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A family of groups with a countable
infinity of full orders

R. N. Buttsworth

We construct a family of groups with precisely X full orders.

1. Introduction

In Fuchs [7]> B.H. Neumann is reported as asking if, when a orderable

group has infinitely many full orders, the total number of these is a

power of 2 . We show that there are groups with precisely a countable

infinity of orders.

2. Notation and preliminary results

Group operations are written multiplicatively. Elementary results

about ordered groups are assumed and both these and relevant notation is

found in Fuchs [/]. The following easy results are also assumed.

Let G be a fully ordered group with order denoted by >• and

x, y. i G , t ( Z ,
Is

2.1. If

k. Z.

then

and
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I w . l ^ \ y A i f k . l . = k . l . .

2.2. If x y .x = y . and if \y-\ % \y •. -, | does not hold then

either

or

3. The family of groups

Our main result is:

THEOREM 3.1. There are O-groups with precisely a countable

infinity of distinct full orders.

We prove this by producing a family of such groups. First we need a

few definitions.

DEFINITION 3.2. X is that subgroup of the rational numbers under

addition whose elements are just those with denominators a power of 2 .

DEFINITION 3.3. Xx is a subset of X given by

Xi = {x | x 6 X , 0 < x < 1}

so that

X = j — | m < 2n , m, n i N\ U {0} ,

where N denotes the positive integers.

Z is the integers under addition.

DEFINITION 3.4. The groups B and X : z i Z , x i X1 are

3 }X Z >X X

a l l copies of Q , the rational numbers under addition.

DEFINITION 3 . 5 .
H

z
 = T T H

z x •
3 ZX

and
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Kz= "T~T Kz x '

are (restricted) direct products of copies of Q .

z,x '

* = TT KZ = TT TT x
Z Z'X

and

L = H x K .

Hext we define a semidirect product of X and L . To accomplish

this we specify the transformations of the basic components, H and

K by each element of X .
z,x

DEFINITION 3.6. Let h i.H be a distinguished element for
z,x z,x

each E and similarly

k 6 K

Likewise & (. X is distinguished and so is X, (. Z .

Thus arbitrary members of H and of X can be expressed as h

z ,x z,x

and E,a respectively, where r £ Q and a £ X .

Our transformations are given by

s'x z,x+a2z-n

where n 5 x + a23 < n + 1 , n S N , and

(2) 5-Y/-W 2
z'x z ,x+a2z-n

where

n £ x + a2z < n + 1
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and where p, q i. N are square-free with

P * <J •

LEMMA 3.7. These transformations form a subgroup of the automorphism

group of L isomorphia to X , so we have an associated semidirect

product, M j of L by X .

Finally we define transformations of M by Z .

DEFINITION 3.8.

and

a

LEMMA 3.9. These transformations form a subgroup of the

automorphism group of M isomorphic to Z , so we have an associated

semidirect product, G(p, q) of M by Z .

LEMMA 3.10. In any full order of M [and hence of G{p, q)) the

order of each group H , and K is archimedean, and in fact unique up
2 Z

to duals.

Proof. If Xi, x2 € Xi with (say)

Xi > Xj ,

we may put

xn - x. = — , m, n i N , m < 2
2 1 2n

Thus we define

m
a =

2n+s '

so that

https://doi.org/10.1017/S000497270004630X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270004630X


A family of groups 101

~n n m

<6) 5 hzx*> =}Pzx

according to (l).

But

(7) E,~ah £,a = h

again from (l).

(6) and (7) together show that all elements h for fixed z
Z J*JJ

belong to the same archimedean class, showing H to be archimedean.

Clearly analogous results hold for K . Further we deduce from (6)
z

and (7) that

ri V2 Xl X2

x l
under the condition h 6 P , where p is a real number taken

positive whenever ambiguity might arise.

This follows since H is archimedean so that it is isomorphic to az
subgroup of the real numbers (Fuchs [I], p. **5) whose only automorphisms

are given by multiplication by real numbers (Fuchs [I], p. ^6); from (6),

the number in question for transformation by E, is seen to satisfy

(x) = p

so

x = p
x2-a

= P

Our result follows by including in the automorphisms the raising to

rational powers r\ and r? • This determines the order of H , while
3
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its dual occurs if we impose

With the similar results for K , the lemma is proved.

LEMMA 3.11. In any full order of G(p, q) , either

or

holds, and either

or

is

Proof. The results follow from the relations

and

= kz+l,0 '

by applying the preliminary results 2.1 and 2.2.

We are now able to prove the theorem.

Proof of Theorem 3.1. Since all elements of G(p, q) are uniquely

expressible in the form
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where C, and £ are as before, and n € H , 6 € K , Lemma 3-11 ensures

that the order of G(p, q) is completely determined by the orders of Z ,

X , H and K .

From Lemma 3.10, the "signs" of h and k completely
z ,u z ,u

determine the order on the groups H and K respectively.
z z

From this, the relations

and

show that the "sign" of h and fe . determine the orders of each H

and K . Three cases arise:
z

(1) \x\» \y\ , x £ H , y d K ;

(2) |j/| >-V |*| , x € H , y i K ;

(3) neither of these hold.

In each of (l) and (2) there are only a finite number of orders

possible, 21* in all, determined by the choice of "sign" for the elements

T, , 5 , h and kQQ .

In case (3) there is an integer m such that either

- » l * O f O l » l*m> ol» l*liOl»

depending on the possibilities of Lemma 2.

There are countably many such choices of ordering and since the first

two cases give only 32 orders, the theorem is proved.
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