted for a few days. During this second phase
efforts at the nuclear power plant focused on preventing a nuclear accident and then,
when the nuclear event finally occurred, containing its effects. The third phase is
expected to last several years. In this phase, as a result of the Fukushima #1 Nuclear
Power Plant event, Japan took all of its nuclear power plants off-line. This loss in
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generation capacity added to loss of generation from several damaged conventional
thermal power plants triggered the implementation of energy conservation
measures, which under some extreme conditions may result in selectively rotating
blackouts during days in which the load exceeds generation capacity. But another
solution to the generation-capacity loss problem that could be implemented in
combination with, or instead of, limiting demand is the use of distributed generation
assets in order to limit the aggregated load seen by the conventional bulk-power
generators in the main grid. That is, the benefit of a LAPES in terms of improving
power supply resiliency extends months or years beyond the immediate need
during and right after a natural disaster impacts a given area, and may even
contribute to improved power supply resiliency outside of the local area served by
the LAPES.

As with any new technology, there has been some reluctance in adopting micro-
grids extensively as a solution to improving power supply resiliency in all phases of
an extreme event. One of the reasons for this reluctance observed in noncritical load
applications originates in the higher cost of distributed generation technologies when
compared with more traditional solutions. As summarized at the end of the previous
section, these concerns about microgrids’ costs may be objectively assessed by using
risk analysis tools, as is detailed in [29], and by relying on the general economic
analysis principles explained in Chapter 3. However, even when such an analysis
favors the use of microgrids to achieve a highly resilient power supply during
extreme events in critical load applications, such as in communication sites, wide-
spread adoption of such new technologies in this type of critical application only
occurs after extensive field trials. Obviously, this situation suggests a complex
paradox in the technology adoption process: while due to the costs associated with
distributed generation technologies it’s expected that initial adopters of microgrids
would be operators of critical loads, these same operators are reluctant to adopt such
a technology until it has been extensively demonstrated in a practical setting – but to
achieve such an extensive demonstration level, a broader utilization of microgrids is
needed, which requires lower technology costs. One example of this paradox regard-
ing such a reluctance to adopt new technology was observed at Verizon’s Garden City
central office in the aftermaths of Hurricane Irene in 2011 and Superstorm Sandy in
2012. This site is equipped with seven 200 kW fuel cells (Figure 2.30) that operate in
parallel to the power grid serving this site. These fuel cells are intended to improve
energy utilization in the building by reducing power consumption from the power
grid. However, this site relies on conventional standby diesel gensets in order to
power the site during outages in the power grid, and, obviously, during extreme
events. That is, even when a suitable design combining energy storage and fuel cells
can power this site autonomously, concerns about availability or resiliency – due to
the fact that microgrids are not a technology that has been sufficiently tested to be
used in critical load applications – led to the decision to still rely on conventional
standby diesel gensets during the relatively long grid power outages that followed
Hurricane Irene and Superstorm Sandy.
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Still, during recent disasters it has also been possible to document microgrid perfor-
mance under the effect of extreme events. Even during Superstorm Sandy, a university
campus and a US government facility were able to avoid losing power thanks to their
natural gas–fueled distributed generation systems. Another example of demonstrated
performance is a microgrid in the city of Sendai, Japan, which is operated by
NTTFacilities. This microgrid was originally put into operation in 2008 as part of
a project supported by the Japanese government agency NEDO, whose goal was to
test the possibility of providing various electrical power quality levels through different
circuits named dc, A, B1, B3, C, and “normal,” depending on their expected power
availability. The circuit with the lowest targeted availabilities was fed only from the bulk
power grid tie, and the one with the highest availability was the dc circuit powered from
a local energy center with a grid tie and supported by batteries (Figures 2.31 and 2.32).
This local energy center was originally equipped with 50 kW of photovoltaic modules,
two 350 kW natural gas generators, and a fuel cell, which had been removed by the time
the earthquake struck on March 11, 2011. Thanks to its inland location and its hardened
design the microgrid and surrounding area escaped the extreme damage observed in
nearby coastal areas. Moreover, although the city’s natural gas infrastructure was
severely damaged, natural gas to the microgrid site was unaffected because the gen-
erators were fueled by a dedicated hardened natural gas pipeline from a storage center
that also escaped damage from the tsunami because it was located inland. However,
when the earthquake happened, voltage fluctuations in the public bulk power grid
affected the operation of the natural gas engines, forcing them to go off-line. Efforts to
bring them online a few hours after the earthquake struck were hampered by the batteries
necessary to start the generators that were discharged. Finally, the two natural gas
generators were brought back online about 21 hours after the earthquake happened.

Figure 2.30 Seven fuel cells outside Verizon’s Garden City central office.
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During those 21 hours, circuits B3 and C were not powered whereas circuits A and B1
were powered for the first 12 hours by the microgrid batteries. The dc circuit was kept
powered the entire time by the microgrid batteries and the photovoltaic modules and
never experienced loss of service. Once the natural gas generators were brought back
online, all circuits except the one powered directly from the power grid were powered
from the natural gas generators until power grid service was restored about 65 hours after
the earthquake struck. At this time, service was restored to the normal quality service
circuit.

Figure 2.31 Foreground: energy center in the Sendai microgrid. Notice the lack of significant damage
compared to Figure 2.26 taken a few miles away.

Figure 2.32 Block diagram of the microgrid in Sendai.
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