Some Results on Annihilating-ideal Graphs

Farzad Shaveisi

Abstract

The annihilating-ideal graph of a commutative ring R, denoted by $\mathbb{A} \mathbb{G}(R)$, is a graph whose vertex set consists of all non-zero annihilating ideals and two distinct vertices I and J are adjacent if and only if $I J=(0)$. Here we show that if R is a reduced ring and the independence number of $\mathbb{A} \mathbb{G}(R)$ is finite, then the edge chromatic number of $\mathbb{A} \mathbb{G}(R)$ equals its maximum degree and this number equals $2^{|\operatorname{Min}(R)|-1}-1$; also, it is proved that the independence number of $\mathbb{A} \mathbb{G}(R)$ equals $2^{|\operatorname{Min}(R)|-1}$, where $\operatorname{Min}(R)$ denotes the set of minimal prime ideals of R. Then we give some criteria for a graph to be isomorphic with an annihilating-ideal graph of a ring. For example, it is shown that every bipartite annihilating-ideal graph is a complete bipartite graph with at most two horns. Among other results, it is shown that a finite graph $\mathbb{A} \mathbb{G}(R)$ is not Eulerian, and that it is Hamiltonian if and only if R contains no Gorenstain ring as its direct summand.

1 Introduction

Throughout this paper, all graphs are assumed to be undirected simple graphs. Let G be a graph with the vertex set $V(G)$ and the edge set $E(G)$. The neighborhood, closedneighborhood and degree of a vertex v of G are denoted by $N_{G}(v), N_{G}[v]$, and $d_{G}(v)$, respectively. The subscript G is usually dropped when there is no confusion. Also, the minimum degree and the maximum degree of vertices of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. The girth of a graph G, denoted by girth (G), is the length of a shortest cycle contained in G. If G does not contain any cycle, its girth is defined to be infinity. The distance between two vertices u and v of a graph is denoted by $d(u, v)$. The diameter of a connected graph G, denoted by diam (G), is the maximum distance between any pair of the vertices of G. An induced subgraph of G on $X \subseteq V(G)$, denoted by $G[X]$, is the subgraph with the vertex set $V(G[X])=X$ and the edge set $E(G[X])=\{\{u, v\} \in E(G) \mid u, v \in X\}$. A vertex v in a connected graph G is called a cut vertex if $G \backslash\{v\}=G[V(G) \backslash\{v\}]$ is a disconnected graph. A bipartite graph is a graph whose vertex set can be divided into two disjoint parts X and Y such that both of the induced subgraphs $G[X]$ and $G[Y]$ have no edges. Moreover, a complete bipartite graph is a bipartite graph in which every vertex of one part is joined to every vertex of the other part. If the size of one of the parts is 1 , then it is said to be a star graph. A vertex of a bipartite graph G with parts X and Y, is called an end vertex if $\operatorname{deg}(v)=1$; also, it is called a full vertex if either $N(v)=X$ or $N(v)=Y$. For a graph G, the independence number of G and the edge chromatic number of G are denoted by $\alpha(G)$ and $\chi^{\prime}(G)$, respectively. For more details about the terminology of graphs used here, see [17].

[^0] cycle.

There are many papers on assigning a graph to the set of ideals of a ring [1-3, 5 , $7,9-11,14,15]$. Let R be a commutative ring with identity. We call an ideal I of R, an annihilating-ideal if there exists a non-zero ideal J of R such that $I J=(0)$. We use the notations $\mathbb{I}(R)$ and $\mathbb{A}(R)$, for the set of non-zero ideals of R and the set of annihilating-ideals of R, respectively. Also, by $\operatorname{Min}(R)$, we denote the set of all minimal prime ideals of R. By the annihilating-ideal graph of $R, \mathbb{A} \mathbb{G}(R)$, we mean the graph with the vertex set $\mathbb{A}(R)^{*}=\mathbb{A}(R) \backslash\{(0)\}$ and two distinct vertices I and J are adjacent if and only if $I J=(0)$. The concept of the annihilating-ideal graph of a commutative ring was first introduced in [5]. We say that a graph G is an annihilatingideal graph if $G \cong \mathbb{A} G(R)$ for some ring R. In Section 2, it is shown that for every reduced ring R,

$$
\chi^{\prime}(\mathbb{A} \mathbb{G}(R))=\Delta(\mathbb{A} \mathbb{G}(R))=\alpha(\mathbb{A} \mathbb{G}(R))-1=2^{|\operatorname{Min}(R)|-1}-1
$$

Moreover, we find a sufficient condition under which $\mathbb{A} \mathbb{G}(R)$ belongs to Class 1 , for every Artinian ring R. In Section 3 we give some criteria for a graph to be an annihilating-ideal graph. For example, we prove that any bipartite annihilating-ideal graph is a complete bipartite graph with at most two horns. Section 4 is devoted to investigating the cycles in annihilating-ideal graphs. Finally, we show that a finite annihilating-ideal graph $\mathbb{A} \mathbb{G}(R)$ is not Eulerian, and this graph is Hamiltonian if and only if R contains no Gorenstein ring as its direct summand.

2 The Independence Number and the Edge Chromatic Number

In this section we use the maximal intersecting families to obtain a lower bound for the independence number of $\mathbb{A} \mathbb{G}(R)$.

Proposition 2.1 If $\alpha(\mathbb{A} \mathbb{G}(R))<\infty$, then every element of R is either a zero-divisor or a unit. Moreover, if R is Noetherian, then R has finitely many maximal ideals.

Proof Suppose to the contrary that R contains an element, say x, which is neither a zero-divisor nor a unit. Then it is clear that $\left\{\left(z x^{n}\right) \mid n \in \mathbb{N}\right\}$, in which z is a zerodivisor, is an infinite independent set of $\mathbb{A} \mathbb{G}(R)$, a contradiction. Moreover, if R is Noetherian, then [16, Corollary 9.36] and the fact that the set of associated prime ideals of a Noetherian ring is a finite non-empty set, imply that R has finitely many maximal ideals.

We note that the converse of the previous proposition is not true. To see this, let $R \cong S \times T$, where S and T are Artinian local rings and $|\mathbb{I}(T)|=\infty$. Then
$\{S \times I \mid I$ is a nontrivial ideal of $T\}$
is an infinite independent set of $\mathbb{A} \mathbb{G}(R)$. So $\alpha(\mathbb{A} \mathbb{G}(R))=\infty$.
Let R be a decomposable ring such that $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where every R_{i} is a ring. Then we use the following notation:

$$
\mathcal{S}(R)=\left\{(0) \neq I=I_{1} \times I_{2} \times \cdots \times I_{n} \triangleleft R \mid \forall 1 \leq k \leq n: I_{k} \in\left\{(0), R_{k}\right\}\right\} .
$$

Also, we denote the induced subgraph of $\mathbb{A} \mathbb{G}(R)$ on $\mathcal{S}(R)$ by $G_{\mathcal{S}}(R)$.
Lemma 2.2 If $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ is a ring, then $\alpha\left(G_{S}(R)\right)=2^{n-1}$.

Proof For every ideal $I=I_{1} \times I_{2} \times \cdots \times I_{n}$, let $\Delta_{I}=\left\{k \mid 1 \leq k \leq n\right.$ and $\left.I_{k}=R_{k}\right\}$. Then two distinct vertices I and J in $G_{\mathcal{S}}(R)$ are not adjacent if and only if $\Delta_{I} \cap \Delta_{J} \neq \varnothing$. So there is a one-to-one correspondence between the independent sets of $G_{\delta}(R)$ and the set of families of pairwise intersecting subsets of $[n]=\{1,2, \ldots, n\}$. Assume that \mathcal{F} is a maximum intersecting family of the subsets of $[n]$. Setting $\mathcal{A}=\left\{I \in \mathcal{S}(R) \mid \Delta_{I} \in \mathcal{F}\right\}$, we deduce that \mathcal{A} is an independent set of $G_{\mathcal{S}}(R)$ with maximum size. This implies that $\alpha\left(G_{\mathcal{S}}(R)\right)=|\mathcal{A}|=|\mathcal{F}|$. So [13, Lemma 2.1] completes the proof.

Using [4, Theorem 8.7] and Lemma 2.2, we have the following corollary.
Corollary 2.3 Let R be an Artinian ring with n maximal ideals. Then $\alpha(\mathbb{A} \mathbb{G}(R)) \geq$ 2^{n-1}; moreover, the equality holds if and only if R is reduced.

Lemma 2.4 ([12, Proposition 1.5]) Let R be a ring and $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ be a finite set of distinct minimal prime ideals of R. Let $S=R \backslash \bigcup_{i=1}^{n} \mathfrak{p}_{i}$. Then $R_{S} \cong R_{\mathfrak{p}_{1}} \times \cdots \times R_{\mathfrak{p}_{n}}$.

Proposition 2.5 If $|\operatorname{Min}(R)| \geq n$, then $\alpha(\mathbb{A} \mathbb{G}(R)) \geq 2^{n-1}$.
Proof Let $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ be a subset of $\operatorname{Min}(R)$ and $S=R \backslash \bigcup_{i=1}^{n} \mathfrak{p}_{i}$. By Lemma 2.4, there exists a ring isomorphism $R_{S} \cong R_{\mathfrak{p}_{1}} \times \cdots \times R_{\mathfrak{p}_{n}}$. On the other hand, if I_{S}, J_{S} are two non-adjacent vertices of $\mathbb{A} \mathbb{G}\left(R_{S}\right)$, then it is not difficult to check that I, J are two non-adjacent vertices of $\mathbb{A} \mathbb{G}(R)$. Thus $\alpha(\mathbb{A} \mathbb{G}(R)) \geq \alpha\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right)$ and so by Lemma 2.2 , we deduce that $\alpha(\mathbb{A} \mathbb{G}(R)) \geq 2^{n-1}$.

From the previous proposition, we have the following immediate corollary which shows that the finiteness of $\alpha(\mathbb{A} \mathbb{G}(R))$ implies the finiteness of the set of minimal prime ideals of R.

Corollary 2.6 If R contains infinitely many minimal prime ideals, then the independence number of $\mathbb{A} \mathbb{G}(R)$ is infinite.

Vizing's Theorem [18, p. 16] states that if G is a simple graph, then either $\chi^{\prime}(G)=$ $\Delta(G)$ or $\chi^{\prime}(G)=\Delta(G)+1$. A graph G belongs to Class 1 if $\chi^{\prime}(G)=\Delta(G)$ and it belongs to Class 2 if $\chi^{\prime}(G)=\Delta(G)+1$.

Now we determine sufficient conditions under which an annihilating-ideal graph belongs to Class 1 . First of all, we recall the following lemma.

Lemma 2.7 ([6, Corollary 5.4]) Let G be a simple graph. Suppose that for every vertex u of maximum degree, there exists an edge $\{u, v\}$ such that $\Delta(G)-d(v)+2$ is more than the number of vertices with maximum degree in G. Then $\chi^{\prime}(G)=\Delta(G)$.

Recall that for every local ring $(R, \mathfrak{m}), \operatorname{Ann}(\mathfrak{m})$ is a vector space on the field $\frac{R}{\mathfrak{m}}$. The dimension of this vector space, denoted by $r(R)$, is called the type of R. By [1, Theorem 3], $\mathfrak{m}^{2}=(0)$ if and only if $\mathbb{A} \mathbb{G}(R)$ is a complete graph and in this case $\chi^{\prime}(\mathbb{A} \mathbb{G}(R))=\Delta(\mathbb{A} \mathbb{G}(R))$ if and only if R has an even number of non-trivial ideals.

Theorem 2.8 Let (R, \mathfrak{m}) be a local ring with t proper ideals. If $\mathfrak{m}^{2} \neq(0)$ and $r(R)=$ $r<\log _{2}(t+2)-1$, then $\mathbb{A} \mathbb{G}(R)$ belongs to Class 1 .

Proof Since $\operatorname{dim}_{\frac{R}{\mathfrak{m}}} \operatorname{Ann}(\mathfrak{m})=r$, there are $2^{r}-1$ non-zero ideals (subspaces) which are contained in $\operatorname{Ann}(\mathfrak{m})$. Also, it is clear that every ideal $I \subseteq \operatorname{Ann}(\mathfrak{m})$ is adjacent to every other vertex of $\mathbb{A} \mathbb{G}(R)$. So a vertex I of $\mathbb{A} \mathbb{G}(R)$ has maximum degree if and only if $I \subseteq \operatorname{Ann}(\mathfrak{m})$. For every such vertex, we have

$$
\Delta(\mathbb{A} \mathbb{G}(R))-d(\mathfrak{m})+2=t-2-\left(2^{r}-1\right)+2>2^{r+1}-2-2^{r}+1=2^{r}-1
$$

Therefore, the assertion follows from Lemma 2.7.
Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ be a ring, where $\left(R_{i}, \mathfrak{m}_{i}\right)$ is an Artinian local ring of type r_{i} and $\left|\mathbb{I}\left(R_{i}\right)\right|=t_{i}$ for every $1 \leq i \leq n$. With no loss of generality, we can assume that $t_{1}=t_{2}=\cdots=t_{k}>t_{k+1} \geq \cdots \geq t_{n}$, for some positive integer $k \leq n$. It is not hard to check that I is a vertex of maximum degree if and only if

$$
I=(0) \times \cdots \times(0) \times \operatorname{Ann}\left(\mathfrak{m}_{j}\right) \times(0) \times \cdots \times(0)
$$

for some $1 \leq j \leq k$ and in this case $M_{j}=R_{1} \times \cdots \times R_{j-1} \times \mathfrak{m}_{j} \times R_{j+1} \times \cdots \times R_{n}$ is an adjacent vertex to I. Thus $\Delta(\mathbb{A} \mathbb{G}(R))-d\left(M_{j}\right)+2=t_{1} \prod_{i=2}^{n}\left(t_{i}+1\right)-2^{r_{j}}+1$, where $2^{r_{j}}$ is the number of ideals contained in $\operatorname{Ann}\left(\mathfrak{m}_{j}\right)$. Moreover, the number of vertices with maximum degree is $\sum_{i=1}^{k}\left(2^{r_{i}}-1\right)$. Now setting $s=\max \left\{r_{1}, r_{2}, \ldots, r_{k}\right\}$, Lemma 2.7 implies that the sufficient condition for $\mathbb{A} \mathbb{G}(R)$ to be of Class 1 is that

$$
t_{1} \prod_{i=2}^{n}\left(t_{i}+1\right)>\sum_{i=1}^{k} 2^{r_{i}}+2^{s}-k-1
$$

Therefore, we have proved the following result.
Proposition 2.9 Let $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ be a ring, where every R_{i} is an Artinian local ring of type r_{i} and $\left|\mathbb{I}\left(R_{i}\right)\right|=t_{i}$, such that $t_{1}=t_{2}=\cdots=t_{k}>t_{k+1} \geq \cdots \geq t_{n}$ and $r_{1} \geq r_{2} \geq \cdots \geq r_{k}$. If $t_{1} \prod_{i=2}^{n}\left(t_{i}+1\right)>\sum_{i=1}^{k} 2^{r_{i}}+2^{r_{1}}-k-1$, then $\mathbb{A} \mathbb{G}(R)$ belongs to Class 1 .

An Artinian local ring (R, \mathfrak{m}) is called Gorenstein if R has type one. Also, it is said that an Artinian ring R is Gorenstein if $R_{\mathfrak{m}}$ is a Gorenstein ring for every maximal ideal \mathfrak{m} of R. From the previous proposition, we have the following immediate corollary.

Corollary 2.10 If R is an Artinian Gorenstein ring, then $\chi^{\prime}(\mathbb{A} \mathbb{G}(R))=\Delta(\mathbb{A} \mathbb{G}(R))$.
It is clear that any finite direct product of fields is a Gorenstein ring. So, we have the following corollary.

Corollary 2.11 Let $R \cong F_{1} \times F_{2} \times \cdots \times F_{n}$, where every F_{i} is a field. Then $\chi^{\prime}(\mathbb{A} \mathbb{G}(R))=$ $\Delta(\mathbb{A} \mathbb{G}(R))=2^{n-1}-1$.

We finish this section with the following theorem.
Theorem 2.12 If R is a reduced ring and $\alpha(\mathbb{A} \mathbb{G}(R))<\infty$, then

$$
\chi^{\prime}(\mathbb{A} \mathbb{G}(R))=\Delta(\mathbb{A} \mathbb{G}(R))=\alpha(\mathbb{A} \mathbb{G}(R))=2^{|\operatorname{Min}(R)|-1}-1 .
$$

Proof Since $\alpha(\mathbb{A} \mathbb{G}(R))<\infty$, Proposition 2.1 implies that every element of R is either a zero-divisor or a unit. Moreover, Corollary 2.6 implies that R contains only finitely many minimal prime ideals. Let $\operatorname{Min}(R)=\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}\right\}$. Then by Lemma 2.4, $R_{S} \cong R_{\mathfrak{p}_{1}} \times R_{\mathfrak{p}_{2}} \times \cdots \times R_{\mathfrak{p}_{n}}$, where $S=\bigcup_{i=1}^{n} \mathfrak{p}_{i}$. Let I and J be two non-trivial ideals of R. If $I_{S}=J_{S}$, then for every $x \in I$, there are elements $s \in S$ and $y \in J$ such that $s x=y$ which implies that $x=s^{-1} y \in J$. Thus $I \subseteq J$. A similar proof shows that $J \subseteq I$. Therefore, there is a one-to-one correspondence between the ideals of R and the ideals of R_{S}. Next we show that $I J=(0)$ if and only if $I_{S} J_{S}=(0)$. If $I J=(0)$, then it is clear that $I_{S} J_{S}=(0)$. Now suppose that $I_{S} J_{S}=(0)$ and choose $x \in I$ and $y \in J$. Then there exists an element $t \in S$ such that $t x y=0$. By [8, Corollary 2.4], t is not a zero-divisor and so $x y=0$. Thus $I J=(0)$ if and only if $I_{S} J_{S}=(0)$. The above argument shows that $\mathbb{A} \mathbb{G}(R) \cong \mathbb{A} \mathbb{G}\left(R_{S}\right)$. By [12, Proposition 1.1], we can assume that $R_{S} \cong F_{1} \times F_{2} \times \cdots \times F_{n}$, where every F_{i} is a field. Therefore, Lemma 2.2 and Corollary 2.11 complete the proof.

3 Some Criteria for Graphs to be Annihilating-ideal Graphs

First we determine when a bipartite graph is an annihilating-ideal graph. For this we need the following two lemmas.

Lemma 3.1 Assume that R is a ring such that $\mathbb{A} \mathbb{G}(R)$ is a bipartite graph with parts X, Y. If $I \in X, J \in Y$, and $I J \neq(0)$, then either $d(I)=1$ or $d(J)=1$.

Proof Let $I \in X$ and $J \in Y$ be two non-adjacent vertices of $\mathbb{A} \mathbb{G}(R)$. Then it is clear that $N(I) \cup N(J) \subseteq N[I J]$. If $I J \in X$, then $N(J)=N(J) \backslash Y \subseteq N[I J] \backslash Y=\{I J\}$ and thus $d(J)=1$. If $I J \in Y$, then a similar proof shows that $d(I)=1$.

As an immediate consequence, we obtain the following result.
Corollary 3.2 If G is a bipartite annihilating-ideal graph containing no end vertices, then G is a complete bipartite graph.

Now we recall the following theorem from [5, Theorem 2.1].
Theorem 3.3 For every ring R the annihilating-ideal graph $\mathbb{A} \mathbb{G}(R)$ is connected and $\operatorname{diam}(\mathbb{A} \mathbb{G}(R)) \leq 3$. Moreover, if $\mathbb{A} \mathbb{G}(R)$ contains a cycle, then $\operatorname{girth}(\mathbb{A} \mathbb{G}(R)) \leq 4$.

Let G be a bipartite graph with parts X, Y. We define a vertex $v \in V(G)$ to be full if either $N(v)=X$ or $N(v)=Y$.

Lemma 3.4 Let $\mathbb{A} \mathbb{G}(R)$ be a bipartite annihilating-ideal graph with parts X, Y. If there exists a vertex $I \in X$ such that $d(I)=1$, then the unique element in $N(I)$ is a full vertex.

Proof Suppose to the contrary that $J \in N(I)$ is not a full vertex. Then there is a non-trivial ideal $K \in X$ such that $K J \neq(0)$ and the shortest one of the possible paths linking I and K is as shown in Figure 1

Figure 1.
for some non-trivial ideals L, M of R. Thus $d(I, K) \geq 4$, which is impossible by Theorem 3.3.

Recall that a two-star graph is a graph G consisting of two star graphs with a bridge connecting the two sub-centers x and y. A horn in a graph consists of some end vertices all adjacent to a common vertex.

Theorem 3.5 Every bipartite, annihilating-ideal graph is a complete bipartite graph with at most two horns.

Proof Let $G \cong \mathbb{A} \mathbb{G}(R)$ be a bipartite, annihilating-ideal graph for some ring R. If G is a star graph, then there is nothing to prove. So we can assume that $\mathbb{A}(R)$ is a bipartite graph with parts X, Y, and $|X|>1,|Y|>1$. We claim that there exist $I \in X$ and $J \in Y$ such that I and J are full vertices. If G is complete bipartite, then there is nothing to prove. So, we assume that G is not a complete bipartite graph and there exist non-trivial ideals $K \in X$ and $L \in Y$ such that K is not adjacent to L. So by Lemma 3.1 and with no loss of generality, we can assume that $d(K)=1$. Let $J \in N(K)$. Then $J \in Y$ is a full vertex by Lemma 3.4. Now assume that each vertex in X is not full. Then $N(\mathfrak{a}) \varsubsetneqq Y$ for any $\mathfrak{a} \in X$. If $d(\mathfrak{a})=1$ for any $\mathfrak{a} \in X$, then $N(\mathfrak{a})=\{J\}$, for any $\mathfrak{a} \in X$, and thus each vertex in $Y \backslash\{J\}$ is an isolated vertex, which contradicts Theorem 3.3. Hence there exists $\mathfrak{a} \in X$ with $2 \leq d(\mathfrak{a})$ and $N(\mathfrak{a}) \varsubsetneqq Y$. Fix a vertex $J_{1} \in Y \backslash N(\mathfrak{a})$. Then J_{1} is not adjacent to \mathfrak{a} and so $d\left(J_{1}\right)=1$ by Lemma 3.1. It follows from Lemma 3.4 that the unique element in $N\left(J_{1}\right)$ is full, a contradiction again. So the claim is proved. Set

$$
\begin{aligned}
A & =\{\mathfrak{p} \in V(G) \mid \mathfrak{p} \text { is adjacent to } I \text { and } d(\mathfrak{p})>1\}, \\
U & =\{\mathfrak{p} \in V(G) \mid \mathfrak{p} \text { is adjacent to } I \text { and } d(\mathfrak{p})=1\}, \\
B & =\{\mathfrak{q} \in V(G) \mid \mathfrak{q} \text { is adjacent to } J \text { and } d(\mathfrak{q})>1\}, \\
V & =\{\mathfrak{q} \in V(G) \mid \mathfrak{q} \text { is adjacent to } J \text { and } d(\mathfrak{q})=1\} .
\end{aligned}
$$

Then $V(G)=A \cup B \cup U \cup V \cup\{I, J\}$ and the graph G is of the type in Figure 2

Figure 2.
where A, B, U, and V are pairwise disjoint subsets of $V(G)$. To complete the proof, we show that the induced subgraph on $A \cup B$ is a complete bipartite graph. Suppose to the contrary, $\mathfrak{p} \in A$ and $\mathfrak{q} \in B$ are two nonadjacent vertices. Then Lemma 3.1 implies that either $d(\mathfrak{p})=1$ or $d(\mathfrak{q})=1$, a contradiction. Hence the induced subgraph on $A \cup B$ is a complete bipartite graph, as desired.

From the previous theorem, we have the following immediate corollary.
Corollary 3.6 Let G be an annihilating-ideal graph. If G is a tree, then G is either a star or a two-star graph.

Proof From Theorem 3.5, we deduce that G is of the type in Figure 2. Since G is a tree, then either $A=\varnothing$ or $B=\varnothing$. So the assertion follows.

Recall that a graph G is a refinement of a star graph if it contains a vertex, say v, such that $N[v]=V(G)$.

From [5, Theorem 2.2], we know that an annihilating-ideal graph $\mathbb{A} \mathbb{G}(R)$ is a refinement of a star graph if and only if either $Z(R)$ is an annihilator ideal or $R \cong F \times D$, where F is a field and D is an integral domain. In the following theorem we investigate the existence of end vertices in an annihilating-ideal graph that is not a refinement of a star graph.

Theorem 3.7 Let G be an annihilating-ideal graph which is not a refinement of a star graph. Then G has an end vertex if and only if G has a cut vertex.

Proof Let $G \cong \mathbb{A} \mathbb{G}(R)$ for some ring R. If G has a vertex I of degree one, then $\operatorname{Ann}(I)$ is the unique vertex, adjacent to I. Thus $\operatorname{Ann}(I)$ is a cut vertex of G. Conversely, assume that G has a cut vertex, say K. Then there exist two disjoint subsets X, Y such that $V(G) \backslash\{K\}=X \cup Y$ and $I J \neq(0)$, for every ideal $I \in X$ and $J \in Y$. Suppose to the contrary, G contains no end vertex. Now from Theorem 3.3, we deduce that for every two ideals $I \in X$ and $J \in Y$, there exist ideals $L \in X$ and $M \in Y$ such that $I L=(0)$ and $J M=(0)$. So, $N(L) \cup N(M) \subseteq N[L M]$. Thus $L M \in N[I] \cap N[J] \subseteq\{K\}$, and so $L M=K$. Therefore, $K I=K J=(0)$, for every ideal $I \in X$ and every ideal $J \in Y$. This implies that G is a refinement of a star graph, a contradiction.

Example 3.8 The graphs in Figures 3 and 4 are not annihilating-ideal graphs, where U consists of finitely or infinitely many end vertices.

Figure 3.

Figure 4.

To see this, find $N[I M]$.
Let Δ, δ denote the maximum and minimum degrees of a graph, respectively.

Lemma 3.9 Let G be an annihilating-ideal graph and I be a vertex of G with maximum degree. If $J \notin N(I)$, then $N(J) \subseteq N(I)$.

Proof Let $G \cong \mathbb{A} \mathbb{G}(R)$, where R is a ring, and choose $J \notin N(I)$. Then $N(I) \cup N(J) \subseteq$ $N[I J] \backslash\{I\}$. If $I \in N(I J)$, then $|N(I) \cup N(J)|=\Delta$, and so $N(J) \subseteq N(I)$. Now, suppose $I J \notin N(I)$. Then $N(I) \subseteq N(I J)$. Since $|N(I J)| \leq|N(I)|=\Delta$, we have $N(I)=N(I J)$, and so $I J \notin N(J)$. Hence $N(J) \subseteq N(I J)=N(I)$.

In the next result we give a necessary condition on the minimum and maximum degree of the vertices of a graph G to be an annihilating-ideal graph.

Theorem 3.10 If $\lceil\delta(|V(G)|-\Delta-1) / \Delta)\rceil+1>\Delta$, then G is not an annihilating-ideal graph.

Proof Let $\lceil\delta(|V(G)|-\Delta-1) / \Delta)\rceil+1>\Delta$ and suppose to the contrary, $G \cong \mathbb{A} \mathbb{G}(R)$ for some ring R. Choose a vertex I with maximum degree and let $N(I)=\left\{J_{1}, \ldots, J_{\Delta}\right\}$. Also, assume that $V(G) \backslash N[I]=\left\{K_{1}, \ldots, K_{n-\Delta-1}\right\}$, where $n=|V(G)|$. By Lemma 3.9, $N\left(K_{i}\right) \subseteq N(I)$ for every $1 \leq i \leq n-\Delta-1$. On the other hand, each K_{i} must be adjacent to at least δ vertices. So the pigeonhole principle implies that there must exist K_{i} with degree $\left.d\left(K_{i}\right) \geq\lceil\delta(n-\Delta-1) / \Delta)\right\rceil+1>\Delta$, a contradiction.

For any graph G, we denote the set of all vertices with maximum degree, by I_{Δ}.
Corollary 3.11 If G is an annihilating-ideal graph, then $G\left[I_{\Delta}\right]$ is either connected or the graph of isolated vertices.

Proof Suppose $G \cong \mathbb{A} \mathbb{G}(R)$ for some ring R, and assume that $G\left[I_{\Delta}\right]$ is not connected. Then there exist two vertices I and J in the same connected component such that $I J=(0)$. Clearly, there exists a vertex, say K, such that K is not adjacent to both I and J. Thus from Lemma 3.9 we have $N(K)=N(I)$ and $N(K)=N(J)$. Therefore, $N(I)=N(J)$, a contradiction.

4 Cycles in Annihilating-ideal Graphs

In this section, it is shown that the core of any annihilating-ideal graph is a union of triangles and rectangles. Recall that the core of a graph G is the subgraph induced on all vertices of cycles of G. Also, we prove that a finite annihilating-ideal graph is Hamiltonian if and only if the ring contains no Gorenstein ring as its direct summand. First, we need the following lemma.

Lemma 4.1 If $I-J-K$ is a path in $\mathbb{A} \mathbb{G}(R)$, then either $N(M) \subseteq \overline{N(J)}$ for every non-adjacent vertex M to J, or $I-J-K$ is contained in a cycle of length ≤ 4.

Proof Let $I-J-K$ be a path in $\mathbb{A} \mathbb{G}(R)$. If there exists a vertex $L \neq J$ such that $L \in N(I) \cap N(K)$, then $I-J-K-L-I$ is a cycle of length 4 . So, assume that $N(I) \cap N(K)=\{J\}$. If M is a non-adjacent vertex with J, then $N(J) \cup N(M) \subseteq$ $\overline{N(J M)}$. Thus $J M \in \overline{N(I)} \cap \overline{N(K)}$. If $J M \in N(I) \cap N(K)$, then $J M=J$ and this
implies that $N(M) \subseteq \overline{N(J)}$. So, with no loss of generality, we can assume that $J M=I$. Thus $K \in N(I)$ and hence $I-J-K-I$ is a triangle in $\mathbb{A} \mathbb{G}(R)$.

In [5], the authors proved that if $\mathbb{A} \mathbb{G}(R)$ contains a cycle, then its girth does not exceed 4 . The next theorem is a vast strengthening of this result.

Theorem 4.2 The core \mathcal{K} of $\mathbb{A} \mathbb{G}(R)$ is a union of triangles and rectangles. Moreover, any vertex of $\mathbb{A} \mathbb{G}(R)$ is either a vertex of the core \mathcal{K} of $\mathbb{A} \mathbb{G}(R)$ or else is an end vertex of $\mathbb{A} \mathbb{G}(R)$.

Proof If $I \in \mathcal{K}$, then I is part of a cycle $I-J-K-L-\cdots-I$. If L is adjacent to I, then I is in a rectangle. Thus we can assume that L and I are not adjacent vertices. So Lemma 4.1 implies that $K \in N(L) \subseteq \overline{N(I)}$. Therefore, I is in a triangle. This proves the first statement. For the second statement, we can assume $|V(\mathbb{A} \mathbb{G}(R))| \geq 3$. Suppose to the contrary, I is a vertex of $\mathbb{A} \mathbb{G}(R)$ such that $I \notin \mathcal{K}$ and I is not an end vertex. Choose $J \in \mathcal{K}$. Then Lemma 4.1 implies that J lies in either a triangle or a rectangle. By Theorem [5, Theorem 2.1] $d(I, J) \leq 3$. To get a contradiction, we consider the following cases.
Case 1: $d(I, J)=1$. In this case, $\mathbb{A} \mathbb{G}(R)$ contains one of the following subgraphs:

Since $I \notin \mathcal{K}$ and I is not an end vertex, there exists a vertex $P \in N(I) \backslash\{J, K, L, M\}$. So Lemma 4.1 implies that either $P-I-J$ lies in a cycle with length ≤ 4 or $K \in N(L) \subseteq$ $N(I)$. Thus $I \in \mathcal{K}$, a contradiction.
Case 2: $d(I, J)=2$. In this case, $\mathbb{A} \mathbb{G}(R)$ contains one of the following subgraphs:

Again from Lemma 4.1, we deduce that either $I-X-J$ lies in a cycle of length ≤ 4 or $K \in N(L) \subseteq N(I)$, a contradiction.
Case 3: $d(I, J)=3$. In this case, $\mathbb{A} \mathbb{G}(R)$ contains one of the following subgraphs:

Therefore, we have $\operatorname{diam}(\mathbb{A} \mathbb{G}(R)) \geq d(I, K) \geq 4$, a contradiction.

Theorem 4.3 Let R be a ring with finite annihilating-ideal graph. Then $\mathbb{A}(R)$ is Hamiltonian if and only if R contains no Gorenstein ring as its direct summand.

Proof Since $\mathbb{A} \mathbb{G}(R)$ is a finite graph, [5, Theorem 1.4] and [4, Theorem 8.7] imply that $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$, where every $\left(R_{i}, \mathfrak{m}_{i}\right)$ is an Artinian local ring. If R contains a Gorenstein ring as its direct summand, then with no loss of generality, we can assume that R_{1} is a Gorenstein local ring. Thus the type of R_{1} is 1 , and so $\operatorname{Ann}\left(\mathfrak{m}_{1}\right) \times(0) \times \cdots \times(0)$ is the only vertex adjacent with $\mathfrak{m}_{1} \times R_{2} \times \cdots \times R_{n}$. Hence $\mathbb{A} \mathbb{G}(R)$ is not Hamiltonian. Now assume that R contains no Gorenstein ring as its direct summand. Then every R_{i} is not a Gorenstein ring. Indeed, every vertex of $\mathbb{A} \mathbb{G}(R)$ is contained in $M_{i}=R_{1} \times \cdots \times \mathfrak{m}_{i} \times \cdots \times R_{n}$ for some $1 \leq i \leq n$. Since R_{i} is not Gorenstein, $\operatorname{Ann}\left(M_{i}\right)=\operatorname{Ann}\left(\mathfrak{m}_{i}\right)$ contains more than one non-trivial ideal. Thus $d\left(M_{i}\right)>1$ for every maximal ideal M_{i} of R, and hence $\mathbb{A} \mathbb{G}(R)$ contains no end vertex. Therefore, Theorem 4.2 implies that $\mathbb{A} \mathbb{G}(R)$ is Hamiltonian.

The following corollary is obtained immediately from the previous theorem.
Corollary 4.4 If $\mathbb{A} \mathbb{G}(R)$ is a finite graph and R contains a field as its direct summand, then $\mathbb{A} \mathbb{G}(R)$ is not a Hamiltonian graph.

Finally, we finish this paper with the following result.

Proposition 4.5 Finite annihilating-ideal graphs are not Eulerian.

Proof Assume that R is a ring such that $\mathbb{A} \mathbb{G}(R)$ is a finite graph. Then by [5, Theorem 1.4], R contains only finitely many ideals. Thus [4, Theorem 8.7] implies that $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ for some positive integer n, where every R_{i} is an Artinian local ring. Let \mathfrak{m} be the unique maximal ideal of R_{1}. Then the degree of the vertex $M=\mathfrak{m} \times R_{2} \times \cdots \times R_{n}$ in $\mathbb{A} \mathbb{G}(R)$ equals the number of non-zero ideals contained in $\operatorname{Ann}\left(\mathfrak{m}_{1}\right) \times(0) \times \cdots \times(0)$. So $d(M)=2^{r}-1$, where r is the type of the local ring R_{1}. Therefore, by [17, Theorem 1.2.26], $\mathbb{A} \mathbb{G}(R)$ is not Eulerian.

Acknowledgements The author would like to thank the referee(s) for valuable comments and suggestions on the manuscript which improved the readability of the paper.

References

[1] G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M. J. Nikmehr, and F. Shaveisi, The classification of the annihilating-ideal graph of a commutative ring. Algebra Colloq. 21(2014), no. 2, 249-256. http://dx.doi.org/10.1142/S1005386714000200
[2] G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr, and F. Shaveisi, On the coloring of the annihilating-ideal graph of a commutative ring. Discrete Math. 312(2012), 2620-2626. http://dx.doi.org/10.1016/j.disc.2011.10.020
[3] _._ Minimal prime ideals and cycles in annihilating-ideal graphs. Rocky Mountain J. Math. 43(2013), no. 5, 1415-1425. http://dx.doi.org/10.1216/RMJ-2013-43-5-1415
[4] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra. Addison-Wesley, 1969.
[5] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings. I. J. Algebra Appl. 10(2011), no. 4, 727-739. http://dx.doi.org/10.1142/S0219498811004896
[6] L. W. Beineke and B. J. Wilson, Selected topics in graph theory. Academic Press, London, 1978.
[7] I. Chakrabarty, S. Ghosh, T. K. Mukherjee, and M. K. Sen, Intersection graphs of ideals of rings. Discrete. Math. 309(2009), 5381-5392. http://dx.doi.org/10.1016/j.disc.2008.11.034
[8] J. A. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New York, 1988.
[9] N. Jafari Rad, A characterization of bipartite zero-divisor graphs. Canad. Math. Bull. 57(2014), 188-193. http://dx.doi.org/10.4153/CMB-2013-011-6
[10] S. Kiani, H. R. Maimani, and R. Nikandish, Some results on the domination number of a zero-divisor graph. Canad. Math. Bull. 57(2014), 573-578. http://dx.doi.org/10.4153/CMB-2014-027-8
[11] J. D. LaGrange, Characterizations of three classes of zero-divisor graphs. Canad. Math. Bull. 55(2012), 127-137. http://dx.doi.org/10.4153/CMB-2011-107-3
[12] E. Matlis, The minimal prime spectrum of a reduced ring. Illinois J. Math. 27(1983), no. 3, 353-391.
[13] A. Meyerowitz, Maximali intersecting families. Europ. J. Combinatorics 16(1995), 491-501. http://dx.doi.org/10.1016/0195-6698(95)90004-7
[14] M. J. Nikmehr and F. Shaveisi, The regular digraph of ideals of a commutative ring. Acta Math. Hungar. 134(2012), no. 4, 516-528. http://dx.doi.org/10.1007/s10474-011-0139-6
[15] K. Samei, On the comaximal graph of a commutative ring. Canad. Math. Bull. 57(2014), 413-423. http://dx.doi.org/10.4153/CMB-2013-033-7
[16] R. Y. Sharp, Steps in commutative algebra. Cambridge University Press, 1990.
[17] D. B. West, Introduction to graph theory. 2nd ed., Prentice Hall, Upper Saddle River, 2002.
[18] H. P. Yap, Some topics in graph theory, London Mathematical Society Lecture Note Series 108. Cambridge University Press, Cambridge, 1986.
Department of Mathematics, Faculty of Sciences, Razi University, Kermanshah, Iran
e-mail: f.shaveisi@razi.ac.ir

[^0]: Received by the editors June 24, 2014; revised February 29, 2016.
 Published electronically May 10, 2016.
 AMS subject classification: 05C15, 05C69, 13E05, 13 E 10.
 Keywords: annihilating-ideal graph, independence number, edge chromatic number, bipartite,

