# SOME NEW REPLACEABLE TRANSLATION NETS 

## A. A. BRUEN

1. Introduction. We discuss partial spreads (translation nets) $U, V$ of $\Sigma=P G(3, q)$ where $U, V$ cover the same points of $\Sigma$ and have no lines in common. Write $t=|U|=|V|$. It has been shown in a previous paper [4] that $t \geqq 2(q-1)$ provided $q \geqq 4$. In this note we analyze further the case $t \leqq 2(q+1)$. Examples of replaceable translation nets, some of them new, are given for each value of $t$ in the range $2(q-1) \leqq t \leqq 2(q+1)$ and for all prime powers $q$. Moreover, we show that if $q$ is sufficiently large (in particular, if $q>19$ ) then, for each value of $t$ in the above range, any pair $U, V$ of replaceable partial spreads that cover the same points, have no lines in common and have cardinality $t$ must be as described in the examples. Our work also complements and generalizes in a number of directions the results of a previous paper by D. A. Foulser and can be modified to yield alternative and combinatorial proofs of a number of Foulser's results. In a later section we discuss some results in $P G(3,3)$ and $P G(3,4)$ as well as some general embedding and configurational questions in $P G(3, q)$.
2. The construction. Although this note is more or less self-contained we shall frequently refer to [4].

Notation. If $A$ and $B$ are sets then $A-B$ denotes those elements of $A$ not in $B$. The null set is denoted by $\emptyset$. If $R$ is a regulus of $\Sigma=P G(3, q)$ then $R^{\prime}$ denotes the opposite regulus so that $\left(R^{\prime}\right)^{\prime}=R$. It is worth noting that $R, R^{\prime}$ are sets of lines. The points lying on the lines of $R$ and $R^{\prime}$ form the points of a doubly-ruled quadric $Q=Q(R)=Q\left(R^{\prime}\right): Q$ will be regarded as a set of points in $\Sigma$. Lines of $\Sigma$ will be denoted by small letters $a, b, c, d$, etc.

Let $R, S$ denote two distinct reguli of $\Sigma$ with opposite reguli $R^{\prime}, S^{\prime}$. We shall frequently demand that the following condition be satisfied.

Condition 1. $Q(R) \cap Q(S)$ is a union of lines.
Theorem 1. Let $R, S$ denote two distinct reguli of $\Sigma$ satisfying Condition 1. Let $a, b, c, d$ denote lines of $\Sigma$. Define the line sets $U$ and $V$ as indicated below. Then $U$ and $V$ yield partial spreads of $\Sigma$ which cover the same points and have no lines in common. Moreover, $t=|U|=|V|$ is as specified.

[^0]Type 1. $t=2(q+1), \quad Q(R) \cap Q(S)=\emptyset$.
$U=R \cup S^{\prime}$.
$V=R^{\prime} \cup S$.
Type 2. $t=2 q+1, \quad R \cap S=\emptyset, \quad R^{\prime} \cap S^{\prime}=\{a\}$.
$U=R \cup S^{\prime}-\{a\}$.
$V=S \cup R^{\prime}-\{a\}$.
Type 3. $t=2 q, \quad R \cap S=\{a\}, \quad R^{\prime} \cap S^{\prime}=\{b\}$. $U=R-\{a\} \cup S^{\prime}-\{b\}$. $V=S-\{a\} \cup R^{\prime}-\{b\}$.

Type 4. $t=2 q, \quad R \cap S=\emptyset, \quad R^{\prime} \cap S^{\prime}=\{a, b\}, a \neq b$.
$U=R \cup S^{\prime}-\{a, b\}$. $V=S \cup R^{\prime}-\{a, b\}$.
Type 5. $t=2 q-1, \quad R \cap S=\{a\}, \quad R^{\prime} \cap S^{\prime}=\{b, c\}, \quad b \neq c$. $U=R-\{a\} \cup S^{\prime}-\{b, c\}$. $V=S-\{a\} \cup R^{\prime}-\{b, c\}$.
Type 6. $t=2(q-1), \quad R \cap S=\{a, b\}, \quad R^{\prime} \cap S^{\prime}=\{c, d\}$. $U=R-\{a, b\} \cup S^{\prime}-\{c, d\}$. $V=S-\{a, b\} \cup R^{\prime}-\{c, d\}$.

Proof. First we claim that $R \cap S^{\prime}=\emptyset$. Let $x \in R \cap S^{\prime}$. Suppose $\alpha \in R \cap S$. Then $x \neq \alpha$, since $S$ and $S^{\prime}$ have no common lines. Since $x \in S^{\prime}, x$ meets each line of $S$. Thus $x$ meets $\alpha$, yet $x \in R$ and $\alpha \in R$. This is impossible. Pursuing this we see that $R \cap S^{\prime}=\emptyset$ unless both $R \cap S=\emptyset$ and $R^{\prime} \cap S^{\prime}=\emptyset$. That is, $R \cap S^{\prime}=\emptyset$ except possibly for Type 1. But here also $R \cap S^{\prime}=\emptyset$ because $Q(R) \cap Q(S)=\emptyset$. Thus $R \cap S^{\prime}=\emptyset$. Similarly $R^{\prime} \cap S=\emptyset$. Therefore the values of $t$ are as indicated. Through each point of $Q(R) \cap Q(S)$ there passes a line of $R$ and a line of $S^{\prime}$. Thus since $R \cap S^{\prime}=\emptyset=R^{\prime} \cap S$ it follows from Condition 1 that $U$ and $V$ are partial spreads of $\Sigma$. It remains to show that $U$ and $V$ cover the same points of $\Sigma$. In Type 6 , for example, let $P \in u \in U$. If $P$ is covered by $R-\{a, b\}$ then $P$ lies on a line of $R^{\prime}$. Thus $P$ is on a line of $V$ unless $P \in c$ or $P \in d$. For example, suppose $P \in c$. Since $c \in S^{\prime}, P$ is on a line of $S$. Since $P$ lies on a line of (is covered by) $R-\{a, b\}, P$ is covered by $S-\{a, b\} \subset V$. Similarly each point of $S^{\prime}-\{c, d\}$ is also on a line of $V$. Thus each point $P$ covered by a line of $U$ is also covered by a line of $V$ and, conversely, each point on a line of $V$ is covered by a line of $U$. Finally note that if $R \cap S=\{a, b\}, a \neq b$ and $R^{\prime} \cap S^{\prime}=\{c\}$ we obtain an example of Type 5 by a suitable change of notation.

Comments. Type 1 is well-known. It occurs for example, in connection with the Desarguesian planes and certain André planes of order $q^{2}$ which yield spreads containing partial spreads of Type 1. The group-net examples of Foulser [5] where $q$ is postulated to be odd are of Type 6. Our construction
places no restriction on $q$ and so in this case we are extending the work in [5]. The fact that Type 6 exists for $q$ even (as is shown below) shows that the existence of the appropriate dihedral subgroup of order $2(q-1)$ described in [5] is somewhat irrelevant to the geometry of the situation. However Foulser's work does show that, for appropriate odd values of $q$, the partial spreads of Type 6 are embedded in a spread, namely, the spread corresponding to the irregular nearfield planes. As is pointed out later on, Types 2 and 4 are well-known. Types 3 and 5 appear to be new.

We proceed to construct examples of all six types. As described in [1, Theorem $4.5]$ and $[\mathbf{2}, \mathrm{p} .536]$ there is an isomorphism between a regular spread $W$ of $\boldsymbol{\Sigma}$ with its lines and reguli and the inversive plane $I P(q)$ over $G F(q)$ with its points and circles. This makes it easy to see that in a regular spread $W$ it is possible to find pairs $A, B$ of distinct reguli having 0,1 , or 2 lines in common. We shall also make use of the following result.

Lemma 2. Let $A, B$ be distinct reguli of $\Sigma$ contained in a spread $W$ of $\Sigma=P G(3, q)$. Then $A^{\prime} \cap B^{\prime}=\emptyset$. If the point $P \in Q(A) \cap Q(B)$ then $P$ lies on a line of $A \cap B$.

Proof. Let $P \in Q(A) \cap Q(B)$. There is a unique line $x$ of $A$ through $P$ and a unique line $y \in B$. Since $W$ is a spread containing $A$ and $B$ we have $x=y$ and $P$ lies on a line of $A \cap B$. Let $t \in A^{\prime} \cap B^{\prime}$. Through any point $P$ of $t$ there passes a line $x$ of $A$ and a line $y$ of $B$. Also through $P$ passes a unique line of the spread $W$. Thus, as above, $x=y$. Each line of $A$ and $B$ meets $t$ in such a point $P$. This then implies that $A=B$, a contradiction. Therefore $A^{\prime} \cap B^{\prime}=\emptyset$. This proves Lemma 2.

As above, let $A, B$ denote distinct reguli of any spread $W$ of $\Sigma$, for example a regular spread. Let $A \cap B=\emptyset$. Then, by Lemma $2, Q(A) \cap Q(B)=\emptyset$; we then obtain an example of Type 1 by putting $A=R, B=S^{\prime}$. If $A \cap B$ is a single line we obtain an example of Type 2 by using Lemma 2 and putting $A^{\prime}=R, B^{\prime}=S$. Similarly, if $A \cap B$ is two distinct lines we obtain Type 4 with $R=A^{\prime}, S=B^{\prime}$.

For Type 6, we proceed as follows. Let the line-pairs $\{a, b\}$ and $\{c, d\}$ form the opposite sides of a skew quadrangle of $\Sigma$. Let $a \cap c=X_{1}, b \cap c=X_{2}$, $a \cap d=X_{3}, b \cap d=X_{4}$. Pick any point $P$ on $c$ with $P \neq X_{1}, X_{2}$ and let $Q$ be any point of $d$ with $Q \neq X_{3}, X_{4}$. Then the line $t=P Q$ is skew to $a$ and $b$. Thus $a, b, t$ determine a unique regulus $R$ of $\Sigma$. For the fixed point $P$ a different choice of $Q$ will determine a different regulus $S$. By construction, $\{a, b\} \subset R$ and $\{a, b\} \subset S$. Moreover $\{c, d\} \subset R^{\prime}$ and $\{c, d\} \subset S^{\prime}$. Now let

$$
X \in Q(R) \cap Q(S)
$$

Suppose that $X$ is not on $c$ or $d$. Then the unique transversal $x$ from $X$ to $\{c, d\}$ is the unique line of $R$ through $X$ and the unique line of $S$ through $X$. Thus if $X$
is not on $a$ or $b$ the reguli $R, S$ have 3 lines in common, namely $a, b, x$. Then $R=S$, a contradiction. We conclude that if $X \in Q(R) \cap Q(S)$ then either $X$ is covered by $\{a, b\}$ or $X$ is covered by $\{c, d\}$. Therefore we have constructed an example of Type 6. Moreover it is immediate that all examples of Type 6 are constructed in this fashion.

We come to Types 3 and 5 . Let us introduce homogeneous coordinates in $\Sigma$ over the field $F=G F(q)$. Thus we think of $\Sigma$ as the lattice of non-zero subspaces of the 4 -dimensional vector space $V_{4}(F)$ over $F$. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be a basis for $V_{4}(F)$ over $F$. Relative to this basis, each point of $\Sigma$ has homogeneous coordinates $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$. We denote by $\langle u, v\rangle$ the line of $\Sigma$ joining the 2 points of $\Sigma$ corresponding to the 2 linearly independent vectors $u, v$. Consider the set $A$ of $q+1$ lines consisting of the line $\left\langle e_{2}, e_{4}\right\rangle$ together with the lines $\left\langle e_{1}+\lambda e_{2}, e_{3}+\lambda e_{4}\right\rangle$ where $\lambda$ is any element of $F$. The different values of $\lambda$ yield $q$ pairwise skew lines each of which is skew to $\left\langle e_{2}, e_{4}\right\rangle$. In fact, the lines of $A$ form a regulus, and the quadric $Q(A)$ consists of all points of $\Sigma$ satisfying $y_{1} y_{4}=y_{2} y_{3}$. Let $f$ be the collineation of $\Sigma$ induced by the linear transformation of $V_{4}(F)$ given by $f\left(e_{1}\right)=e_{1}, f\left(e_{2}\right)=e_{2}, f\left(e_{3}\right)=e_{3}, f\left(e_{4}\right)=e_{1}+e_{4}$. Then $f(A)$ is another regulus $B$. The points of $Q(B)$ satisfy $\left(y_{1}-y_{4}\right) y_{4}=y_{2} y_{3}$. From these equations we can easily find $Q(A) \cap Q(B)$. In fact, if $P \in Q(A) \cap Q(B)$ then either $P \in a=\left\langle e_{1}, e_{3}\right\rangle$ or $P \in b=\left\langle e_{1}, e_{2}\right\rangle$. Note that $b \in A^{\prime} \cap B^{\prime}$ since $b$ meets 3 lines of $A$ and 3 lines of $B$. In fact $A \cap B=a$, $A^{\prime} \cap B^{\prime}=b$. Therefore the reguli $A, B$ satisfy Condition 1. By putting $A=R, B=S$ we obtain an example of Type 3 .

For Type 5 , let $A$ be as above, and let $f$ be the collineation of $\Sigma$ induced by $f\left(e_{1}\right)=e_{1}, f\left(e_{2}\right)=e_{2}, f\left(e_{3}\right)=e_{3}, f\left(e_{4}\right)=e_{3}+e_{4}$. Then the points of $Q(B)$ where $B=f(A)$ satisfy $y_{2}\left(y_{3}-y_{4}\right)=y_{1} y_{4}$. We see that $A \cap B=a=$ $\left\langle e_{1}, e_{3}\right\rangle$ and $A^{\prime} \cap B^{\prime}=\{b, c\}$ with $b=\left\langle e_{1}, e_{2}\right\rangle, c=\left\langle e_{3}, e_{4}\right\rangle$. Moreover if $P \in Q(A) \cap Q(B)$ then $P$ lies either on $a$ or $b$ or $c$. Putting $A=R, B=S$ we obtain an example of Type 5. Thus we have constructed examples of all six types.
3. Characterization. As before, $U$ and $V$ are partial spreads covering the same points of $\Sigma=P G(3, q)$ and having no lines in common. We also assume that $q+1<t \leqq 2(q+1)$ where $t=|U|=|V|$.

Lemma 3. Let $q>16$. Then some 3 lines of $U$ have at least 5 transversals in $V$.
Proof. For each 3-element subset $E$ of the lines of $U$ we denote by $n(E)$ the number of lines of $V$ which are transversals to $E$. Assume $n(E) \leqq 4$. Then $\Sigma_{E} n(E) \leqq 4\binom{t}{3}$. On the other hand, each line of $V$ meets exactly $q+1$ lines of $U$ so that $\Sigma_{E} n(E)=\binom{q+1}{3} t$. Thus $4(t-1)(t-2) \geqq q\left(q^{2}-1\right)$.

If we assume that $t \leqq q(q+1)$ the above implies that $q \leqq 16$. Thus if $q>16$, $n(E)>4$ for some $E$.

The main result of this section now follows.
Theorem 4. Let $U$ and $V$ be partial spreads of $\Sigma=P G(3, q)$ which cover the same points and have no lines in common. Assume $q+1<t \leqq 2(q+1)$ where $t=|U|=|V|$. Then
(1) $2(q-1) \leqq t \leqq 2(q+1)$; and
(2) if $q>19$, then $U$ and $V$ are one the types described in Theorem 1 .

Proof. Part 1 follows from Theorem 3 in [4]. For Part 2 we argue as follows. By Lemma 3 some 3 lines of $U$, say $\left\{u_{1}, u_{2}, u_{3}\right\}$, have at least 5 transversals $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ in $V$. As in [4, p. 178] let there be exactly $\beta$ lines $v_{1}, v_{2}, v_{3}, \ldots, v_{\beta}$ in $V$ which are transversals to $\left\{u_{1}, u_{2}, u_{3}\right\}$. Since a regulus contains exactly $q+1$ lines we have $5 \leqq \beta \leqq q+1$. Suppose there are exactly $\alpha$ transversals $u_{1}, u_{2}, u_{3}, \ldots, u_{\alpha}$ in $U$ to the set $\left\{v_{1}, v_{2}, v_{3}\right\}$. Then as in [4] we have

$$
\begin{aligned}
& |U| \geqq \alpha+\frac{1}{2} \beta(q+1-\alpha), \\
& |V| \geqq \beta+\frac{1}{2} \alpha(q+1-\beta) .
\end{aligned}
$$

Suppose $\alpha \leqq \beta$. Arguing as in [4, p. 178] we obtain the fact that $|U| \geqq \beta+$ $\frac{1}{2} \beta(q+1-\beta)$. Examining this quadratic we obtain $\beta \geqq q-1$ since $t \leqq 2(q+1)$ and $\beta \geqq 5$. Since, as before, $|U| \geqq \alpha+\frac{1}{2} \beta(q+1-\alpha)$ we obtain $\alpha \geqq q-1$. Similarly if $\beta \leqq \alpha$ we also obtain $\alpha \geqq q-1$ and $\beta \geqq q-1$. Thus in either case the lines of $A=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{\alpha}\right\}$ are contained in a regulus $R$ and the lines of $B=\left\{v_{1}, v_{2}, \ldots, v_{\beta}\right\}$ are contained in the opposite regulus $R^{\prime}$. Thus $A=R-\{a, b\}$ and $B=R^{\prime}-\{c, d\}$ say, with the understanding that either of these sets $(\{a, b\}$ or $\{c, d\})$ may be void, or consist of one line or consist of 2 lines of $\Sigma$. Let $G$ denote the remaining lines of $U$, that is, $G=U-A$, and put $H=V-B$. Notice that $G=U-R, H=V-R^{\prime}$. By Part $1, t \geqq 2(q-1)$. By hypothesis $t \leqq 2(q+1)$. Since $q-1 \leqq \alpha$, $\beta \leqq q+1$, we have $q-3 \leqq|G|,|H| \leqq q+3$. Let $w$ be any line of $G$. Then $w$ meets $Q(R)$ in at most 2 points. So $w$ contains at least $q-1$ points which must be convered by lines of $H$. Therefore, at most 4 lines of $H$ fail to meet $w$. Let $w_{1}, w_{2}, w_{3}$ be 3 distinct fixed lines of $G$, and let $w$ be any other line of $G$. From the above there are at most 16 lines of $H$ that can miss one or other of the 4 lines $w_{1}, w_{2}, w_{3}, w$. All the remaining lines of $H$ are transversals to $\left\{w_{1}, w_{2}, w_{3}, w\right\}$. Now $|H| \geqq q-3$. Also $(q-3)-16 \geqq 3$ if $q \geqq 22$. Since $q$ is a prime power and $q>19$ this is so. Therefore the set $\left\{w_{1}, w_{2}, w_{3}, w\right\}$ having 3 or more transversals in $\Sigma$ (actually in $H$ ) is contained in a regulus which we denote by $S^{\prime}$. Since $w$ is arbitrary, all lines of $G$ lie in the unique regulus $S^{\prime}$ of $\Sigma$ determined by $\left\{w_{1}, w_{2}, w_{3}\right\}$. Thus any line of $\Sigma$ that meets 3 lines of $G$ meets
all of them. In particular, let $l$ be any line of $H$. Then $l$ meets $Q\left(R^{\prime}\right)$ in at most 2 points, so that $l$ contains at least $q-1$ points that must be covered by lines of $G$. Since $q-1>2$, we have from the above that $l$ meets all lines of $G$. In summary, each line of $H$ meets each line of $G$. Thus $H \subset\left(S^{\prime}\right)^{\prime}=S$. Then, as before, we may write $G=S^{\prime}-\{z, w\}, H=S-\{x, y\}$.
Thus

$$
\begin{aligned}
U & =R-\{a, b\} \cup S^{\prime}-\{z, w\} \\
V & =S-\{x, y\} \cup R^{\prime}-\{c, d\}
\end{aligned}
$$

Each point on all lines of $R^{\prime}-\{c, d\}$ must be covered by a line of $U$. There are at least $q-1$ points on $a$ and $b$ which line on lines of $R^{\prime}-\{c, d\}$ since $\{a, b\} \subset R$. Also $a \notin U, b \notin U$. Thus $a$ (and $b$ ) meets at least $q-1$ lines of $G=S^{\prime}-\{z, w\}$. Thus $a \in\left(S^{\prime}\right)^{\prime}=S$. Similarly $b \in S$. Since $V$ is a partial spread, no line of $S-\{x, y\}$ can meet any line of $R^{\prime}-\{c, d\}$. In particular, $a \in S$ and since $a$ meets each line of $R^{\prime}-\{c, d\} a \notin S-\{x, y\}$. Therefore $\{a\} \subset\{x, y\}$. Similarly $\{b\} \subset\{x, y\}$, so that $\{a, b\} \subset\{x, y\}$. By starting out with $S$ and $S^{\prime}$ rather than $R$ and $R^{\prime}$ we obtain $\{x, y\} \subset\{a, b\}$. Thus $\{a, b\}=$ $\{x, y\}$. By symmetry, $\{c, d\}=\{z, w\}$. Since $U$ and $V$ are assumed to have no common lines, $R-\{a, b\}$ cannot have any lines in common with $S-\{a, b\}$. Thus $\{a, b\}=R \cap S$. Similarly $\{c, d\}=R^{\prime} \cap S^{\prime}$. Now suppose $R \cap S^{\prime}=\emptyset$. Through each point $P$ of $Q(R) \cap Q(S)$ there passes a line of $R^{\prime}$ and a line of $S$. Thus since for example $U$ forms a partial spread it follows that if $P \in Q(R) \cap Q(S)$ then either $P$ lies on a line of $R \cap S$ or on a line of $R^{\prime} \cap S^{\prime}$. That is, if $R \cap S^{\prime}=\emptyset$, the reguli $R, S$ satisfy Condition 1. As in the proof of Theorem 1 we can argue that $R \cap S^{\prime}=\emptyset$ unless both $\{a, b\}$ and $\{c, d\}$ are empty. In this case $U \supset R$ and $G=S^{\prime}$. Since $U$ is a partial spread, no line of $R$ meets any line of $S^{\prime}$. This yields that $Q(R) \cap Q(S)=\emptyset$ and Condition 1 is again satisfied. This completes the proof of Theorem 4.
4. Combinatorial generalizations. It was pointed out in [4, Section 5] that many of the arguments there can be carried out in the more general context of a regulus matrix. Recall that a regulus matrix is a $t \times t$ matrix $M$ of zeros and ones containing no $4 \times 4$ submatrix having exactly 15 ones. In [4] it was shown that if each row and column of $M$ contains exactly $k$ ones then, provided $t \neq k$, we have $t \geqq 2(k-2)$ for $k \geqq 5$. We remarked that the bound is sharp for $k=q+1$ with $q$ an odd prime power corresponding to the replaceable group nets in [5], but stated that other examples to show the bound is sharp are available for $k \neq q+1$. In fact, the proof of Theorem 4 indicates immediately how one obtains these examples for any positive integer $k$ by putting two $(k-2) \times(k-2)$ blocks of ones consecutively along the diagonal and placing exactly two more ones in each of the remaining rows and columns. We can illustrate this method by using a symmetric matrix with
$k=3$ as follows.
$\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

In constructing this type of regulus matrix we need only ensure that there is no $2 \times 2$ submatrix in the bottom left quadrant or the top right quadrant of $M$ with all 4 of its entries being 1 .
5. Structure and embedding. In general, two partial spreads of the same type in Theorem 1 need not be equivalent under a collineation of $\Sigma$. This is discussed later. We proceed to show that any net $U$ (or $V$ ) of Type 2 or Type 4 is embeddable in a spread (in fact, in many spreads). I am indebted to Professor D. A. Foulser for pointing this out to me. First we need a lemma on the structure of $R^{\prime} \cup S^{\prime}$, due to Foulser. The lemma can be established using the methods of indicator sets [2]. However, an elegant proof of this lemma, an outline of which we now present, has been constructed by Professor Foulser, as follows.

Lemma 5. In Types 2 and 4, $R^{\prime} \cup S^{\prime}$ is contained in a unique regular spread $W=W(F)$ corresponding to a field $F=G F(q)$.

Proof. In Type 4, we can represent $R^{\prime}$ and $S^{\prime}$ as follows, in

$$
V_{4}=\left\{(x, y): x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right)\right\} .
$$

$R^{\prime}$ consists of the lines $x=0$ and $y=\lambda x, \lambda \in G F(q) . S^{\prime}$ consists of $x=0$ and $y=\lambda T x, \lambda \in G F(q)$, where $T$ is a $2 \times 2$ matrix over $G F(q) . T$ has no eigenvalues in $G F(q)$, so $T$ is irreducible. Hence $F=\{\lambda T+\mu I: \lambda, \mu \in G F(q)\}$ is a field isomorphic to $G F(q)$, and $R^{\prime} \cup S^{\prime} \subseteq W(F)$. In Type 2 , we can represent $R^{\prime}$ as above, and $S^{\prime}$ by $x=0$ and $y=(\lambda T+Z) x, \lambda \in G F(q)$, where $T$ and $Z$ are $2 \times 2$ matrices. As before, $Z$ is irreducible, and $\operatorname{det}(\lambda T+Z+\mu I) \neq 0$ for $\lambda, \mu \in G F(q)$. Let each $2 \times 2$ matrix $M=\left(m_{i j}\right)$ represent the point $m=\left(m_{11}, m_{12}, m_{21}, m_{22}\right)$ in $\Sigma=P G(3, q)$. Det $M \neq 0$ if and only if $m \notin H$, where $H$ is the hyperbolic quadric $x_{1} x_{4}-x_{2} x_{3}=0$ in $\Sigma$. Hence $T, Z$ and $I$ determine three points of $\Sigma$ which span a subspace which misses $H$. This subspace cannot be a plane, so it must be a line. That is, $T, Z$ and $I$ are linearly dependent and hence generate a field $F$ isomorphic to $G F(q)$. As before, $R^{\prime} \cup S^{\prime} \subseteq W(F)$.

Let $U$ be any partial spread of Type 2 or Type 4 . By Lemma $5, R^{\prime} \cup S^{\prime}$ is contained in a regular spread $W$. By replacing $R^{\prime}$ by $R$ we get a new spread $W^{\prime}$
which contains $U$. Thus the Hall spread contains examples of Types 2 and 4. There are many other spreads containing partial spreads $U$ (or $V$ ) of Type 2 or Type 4 . For example, the regular near field spread $N$ of order $q^{2}$ with $q$ odd is a union of $q+1$ reguli sharing 2 lines. Therefore, by reversing an appropriate regulus in $N$, we obtain again examples of Type 4 embedded in spreads.

Two partial spreads $U_{1}, U_{2}$ of type 2 are isomorphic. For let $U_{i}=R_{i} \cup S_{i}{ }^{\prime}-\left\{a_{i}\right\}, i=1,2$. By Lemma $5, R_{i}{ }^{\prime} \cup S_{i}{ }^{\prime} \subset W_{i}$, where $W_{i}$ is a regular spread, $i=1,2$. By a collineation of $\Sigma[\mathbf{1}$, Theorem 4.4] we may take $W_{1}=W_{2}=W$. Also, by [1, Theorem 4.5] we can assume that
$U_{i}=R \cup S_{i}{ }^{\prime}-\{a\}$,
$i=1,2$. As mentioned earlier, there is an isomorphism between $W$ and the inversive plane $M=I P(q)$. Let $H=P G L(2, q)_{(\infty)}$ be the subgroup of automorphisms of $M$ leaving a circle $C_{0}$ invariant and fixing a point ( $\infty$ ) of $M$. Then $|H|=q(q-1)=\left|M-C_{0}\right|$. Moreover, if $\sigma \in H, \sigma \neq 1$ then $\sigma$ fixes no point of $M-C_{0}$. If follows that $H$ is regular, and hence, transitive on the circles of $L$, where $L$ is the linear pencil of circles tangent to $C_{0}$ at ( $\infty$ ). This yields the desired result.

If $q \geqq 4$, two partial spreads $U_{1}, U_{2}$ of type 4 need not be isomorphic. For, let $U_{1}=R_{1} \cup S_{1}{ }^{\prime}-\left\{c_{1}, d_{1}\right\}$ and $U_{2}=R_{2} \cup S_{2}{ }^{\prime}-\left\{c_{2}, d_{2}\right\}$. Let $T \in P L(\Sigma)$ with $T\left(U_{1}\right)=U_{2}$. Since $R_{1}$ is a regulus containing $q+1$ lines and since $q \geqq 4$ we must have $T\left(R_{1}\right)=R_{2}$. Thus, $T\left(R_{1}{ }^{\prime}\right)=R_{2}{ }^{\prime}$. Also $T\left(S_{1}{ }^{\prime}\right)=S_{2}{ }^{\prime}$. Thus $T$ maps $R_{1}{ }^{\prime} \cup S_{1}{ }^{\prime}$ onto $R_{2}{ }^{\prime} \cup S_{2}{ }^{\prime}$. By Lemma $5, R_{i}{ }^{\prime} \cup S_{i}{ }^{\prime}$ is contained in a regular spread $W_{i}, i=1,2$. In particular, let $W_{1}=W_{2}=W$. If $T$ maps $R_{1}{ }^{\prime} \cup S_{1}{ }^{\prime}$ to $R_{2}{ }^{\prime} \cup S_{2}{ }^{\prime}$ then $T$ maps the regular spread $W$ containing $R_{1}{ }^{\prime} \cup S_{1}{ }^{\prime}$ onto a regular spread containing $R_{2}{ }^{\prime} \cup S_{2}{ }^{\prime}$. By Theorem 4.3 in [1] there is only one such regular spread, namely $W$. Therefore $T$ fixes $W$. As mentioned earlier, there is an isomorphism $\alpha$ between a regular spread $W$ of $\Sigma=P G(3, q)$ with its lines and reguli, and the inversive plane $I P(q)$ with its points and circles. Under $\alpha$, the subgroup of $G=P L(\Sigma)$ fixing $W$ corresponds to an automorphism group $\bar{G}$ of $I P(q)$. In $I P(q)$ we cannot, for example, find an element of $\bar{G}$ that maps a pair of intersecting but non-orthogonal circles into a pair of intersecting but orthogonal circles. It therefore follows that there may be no element $T$ of $G$ mapping $U_{1}$ to $U_{2}$. Similarly, two partial spreads $U_{1}, U_{2}$ of Type 2 need not be equivalent under $G$. For a more detailed discussion of the action of $G=P L(\Sigma)$ on pairs of reguli in a regular spread $W$ we refer to Bruck [1, Theorem 7.5].

For certain values of $q$, partial spreads of Type 6 are embedded in the spread corresponding to the irregular nearfield planes as pointed out in Foulser [5]. It can be shown that under the linear isomorphisms of $\Sigma$ there are $q-1$ nonisomorphic examples of Type 6.

In Section 2 it was pointed out that certain partial spreads $U, V$ which are of Type 1 in Theorem 1 are embedded in spreads. In general, two partial spreads $U_{1}, U_{2}$ of Type 1 need not be isomorphic under $G=P L(\Sigma)$. For
example, let $W$ be a regular spread of $\Sigma=P G(3,3)$. Choose any two lines $l, m$ of $W$. The remaining 8 lines of $W$ are partitioned into two reguli $A$ and $B$ with $A \cap B=\emptyset$. From Lemma $2, Q(A) \cap Q(B)=\emptyset$. By putting $A=R$ and $B=S^{\prime}$ we obtain an example $U_{1}$ of a partial spread of Type 1 where $U_{1}=R \cup S^{\prime}=A \cup B$. Similarly we can obtain another example of a partial spread $U_{2}$ of Type 1 where $U_{2}=A \cup B^{\prime}$. Let $T$ be a collineation of $\Sigma$ mapping $U_{1}$ to $U_{2}$. Now $U_{1}$ is contained in a regular spread $W$. Thus $U_{2}=T\left(U_{1}\right)$ must be contained in a regular spread. But (see [3]) there is only one spread containing $U_{2}$, namely, $W_{2}=A \cup B^{\prime} \cup\{l, m\}$. Moreover, $W_{2}$ is not regular: it is a Hall spread which is subregular of index 1 . Thus, $T$ does not exist, and in general, two partial spreads of Type 1 in Theorem 6 need not be equivalent under a collineation of $\boldsymbol{\Sigma}$.

We do not know if the partial spreads of Types 3 and 5 are embeddable in spreads. However, we can show that none of the partial spreads $U$ of Type $1-6$ is embeddable in a regular spread of $\Sigma$. As a preliminary we have

Lemma 6. Let $U$ be a partial spread of $\Sigma$ such that $U$ is contained in a regular spread $W$ of $\Sigma$. Suppose that $V$ is another partial spread such that $U$ and $V$ cover the same points and have no lines in common. Then $|U|=|V| \geqq 2 q$. Moreover the case $|U|=|V|=2 q$ can occur.

Proof. Suppose $U$ is replaceable by $V$. Let $v$ be a line of $V-U$. Through the $q+1$ points of $v$ there passes $q+1$ lines of $U$ forming a regulus $R$ since $S$ is regular. Not all lines of $V$ are lines of $R^{\prime}$ for otherwise $U$ would just be a regulus $R$. Thus let $w$ be a line of $V-R^{\prime}$. Then $w \notin U$, and $w$ can meet $Q(R)$ in at most two points. The remaining points of $w$ that are not on $Q(R)$ must be covered by lines of $U$. Thus $|U| \geqq(q+1)+(q-1)=2 q$. Suppose $q=3$, and let $T$ be any regulus of $\Sigma=P G(3,3)$. Let us take two different regular spreads $W_{1}, W_{2}$ of $\Sigma$ containing $R$. If $W_{1}-R \cap W_{2}-R \neq \emptyset$ we have $W_{1}=W_{2}$. Thus $W_{1}-R \cap W_{2}-R=\emptyset$. We can now put $U=W_{1}-R$, $V=W_{2}-R$. Then $|U|=|V|=10-4=6=2 \cdot 3$.

Lemma 6 immediately shows that the partial spreads in Theorem 1 corresponding to Types 5, 6 are not embeddable in a regular spread. In fact none of Types 2-6 are contained in a regular spread. We shall only prove this for Type 2 as the proof is easily modified to cover the remaining Types $3,4,5$, and 6. Recall that, in Type 2, $U=R \cup S^{\prime}-\{a\}$ where $R^{\prime} \cap S^{\prime}=\{a\}$. Let $W$ be a regular spread containing, say, $U$. By hypothesis $W$ contains $R$. Since $W$ is regular $W$ contains all lines of the regulus formed by any 3 of its lines. Thus $S^{\prime} \subset W$ so that $a \in W$. Then if $P$ is any point of the line $a, P$ is covered by two lines of $W$, namely the line of $R$ through $P$ and the line $a$. But this is impossible. Similarly $V$ is not contained in any regular spread of $\Sigma$.
6. The cases $\mathbf{q}=\mathbf{3}, \mathbf{4}$. We wish to discuss briefly partial spreads in $P G(3,3)$ and $P G(3,4)$ in relation to Section 2. Along the way we come across some
questions which relate to $P G(3, q)$ for any $q$. First we sketch some miscellaneous results on the embedding of partial spreads in $P G(3, F)$ where $F=G F(3)=\{0,1,-1\}$. The following is Theorem 3.3 in [3].

Theorem 7. Let $W$ be a maximal partial spread of $P G(3,3)$. Then either $|W|=7$ or $|W|=10$. In this last case $W$ is a spread.

Using Theorem 7 and some combinatorial arguments we obtain
Theorem 8. Let L be any partial spread of $\Sigma=P G(3,3)$ with $|L| \leqq 5$. Then there exists a spread $S$ of $\Sigma$ containing $L$.

Recall that the classical double-six theorem (see [6]) is equivalent to the following statement. Given 6 skew lines $u_{i}(1 \leqq i \leqq 6)$ in a 3 -dimensional projective space $\Sigma=P G(3, F)$ over a commutative field $F$ and given another set $v_{j}(1 \leqq j \leqq 5)$ of 5 skew lines such that
(i) $v_{k}$ is skew to $u_{k}, 1 \leqq k \leqq 5$;
(ii) $v_{j}$ intersects $u_{i}$ if $i \neq j, 1 \leqq j \leqq 5,1 \leqq i \leqq 6$.

Then there exists a line $v_{6}$ skew to each of the lines $v_{1}, v_{2}, v_{3}, v_{4}, v_{5}$ such that $v_{6}$ intersects $u_{i}$ (if $1 \leqq i \leqq 5$ ) but is skew to $u_{6}$. The resulting collection of 12 lines above is referred to as a double-six configuration. In [6] it is shown that double-six configurations exist in every $P G(3, F)$ except in the case that $F=G F(q)$ and $q=2,3,5$. In a manner analagous to the above, a double-five theorem would say that given 5 skew lines $u_{i}, 1 \leqq i \leqq 5$ and a set of 4 skew lines $v_{j}, 1 \leqq j \leqq 4$ such that $v_{j}$ intersects $u_{i}$ if $i \neq j$ and such that $u_{k}$ is skew to $v_{k}, 1 \leqq k \leqq 4$, then there exists a fifth line $v_{5}$ skew to $v_{1}, v_{2}, v_{3}, v_{4}$ and meeting $u_{1}, u_{2}, u_{3}, u_{4}$ but skew also to $u_{5}$. The resulting set of 10 lines consisting of two sets of 5 skew lines would then be called a double-five configuration.

The following question may be of interest.
Problem. For what values of $q$ does a double-five theorem hold in $\operatorname{PG}(3, q)$ ?
In the work of G. Pellegrino [9] this next result is implicit (see Lemma 1 in [9]).

Lemma 9. Let $A$ be a partial spread of $P G(3,3)$ with $|A|=4$. Then either $A$ is a regulus or $A$ has at most one transversal in $\Sigma$.

Using the previous results of this section it is then possible to prove a doublefive theorem, actually a stronger version of it, in $P G(3,3)$ to the effect that given just three of the lines $v_{j}$ we can always find the remaining two. A key to this last result is Theorem 8. Theorem 8 suggests a generalization but before stating it, we mentioned theorem 3.1 in [3], as follows.

Theorem 10. Let $W$ be a maximal partial spread in $\Sigma=P G(3, q)$ such that $W$ is not a spread. Then $q+\sqrt{q}+1 \leqq|W| \leqq q^{2}-\sqrt{q}$.

Theorem 8 then might suggest something along the following lines.
Conjecture 11. There exists a maximal integer $k=k(q)$ such that in $\Sigma=$
$P G(3, q)$ the following statement is valid: if $W$ is a partial spread of $\Sigma$ with $|W|<k$, then $W$ is embeddable in a spread of $\Sigma$. Also, $k \geqq 2 q$.

In view of Theorem 10 we see that Conjecture 11 implies Conjecture 12 below.

Conjecture 12. Let $U$ be a partial spread of $\Sigma$ with $|U|<k$. Suppose that $V_{1}$ is a partial spread of $\Sigma$ with $\left|V_{1}\right|>|U|-\sqrt{q}-1$ and such that every point on each line of $V_{1}$ is covered by a line of $U$. Then $V_{1} \subset V$ where $V$ is a partial spread of $\Sigma$ with $|V|=|U|$ such that $U$ and $V$ cover the same points of $\Sigma$.

Let us use these ideas for the case $q=4$. Suppose that $U$ is a partial spread of $\Sigma=P G(3,4)$ with $|U|=6$. Using the notation of Conjecture 12 let $\left|V_{1}\right|=4$. Assume $k(4)=8$. Then, by Conjecture $12, V_{1} \subset V$ with $|V|=6$, and by doing a little more work one can then show that in this case $U$ and $V$ form the two halves of a double-six $\Omega$ in $\Sigma$. In other words, a stronger double-six theorem would hold in $P G(3,4)$ if Conjecture 11 holds with $k(4)=8$, analogous to the strong double-five theorem in $P G(3,3)$ previously described.

In connection with Theorem 3 in [4] we mention the following result.
Theorem 13. A double-five configuration exists in $P G(3,3)$.

$$
\begin{aligned}
& \text { Proof. Let } u_{1}=\langle(1,0,0,0),(1,-1,0,0)\rangle \text {; } \\
& u_{2}=\langle(1,1,1,0),(-1,1,1,-1)\rangle ; \\
& u_{3}=\langle(1,1,1,1),(1,-1,1,-1)\rangle ; \\
& u_{4}=\langle(0,0,0,1),(0,0,1,-1)\rangle ; \\
& u_{5}=\langle(1,1,1,-1),(1,0,-1,0)\rangle \text {; } \\
& v_{1}=\langle(1,1,1,0),(0,0,0,1)\rangle ; \\
& v_{2}=\langle(1,0,0,0),(0,0,1,0)\rangle ; \\
& v_{3}=\langle(0,1,0,0),(0,0,1,1)\rangle ; \\
& v_{4}=\langle(1,1,0,0),(0,1,0,1)\rangle ; \\
& v_{5}=\langle(1,-1,0,0),(-1,1,1,-1)\rangle .
\end{aligned}
$$

Then it is easy to check that $u_{k}$ is skew to $v_{k}, 1 \leqq k \leqq 5$, and that $u_{i}$ intersects $v_{j}$ if $i \neq j, 1 \leqq i, j \leqq 5$.

Definition. A potential double-five consists of 2 partial spreads $U=\left\{u_{1}, u_{2}\right.$, $\left.u_{3}, u_{4}, u_{5}\right\}$ and $V=\left\{v_{1}, v_{2}\right\}$, with $|U|=5$ and $|V|=2$ such that $v_{j}$ misses $u_{j}$ but intersects all remaining lines of $U$ for $j=1,2$. We say that a potential double-five $Z=U \cup V$ is an unrealized double-five if there does not exist a double-five configuration which contains the lines of $Z$.

Theorem 15. Unrealized double-fives exist in $P G(3,3)$.
Proof. With the notation of Theorem 13 set

$$
U=\left\{u_{2}, u_{3}, u_{4}, u_{5}\right\} \cup\langle(1,0,0,0),(0,1,-1,0)\rangle
$$

and put $V=\left\{\nu_{1}, v_{2}\right\}$. Then it can be verified that $Z=U \cup V$ is an unrealized double-five.

Lemma 15. Let $Z=U \cup V$ be an unrealized double-five with $U=$ $\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{5}\right\}$ and $V=\left\{v_{1}, v_{2}\right\}$. Then there does not exist any line $x$ of $\Sigma$ such that $x$ is skew to $v_{1}$ and $v_{2}$ and such that $x$ intersects 4 of the 5 lines of $U$.

Proof. Using Lemma $9, x$ would have to meet both $u_{1}$ and $u_{2}$. But then, by the strong double-five theorem, $Z$ would be contained in a double-five configuration.

We now mention two types of examples of maximal partial spreads $W$ of $P G(3,3)$ which are not spreads. It will follow from Theorem 7 that $|W|=7$.

Example 1. Let $S^{\prime}$ be any non-regular spread of $\Sigma=P G(3,3)$. Let $l$ be a line of $\Sigma$ such that $l$ is not a line of $S^{\prime}$, and such that the 4 lines $A=\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}$ of $S^{\prime}$ passing through the 4 points of $l$ do not form a regulus. Set $W=(S-\mathrm{A}) \cup\{l\}$. Then, from Lemma $9, W$ is a maximal partial spread of $\Sigma$ with $|W|=7$.

Example 2. Let $Z=U \cup V$ be an unrealized double-five in $\Sigma$ (see Theorem 14) with $|U|=5,|V|=2$. By Theorem $8, U$ is embeddable in a spread $S$, so that $U \subset S$. Let $S=U \cup L$ say with $|L|=5$. Now put $W=L \cup V$. Then $W$ is a partial spread of $\Sigma$ with $|W|=7$. Furthermore, by Lemma $15, W$ is maximal.

By making use of Theorem 8 and Lemma 9 the following can be shown.
Theorem 16. Let $W$ be a maximal partial spread of $P G(3,3)$ such that $W$ is not a spread. Then $|W|=7$. Furthermore, either $W$ is obtainable as in Example 1 above or $W$ is as in Example 2.

We return to the case $q=4$. It follows from the work of Kleinfeld [8] (see also Johnson [7]) that, up to a collineation, there are just three types of spreads in $\Sigma=P G(3,4)$. These three spreads are
(1) the regular spread, corresponding to the Desarguesian plane of order 16;
(2) a subregular spread of index 1 corresponding to the Hall plane; and
(3) the spread corresponding to a semifield of order 16 with kernel isomorphic to $G F(4)$.
As explained in Hirschfeld [6] all double-sixes in $\mathbf{\Sigma}$ are projectively equivalent. One can show that neither the Desarguesian spread nor the Hall spread contain the 6 lines $E$ of one half of a double-six. However R. H. F. Denniston has pointed out to me that the spread of Type (3) above does contain halfdouble sixes $E$ in great profusion. Note that the 5 lines of one half of a doublesix in $P G(3,4)$ and the five lines of one half of a double-five in $P G(3,3)$ are examples of replaceable partial spreads, in $P G(3,4)$ and $P G(3,3)$ respectively.

Acknowledgement. The author is grateful to Professor D. A. Foulser for his help with the preparation of this paper.

## References

1. R. H. Bruck, Construction problems of finite projective planes, Proceedings of the conference in combinatorics held at the University of North Carolina at Chapel Hill, April 10-14, 1967 (University of North Carolina Press, 1969).
2. A. Bruen, Spreads and a conjecture of Bruck and Bose, J. of Algebra 23 (1972), 519-537.
3. -_ Partial spreads and replaceable nets, Can. J. Math. 23 (1971), 381-391.
4. A. Bruen and R. Silverman, Switching sets in $P G(3, q)$, Proc. Amer. Math. Soc. 43 (1974), 176-180.
5. D. A. Foulser, Replaceable translation nets, Proc. London Math. Soc. 22 (1971), 235-264.
6. J. W. P. Hirschfeld, The double-six of lines over $P G(3,4)$, J. Aus. Math. Soc. 4 (1964), 83-89.
7. N. L. Johnson, A note on semi-translation planes of class I-5a, Archiv. Der Math. 21 (1970), 528-532.
8. E. Kleinfeld, Techniques for enumerating Veblen-Wedderburn systems, J. Assoc. Comput. Mach. 7 (1960), 330-337.
9. G. Pellegrino, Procedimenti geometrici per la costruzione di alcune classi di calotte complete in $S_{r, 3}$, Bolletino U. M. I. 5 (1972), 109-115.

University of Western Ontario,
London, Ontario


[^0]:    Received January 13, 1975 and in revised form, November 5, 1976. This research was supported in part by the National Research Council of Canada, Grant A8726.

