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1. Introduction

This paper grows out of the work of Jódar, Navarro and Camacho [6] and Martin, Navarro
and Jódar [7]. We shall consider a system of parabolic partial differential equations
(PDEs) of the form

ut = Auxx, 0 < x < 1, t > 0,

B1u(0, t) + B2ux(0, t) = 0 ∈ C
n, t > 0,

C1u(1, t) + C2ux(1, t) = 0 ∈ C
n, t > 0,

u(x, 0) = f(x), 0 � x � 1.




(1.1)

In this system the matrix A is an n × n Hermitian positive-definite complex matrix, and
may depend on t. We shall treat separately the cases of constant A and time-dependent
A. The matrices B1, B2, C1 and C2 appearing in the boundary conditions are complex
n × n matrices, constant in time, such that certain associated boundary-value problems
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are self-adjoint: to ensure this we shall assume the Atkinson conditions [2]

B1B
∗
2 = B2B

∗
1 ,

C1C
∗
2 = C2C

∗
1 ,

}
(1.2)

together with the full-rank hypothesis

rank(B∗
1 + iB∗

2) = n = rank(C∗
1 + iC∗

2 ). (1.3)

Equation (1.3) is necessary to ensure that the boundary conditions are linearly indepen-
dent. The solution u of (1.1) will be an n-vector valued map and, for smoothness, we
assume that the initial condition f satisfies the boundary conditions.

Coupled parabolic systems of PDEs arise in a number of applications, the most obvious
being those which involve coupled diffusion problems (see, for example, [3,9,10]). The
equations which arise in quantum mechanical scattering (see, for example, [1, 8]) can
also often be expressed in a form similar to (1.1) and solved by an approach similar
to the one we discuss in this paper, although it is important to note that quantum
mechanical scattering equations arise from the time-dependent Schrödinger equation and
therefore involve an anti-Hermitian coefficient matrix A in the term Auxx. This means
that the error analysis is somewhat different from the parabolic case which we discuss
here.

Compared with [6] and [7], the approach which we take here has a number of advan-
tages. Firstly, we do not need to assume that the kernel of a certain linear combination
of the matrices arising in the boundary conditions is invariant under A, or the associated
restriction on the initial condition. (On the other hand, we do impose self-adjointness
conditions which were not assumed in [6] or in [7].) Secondly, we have a much simpler
strategy for dealing with the time dependence of the solution, which does not involve
expansion of the solution in a power series in t and does not therefore suffer from the
problems associated with a limited radius of convergence. Our method is able to capture
correctly the long-time behaviour expected of a parabolic system, although the formal
order of accuracy in the time-step is lower than for the methods in [6] and [7], so the
method is less suitable for short-time integrations.

Our approach relies crucially on a priori lower bounds for the eigenvalues of the matrix–
vector Sturm–Liouville problem

−yxx = λA−1y ∈ C
n, 0 < x < 1,

B1y(0) + B2yx(0) = 0,

C1y(1) + C2yx(1) = 0.


 (1.4)

We obtain suitable bounds in § 2 below by a simple variational argument. Section 3
obtains a priori error bounds for a truncated series solution of the PDE in the case
where A does not depend on t. In § 4 we deal with the case of time-dependent A and
obtain an a priori error bound which depends only on knowledge of A and dA/dt.
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2. A-priori eigenvalue and eigenfunction bounds for a matrix–vector
Sturm–Liouville problem

Let (λk, yk), k = 0, 1, 2, . . . , denote the eigenvalues and eigenfunctions of the prob-
lem (1.4). The eigenfunctions are orthogonal with respect to the inner product

〈f, g〉 :=
∫ 1

0
f(x)∗A−1g(x) dx, (2.1)

and of unit length in the associated norm

‖f‖A := 〈f, f〉1/2. (2.2)

The set of vectors y0(0), y1(0), . . . ,yk+2n(0) is a set of k + 2n + 1 vectors in C
n, so there

exist k+n+1 linearly independent combinations of these vectors which are zero: in other
words, there exist k + n + 1 linearly independent vectors

cj := (c0j , c1j , . . . , ck+2n,j)T, j = 1, . . . , k + n + 1,

such that
k+2n∑
ν=0

cνjyν(0) = 0, j = 1, . . . , k + n + 1.

We define functions

Yj(x) =
k+2n∑
ν=0

cνjyν(x), j = 1, . . . , k + n + 1.

The Yj are linearly independent functions and satisfy

Yj(0) = 0, j = 1, . . . , k + n + 1.

Now the vectors Y1(1), . . . ,Yk+n+1(1) are k+n+1 vectors in C
n, so there exist k+1 linear

combinations of these vectors which are zero. Following the same reasoning as before, we
can thus construct linearly independent functions Z1, . . . ,Zk+1 in span{y0, . . . ,yk+2n}
such that

0 = Z1(0) = Z2(0) = · · · = Zk+1(0),

0 = Z1(1) = Z2(1) = · · · = Zk+1(1).

Let V be the space of C2 functions on [0, 1] which are n-vector valued and satisfy z(0) =
0 = z(1). By the Rayleigh variational characterization of eigenvalues [4, D2, p. 1543] the
kth eigenvalue of the problem

−yxx = λA−1y ∈ C
n, 0 < x < 1,

y(0) = 0,

y(1) = 0,


 (2.3)
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is given by

λk(Dirichlet) = inf
Vk⊆V

dim Vk=k+1

(
sup
z∈Vk

〈Az, −z′′〉
〈z, z〉

)
,

where 〈·, ·〉 is defined by (2.1). In particular, choosing Vk = span{Z1, . . . ,Zk+1} ⊆ V

gives

λk(Dirichlet) � sup
z∈span{Z1,...,Zk+1}

〈Az, −z′′〉
〈z, z〉 . (2.4)

Since span{Z1, . . . ,Zk+1} ⊆ span{y0, . . . ,yk+2n} and since

〈Az, −z′′〉
〈z, z〉 �

〈Ayk+2n, −y′′
k+2n〉

〈yk+2n, yk+2n〉 = λk+2n, ∀z ∈ span{y0, . . . ,yk+2n}, (2.5)

it follows on combining (2.4) and (2.5) that

λk(Dirichlet) � λk+2n, k = 0, 1, 2, . . . , (2.6)

or equivalently
λk � λk−2n(Dirichlet), k = 2n, 2n + 1, . . . .

To complete our lower bound we find lower bounds for the Dirichlet eigenvalues. These
eigenvalues are the eigenvalues of (2.3) and are therefore all positive, and at least as big
as the eigenvalues of the problem

−α2y′′ = λy, 0 < x < 1,

y(0) = 0 = y(1),

}
(2.7)

where
α2 := least eigenvalue of A, α > 0.

By direct substitution into the differential equation and boundary conditions, the reader
may verify that the eigenvalues of (2.7) are given by

λ̂k =
([

k

n

]
+ 1

)2

π2α2, k = 0, 1, 2, . . . , (2.8)

with corresponding eigenfunctions which may be taken to be∗

wk(x) = sin
(

x

α

√
λ̂k

)
e�, � = 1 + k − n

[
k

n

]
,

in which e� denotes the �th standard basis vector of C
n.

Combining (2.6) with the inequality λk(Dirichlet) � λ̂k and (2.8), we see that the
following has been proved.

∗ Since each eigenvalue has an eigenspace of dimension n, the eigenfunctions are not uniquely deter-
mined.
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Lemma 2.1. The eigenvalues of (1.4) satisfy

λk �
([

k

n

]
− 1

)2

π2α2, k = 2n, 2n + 1, . . . , (2.9)

where α2 = minimum eigenvalue of A.

The second ingredient which we require for our analysis is a bound on the sup-norm
of the eigenfunction yk. For λ > 0 let

W (λ) = λ1/2A−1/2. (2.10)

Then, if λk > 0, the eigenfunction yk has the form

yk(x) = {sin W (λk)x}v
(k)
1 + {cos W (λk)x}v

(k)
2 (2.11)

for some vectors v
(k)
1 and v

(k)
2 in C

n. For brevity we write this as

yk(x) = {sin Wx}v1 + {cos Wx}v2. (2.12)

To obtain a bound on the sup-norm of yk we need bounds on ‖v1‖ and ‖v2‖, to be
obtained from the normalization ‖yk‖A = 1, where ‖ · ‖A is the norm associated with the
inner product (2.1). Now using the fact that A commutes with W , we have

yk(x)∗A−1yk(x) = v∗
2A−1 cos2(Wx)v2 + v∗

1A−1 sin2(Wx)v1

+ 2 Re(v∗
1A−1 sin(Wx) cos(Wx)v2).

Integrating over [0, 1] with respect to x yields

‖yk‖2
A = 1

2v∗
2A−1[I + 1

2W−1 sin 2W ]v2 + 1
2v∗

1A−1[I − 1
2W−1 sin 2W ]v1

+ 1
2 Re(v∗

1A−1W−1[I − cos 2W ]v2).

The left-hand side is equal to 1; bounding the right-hand side from below using the
triangle inequality and the inequality ‖I − cos 2W‖ � 2, we obtain

1
2 (‖A−1/2v2‖2 + ‖A−1/2v1‖2)(1 − 1

2‖W−1‖) − ‖W−1‖ ‖A−1/2v1‖ ‖A−1/2v2‖ � 1. (2.13)

Using Young’s inequality,

2‖A−1/2v1‖ ‖A−1/2v2‖ � ‖A−1/2v2‖2 + ‖A−1/2v1‖2,

to deal with the last term on the left-hand side of (2.13), we obtain, for λ > 9
4‖A1/2‖2,

the inequality

‖A−1/2v1‖2 + ‖A−1/2v2‖2 � 2
1 − 3

2λ−1/2‖A1/2‖
,

whence

‖v1‖2 + ‖v2‖2 � 2‖A‖
1 − 3

2λ−1/2‖A1/2‖
, λ > 9

4‖A1/2‖2. (2.14)
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The equation yk(x) = (sinWx)v1 + (cos Wx)v2 implies

‖yk(x)‖ � ‖v1‖ + ‖v2‖ �
√

2
√

‖v1‖2 + ‖v2‖2. (2.15)

Combining (2.14) and (2.15) we have proved the following result.

Lemma 2.2. Let k be sufficiently large to ensure that λk > 9
4‖A1/2‖2. Then the

eigenfunction yk normalized by the condition ‖yk‖A = 1 satisfies

sup
0�x�1

‖yk(x)‖ � 2‖A‖1/2√
1 − 3

2λ
−1/2
k ‖A1/2‖

. (2.16)

3. Analytic–numerical solution with error bounds: the time-independent case

The solution of (1.1) admits a series representation in terms of the eigenfunctions of (1.4),

u(x, t) =
∞∑

k=0

cke−λktyk(x), (3.1)

where ck is determined from the eigenfunction expansion of the initial condition: in terms
of the inner product (2.1),

〈f,yk〉 = ck. (3.2)

We first examine the effects of truncating the series in (3.1): we let

uN (x, t) =
N∑

k=0

cke−λktyk(x) (3.3)

and examine the error ‖u(x, t) − uN (x, t)‖. Evidently

u(x, t) − uN (x, t) =
∞∑

k=N+1

cke−λktyk(x),

and so, upon taking (Euclidean) norms,

‖u(x, t) − uN (x, t)‖ �
∞∑

k=N+1

|ck|e−λkt‖yk(x)‖. (3.4)

We now substitute (2.16) into (3.4) and obtain

sup
0�x�1

‖u(x, t) − uN (x, t)‖ �
∞∑

k=N+1

|ck|e−λkt 2‖A‖1/2√
1 − 3

2λ
−1/2
k ‖A1/2‖

, (3.5)

provided λN+1 > 9
4‖A1/2‖2.
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Let ε > 0 and T > 0 be fixed. We look for an error bound valid over the interval
t ∈ [T, ∞). Suppose that N may be chosen to ensure that

3
2λ

−1/2
N+1 ‖A1/2‖ � 3

4 ,

∞∑
k=N+1

e−λkT <
ε

4‖f‖A‖A‖1/2 . (3.6)

Using the inequality |ck| � ‖f‖A which follows from (3.2), we obtain from (3.5) and (3.6)
the bound

sup
0�x�1

‖u(x, t) − uN (x, t)‖ < ε. (3.7)

We now use the lower bound on λk given by Lemma 2.1 to determine a value for N such
that (3.6) will hold. Simple algebra, together with the inequality of Lemma 2.1, shows
that the first of the two inequalities holds if

N � n

(
2 +

[
2‖A1/2‖

πα

])
. (3.8)

For the second inequality we assume that N + 1 > 2n, and we use the inequality

λk �
(

k

n
− 2

)2

π2α2.

Purely for convenience we also assume that N is large enough to ensure that(
N + 1

n
− 2

)2

π2α2T � 1. (3.9)

Then we have
∞∑

k=N+1

e−λkT �
∞∑

k=N+1

e−((k/n)−2)2π2α2T

�
∞∑

k=N+1

e−((k/n)−2)πα
√

T by (3.9)

=
e2πα

√
T

1 − e−πα
√

T/n
e−(N+1)πα

√
T/n.

Thus the second inequality in (3.6) will hold provided N is sufficiently large to ensure
that N + 1 > 2n, (3.8) holds, and

e2πα
√

T

1 − e−πα
√

T/n
e−(N+1)πα

√
T/n <

ε

4‖f‖A‖A‖1/2 . (3.10)

Solving this inequality and bearing in mind (3.9), we find that a sufficient condition on
N is

N > max
(

n

πα
√

T
| log ε̂| − 1, n

(
2 +

1
πα

√
T

)
− 1, n

(
2 +

[
2‖A1/2‖

πα

]))
, (3.11)
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where

ε̂ =
ε(1 − e−πα

√
T/n)

4‖f‖A‖A‖1/2e2πα
√

T
. (3.12)

We have thus proved the following result.

Theorem 3.1. Let T > 0 and ε > 0 be given. Suppose that the solution u of (1.1)
given by (3.1) is approximated for t ∈ [T, ∞) by the function uN given by (3.3). Suppose,
moreover, that N is chosen to satisfy (3.11). Then

sup
0�x�1

‖u(x, t) − uN (x, t)‖ < ε, ∀t ∈ [T, ∞). (3.13)

4. Analytic–numerical solution with error bounds: the time-dependent case

4.1. Preliminaries

In this section we shall find it convenient to use the ‘logarithmic seminorm’ µ(M) of a
square matrix M , defined by

µ(M) = lim sup
ε↘0

‖I + εM‖ − 1
ε

. (4.1)

We take ‖ · ‖ on the right-hand side of (4.1) to be the usual matrix 2-norm; noting that
for each ε > 0 and vector v,

v∗Mv = (1/ε){v∗(I + εM)v − v∗v},

it is then easy to see that
v∗Mv � µ(M)v∗v. (4.2)

4.2. Coefficient approximation and its effect

We approach the time-dependent case by approximating the coefficient A(t) in the
system of PDEs by a piecewise-constant matrix Â(t): so we assume that there exists a
sequence

0 = t0 < t1 < t2 < · · · < tk < tk+1 < · · · ,

such that Â(t) = Ak (constant) for t ∈ [tk, tk+1). The problem with the piecewise-
constant coefficient Â can be solved using the approach of § 3. We need to compare
the solutions of the following problems:

P :




ut = A(t)uxx, 0 < x < 1, t > 0,

B1u(0, t) + B2ux(0, t) = 0, t > 0,

C1u(1, t) + C2ux(1, t) = 0, t > 0,

u(x, 0) = f(x), 0 � x � 1,

(4.3)
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P̂ :




ût = Â(t)ûxx, 0 < x < 1, t > 0,

B1û(0, t) + B2ûx(0, t) = 0, t > 0,

C1û(1, t) + C2ûx(1, t) = 0, t > 0,

û(x, 0) = f(x), 0 � x � 1.

(4.4)

To this end we let v := u − û and g = (A − Â)uxx. Elementary manipulations show that
for t ∈ [tk, tk+1), v is the solution of the problem

Q :




vt = Akvxx + g(x, t), 0 < x < 1, t ∈ [tk, tk+1),

B1v(0, t) + B2vx(0, t) = 0, t ∈ [tk, tk+1),

C1v(1, t) + C2vx(1, t) = 0, t ∈ [tk, tk+1),

v(x, tk) = vk(x) := u(x, tk) − û(x, tk), 0 � x � 1.

(4.5)

To start the error analysis, for t ∈ [tk, tk+1) we expand v and g in terms of the eigen-
functions of the following eigenproblem:

−y′′ = λA−1
k y, 0 < x < 1,

B1y(0) + B2y
′(0) = 0,

C1y(1) + C2y
′(1) = 0.


 (4.6)

We let (λn, yn) (n = 0, 1, . . . ) be the eigenpairs of this problem, normalized so that

〈yn, A−1
k ym〉k :=

∫ 1

0
y∗

nA−1
k ym dx = δnm. (4.7)

The following assumption, which is essentially a dissipativity assumption, is also quite
important at various points in the analysis:

Assumption A : the eigenvalues λj (j � 0) of (4.6) are all > 0.

Remark 4.1. Problem (4.6) depends on Ak, which depends on the time-interval
[tk, tk+1) under scrutiny. However, since A(t) and Â(t) are positive-definite Hermitian
for all t, it is easy to show by an elementary variational argument that if the assumption
holds for some k, then it holds for all k.

We also let

v(x, t) =
∞∑

j=0

cj(t)yj(x), g(x, t) =
∞∑

j=0

φj(t)yj(x). (4.8)

Substituting these expansions into problem (4.5) we get c′
j(t) = −λjcj(t) + φj(t). Multi-

plying both sides of this equation by 2cj(t) gives

d
dt

(|cj |2) = −2λj |cj |2 + 2 Re(cjφj) � −2λj |cj |2 + 2 Re
(

ε|cj |2 +
1
4ε

|φj |2
)

,
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for any ε > 0. Choosing ε = 1
2λj gives

d
dt

(|cj |2) � −λj |cj |2 +
1
λj

|φj |2,

which we can write as

d
dt

(eλj(t−tk)|cj |2) � 1
λj

eλj(t−tk)|φj(t)|2.

Integrating both sides yields

|cj(t)|2 � |cj(tk)|2e−λj(t−tk) +
1
λ2

j

(1 − e−λj(t−tk)) sup
s∈[tk,tk+1)

|φj(s)|2.

Multiplying by λj and summing,

∞∑
j=0

λj |cj(t)|2 �
∞∑

j=0

e−λj(t−tk)λj |cj(tk)|2

+
( ∞∑

j=0

λ−1
j (1 − e−λj(t−tk))

)
sup
j�0

sup
s∈[tk,tk+1)

|φj(s)|2. (4.9)

Since φj is the jth generalized Fourier coefficient of g,

|φj(t)| =
∣∣∣∣
∫ 1

0
y∗

j (x)A−1
k g(x, t) dx

∣∣∣∣ �
(∫ 1

0
g(x, t)∗A−1

k g(x, t) dx

)1/2

;

substituting g(x, t) = (A(t) − Ak)uxx(x, t) we get

|φj(t)|2 �
∫ 1

0
u∗

xx(A(t) − Ak)A−1
k (A(t) − Ak)uxx dx

� ‖A−1/2(A − Ak)A−1
k (A − Ak)A−1/2‖

∫ 1

0
‖A1/2uxx‖2 dx

= ‖A−1/2(A − Ak)A−1
k (A − Ak)A−1/2‖

∫ 1

0
u∗

xxAuxx dx. (4.10)

Define

E(k, A) := sup
t∈[tk,tk+1)

‖A−1/2(A − Ak)A−1
k (A − Ak)A−1/2‖1/2. (4.11)

Then (4.10) gives

|φj(t)|2 � E(k, A)2
∫ 1

0
u∗

xxAuxx dx. (4.12)
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Substituting back into (4.9) we obtain

∞∑
j=0

λj |cj(t)|2 � e−λ0(t−tk)
∞∑

j=0

λj |cj(tk)|2

+
( ∞∑

j=0

λ−1
j (1 − e−λj(t−tk))

)
E(k, A)2

× sup
t∈[tk,tk+1)

∫ 1

0
uxx(x, t)∗A(t)uxx(x, t) dx. (4.13)

To continue with our analysis we require an a priori bound on the quantity∫ 1

0
uxx(x, t)∗A(t)uxx(x, t) dx, (4.14)

which appears on the right-hand side of (4.13). We define

w(x, t) := A(t)uxx(x, t) = ut,

and observe that since w = ut, provided u is sufficiently smooth w will satisfy the same
boundary conditions as u:

B1w(0, t) + B2wx(0, t) = 0, C1w(1, t) + C2wx(1, t) = 0. (4.15)

Also, we observe that∫ 1

0
uxx(x, t)∗A(t)uxx(x, t) dx =

∫ 1

0
w(x, t)∗A(t)−1w(x, t) dx

= 〈w, w〉, (4.16)

in terms of the inner product (2.1). Differentiating with respect to t gives

d
dt

( 1
2 〈w, w〉) = 〈w, wt〉 − 1

2

∫ 1

0
w∗A−1A′A−1w dx. (4.17)

Elementary manipulations show that in addition to the boundary conditions (4.15), the
function w satisfies the system

wt = A(t)wxx + A′A−1w. (4.18)

Taking the inner product of both sides with w yields

〈w, wt〉 =
∫ 1

0
w∗wxx dx +

∫ 1

0
w∗A−1A′A−1w dx. (4.19)

Now because w satisfies the boundary conditions (4.15) and because of Assumption A
(that all the eigenvalues of (4.6) are positive), we know that the Rayleigh quotient∫ 1

0 w∗wxx dx

〈w, w〉
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16 L. Jódar and M. Marletta

is negative. In particular its numerator is negative, so from (4.19) we have

〈w, wt〉 �
∫ 1

0
w∗A−1A′A−1w dx. (4.20)

Substituting (4.20) into the right-hand side of (4.17) yields

d
dt

( 1
2 〈w, w〉) � 1

2

∫ 1

0
w∗A−1A′A−1w dx

= 1
2

∫ 1

0
w∗A−1/2(A−1/2A′A−1/2)A−1/2w dx

� µ(A−1/2A′A−1/2)
∫ 1

0
(A−1/2w)∗A−1/2w dx

= µ(A−1/2A′A−1/2)〈w, w〉, (4.21)

where µ(·) denotes the logarithmic norm introduced in (4.1), (4.2). For each T > 0 let

µT := sup
t∈[0,T ]

µ(A−1/2A′A−1/2). (4.22)

Combining (4.22) with (4.21) and (4.16) we obtain the bound

∫ 1

0
uxx(x, t)∗A(t)uxx(x, t) dx � exp(2tµT )

∫ 1

0
uxx(x, 0)∗A(0)uxx(x, 0) dx,

t ∈ [0, T ], T > 0. (4.23)

We now substitute this back into (4.13) to obtain

∞∑
j=0

λj |cj(t)|2 � e−λ0(t−tk)
∞∑

j=0

λj |cj(t)|2

+ E(k, A)2 exp(2tk+1µtk+1)‖f ′′‖2
A(0)−1

∞∑
j=0

(1 − e−λj(t−tk))
λj

, (4.24)

where we have used the fact that uxx(x, 0) = f ′′(x) together with the notation ‖ · ‖A(0)−1

to denote the norm defined, by analogy with (2.2), by

‖f‖A(0)−1 :=
∫ 1

0
f∗A(0)f dx. (4.25)

From the eigenfunction expansion of v in (4.8) it is easy to verify that

∞∑
j=0

λj |cj(t)|2 =
∫ 1

0
v∗(x, t)(−vxx(x, t)) dx. (4.26)
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We denote the quantity on the right-hand side of (4.26) by |v|21 (the notation indicating
that this is a quantity closely related to the usual H1 seminorm). Then (4.24) may be
written as

|v(·, tk+1)|21 � e−λ0(tk+1−tk)|v(·, tk)|21

+ E(k, A)2 exp(2tk+1µtk+1)‖f ′′‖2
A(0)−1

∞∑
j=0

(1 − e−λj(tk+1−tk))
λj

. (4.27)

This bound still requires some simplification; in particular we need to bound the term

Fk :=
∞∑

j=0

λ−1
j (1 − e−λj(tk+1−tk)). (4.28)

We split the sum into two parts: from j = 0 to 4n − 1 and from j = 4n to infinity. Over
the first part we simply use the inequality

λ−1
j (1 − e−λj(tk+1−tk)) � (tk+1 − tk),

while in the second part we shall bound λj using

λj �
(

j

n
− 2

)2

π2α2
k, (4.29)

in which α2
k > 0 is the least eigenvalue of Ak. This bound is an immediate corollary of

Lemma 2.1. Together these two steps give

Fk � 4n(tk+1 − tk) +
∞∑

j=0

(
j

n
+ 2

)−2

π−2α−2
k (1 − e−((j/n)+2)2π2α2

k(tk+1−tk)). (4.30)

We now deal with the remaining terms using the integral test inequality, which states
that for any monotone decreasing continuous function ψ,∫ ∞

0
ψ(x) dx + ψ(0) �

∞∑
j=0

ψ(j).

Applying this to the sum on the right-hand side of (4.30) results in the bound

Fk � 4n(tk+1 − tk) +
(

1 − e−4π2α2
k(tk+1−tk)

4π2α2
k

)

+
∫ ∞

0

(
x

n
+ 2

)−2

π−2α−2
k (1 − e−((x/n)+2)2π2α2

k(tk+1−tk)) dx. (4.31)

Making the substitution w = ((x/n) + 2)2π2α2
k(tk+1 − tk) allows this to be evaluated in

terms of Γ functions, yielding

Fk � 4n(tk+1 − tk) +
(

1 − e−4π2α2
k(tk+1−tk)

4π2α2
k

)
+

√
tk+1 − tk
αk

√
π

.
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The inequality 1 − exp(−x) � x, valid for any x � 0, deals with the middle term, so we
finally obtain the simple bound

Fk � (4n + 1)(tk+1 − tk) +
√

tk+1 − tk
αk

√
π

. (4.32)

Now suppose that T > 0 is fixed with T = tK for some K > 0. From (4.27), given an
integer K > 0 and using the fact that v(·, 0) = 0 we have

|v(·, T )|21 =
K−1∑
k=0

{|v(·, tk+1)|21 − |v(·, tk)|21} �
{K−1∑

k=0

FkE(k, A)2
}

exp(2TµT )‖f ′′‖2
A(0)−1 ,

(4.33)
where we have used the assumption λ0 � 0 and also the fact that exp(tkµtk

) � exp(TµT )
for all 0 � k � K. We can now prove the following result.

Theorem 4.2. Let u be the solution of our original problem (4.3) with time-dependent
coefficient A(·) and let û be the solution of the approximate problem (4.4) with piecewise-
constant coefficient Â. Assume that all the eigenvalues of (4.6) are positive for some k

(and hence for every k). Let T = tK for some integer K. Then the error v = u−û satisfies
the error bound

|v(·, T )|1 �
{K−1∑

k=0

(
(4n+1)(tk+1 − tk)+

√
tk+1 − tk
αk

√
π

)
E(k, A)2

}1/2

exp(TµT )‖f ′′‖A(0)−1 ,

(4.34)
where E(k, A) is defined by (4.11), µT is defined by (4.22), α2

k > 0 is the least eigenvalue
of Ak, and | · |1 is defined by

|v|21 = −
∫ 1

0
v∗vxx dx > 0, (4.35)

the positivity of the right-hand side of (4.35) being an immediate consequence of the
assumption that all the eigenvalues of (4.6) are positive.

If a constant step size tk+1 − tk = δ is to be used, then the bound given in Theorem 4.2
can be simplified somewhat, and expressed in a form which allows the value of δ to be
determined a priori in terms of a predetermined accuracy ε.

Theorem 4.3. Let T > 0 be given. Suppose that a constant step size δ is used, where
T = Kδ for some integer K: in other words, tk+1 − tk = δ for k = 0, 1, . . . , K in (4.4).
Suppose also that the function Â(t) is given by

Â(t) = A( 1
2 (tk + tk+1)), t ∈ [tk, tk+1), k = 0, . . . , K. (4.36)

Let αT > 0 be given by

α2
T = inf

t∈[0,T ]
{least eigenvalue of A(t)}, (4.37)
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and let
‖A′‖L∞[0,T ] := sup

t∈[0,T ]
‖A′(t)‖, (4.38)

where A′ denotes the derivative of A and the norm on the right-hand side of (4.38) is
the usual matrix 2-norm. Let

γT :=
‖A′‖L∞[0,T ]

αT
. (4.39)

Suppose also that all the hypotheses of Theorem 4.2 hold. Then

|v(·, T )|1 �
√

Tδ3/4

2
γT exp(TµT )‖f ′′‖A(0)−1

(
(4n + 1)

√
δ +

1
αT

√
π

)1/2

. (4.40)

Proof. In the bound given by (4.34) we need to have an estimate for E(k, A). Bound-
ing the right-hand side of (4.11) using standard inequalities (including the identity
‖A−1/2‖2 = ‖A−1‖, valid because A is Hermitian positive definite and ‖·‖ is the 2-norm)
we have

E(k, A)2 � sup
t∈[tk,tk+1)

‖A(t)−1/2‖2‖A−1
k ‖ ‖A(t) − Ak‖2

� sup
t∈[tk,tk+1)

‖A(t)−1/2‖2 sup
t∈[tk,tk+1)

‖A(t)−1‖ sup
t∈[tk,tk+1)

‖A(t) − Ak‖2

= sup
t∈[tk,tk+1)

‖A(t)−1‖2 sup
t∈[tk,tk+1)

‖A(t) − Ak‖2

� 1
α2

T

sup
t∈[tk,tk+1)

‖A(t) − Ak‖2

�
(δ/2)2‖A′‖2

L∞[0,T ]

α2
T

. (4.41)

Substituting (4.41) into the right-hand side of (4.34), together with tk+1 − tk = δ for all
k, all the terms in the summation become independent of the summation index k. Using
the fact that Kδ = T , this yields

|v(·, T )|21 � Tδ

4α2
T

‖A′‖2
L∞[0,T ]

(
(4n + 1)δ +

√
δ

αT
√

π

)
exp(2TµT )‖f ′′‖2

A(0)−1 . (4.42)

The factor
Tδ

4α2
T

‖A′‖2
L∞[0,T ]

is precisely 1
4Tδγ2

T . Substituting this into the right-hand side of (4.42) and taking square
roots gives (4.40), as required. �

Remark 4.4. It is also possible to bound µT in terms of γT . From (4.22) and (4.39),

µT �
‖A′‖L∞[0,T ]

αT
= γT . (4.43)
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However it is important to note that µT may be negative, in which case (4.43) would
result in the replacement of an exponentially small term in (4.40) by an exponentially
large one, for large T .

Remark 4.5. We make some remarks on the practicality of Theorem 4.3. The term
‖f ′′‖A(0)−1 may be assumed to be known, because the initial condition function f is
known. If A is known symbolically, then it would be easy to compute A′ symbolically
and obtain a crude upper bound on ‖A′‖L∞[0,T ], perhaps even by using interval arithmetic
and eigenvalue bounds based on Gershgorin’s theorems [5, p. 341]. The most troublesome
term is the quantity αT defined by (4.37). If A is known symbolically and is small enough
to be inverted symbolically, so that a symbolic expression for A−1 is available, then the
expression

αT = ( sup
t∈[0,T ]

‖A−1(t)‖)−1 =: ‖A−1‖−1
L∞[0,T ]

would allow αT to be estimated in the same manner as ‖A′‖L∞[0,T ]. Otherwise, the
computation of αT could be very difficult without further information.

Remark 4.6. The bound given by (4.40) is not tight. Given the formula (4.36), we
would expect the difference between u and û to be O(δ2). This can indeed be proved,
provided u is sufficiently smooth, although the resulting bound involves constants which
cannot easily be determined a priori, unlike the bound in Theorem 4.2.

4.3. Propagation of error across time-steps

In each time-step [tk, tk+1) the solution û must be found. Since Â is constant on
[tk, tk+1), we would like to tackle this problem using the method of § 3. However, our
analysis of that method assumed exact initial conditions, and we do not have exact
initial conditions: we have an approximation to û(·, tk) arising from the truncation of
the eigenfunction expansions in the previous intervals [0, t1), . . . , [tk−1, tk). We need to
account for the error due to inexact initial conditions and examine its propagation.

Lemma 4.7. Let | · |1 be as above and let Assumption A hold. Let w be any function
satisfying the PDE wt = Âw together with the boundary conditions

B1w(0, t) + B2wx(0, t) = 0, C1w(1, t) + C2wx(1, t) = 0.

Then on each time-interval [tk, tk+1), the norm |w(·, t)|1 is monotone decreasing as a
function of t.

Proof. This is a standard result and may be proved by differentiating the expression

|w|21 = −
∫ 1

0
w∗wxx dx

with respect to t. �
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Consider the first time-interval [0, t1). Let û0 be the computed approximation to û on
this interval obtained by series truncation after N0 +1 terms, as in § 3. We can write this
as

û0 = PN0 û,

where PN0 is the projection operator onto the space spanned by the first N0 + 1 eigen-
functions of the eigenvalue problem (4.6) with k = 0. From the triangle inequality,

|u(·, t1) − û0(·, t1)|1 � |u(·, t1) − û(·, t1)|1 + |û(·, t1) − û0(·, t1)|1.

On the second time-interval [t1, t2) we introduce a function û1, which is the approxi-
mation to û0 on this interval obtained by the projection

û1 = PN1 û0,

where PN1 is the projection operator onto the space spanned by the first N1 + 1 eigen-
functions of the eigenvalue problem (4.6) with k = 1. (Note that expanded in terms of
the eigenfunctions of (4.6) with k = 0, û0 has a finite expansion, but expanded in terms
of the eigenfunctions of (4.6) with k = 1, û0 will generally have an infinite expansion, it
is this expansion which we truncate to get û1.) Following the same methods as before,

|u(·, t2) − û1(·, t2)|1
� |u(·, t2) − û(·, t2)|1 + |û(·, t2) − û0(·, t2)|1 + |û0(·, t2) − û1(·, t2)|1
� |u(·, t2) − û(·, t2)|1 + |û(·, t1) − û0(·, t1)|1 + |û0(·, t2) − û1(·, t2)|1
= |u(·, t2) − û(·, t2)|1 + |û(·, t1) − PN0 û(·, t1)|1 + |û0(·, t2) − PN1 û0(·, t2)|1,

where we have used Lemma 4.7 on the middle term.
After k steps, we obtain in an analogous way,

|u(·, tk) − ûk−1(·, tk)|1 � |u(·, tk) − û(·, tk)|1 + |û(·, t1) − PN0 û(·, t1)|1

+
k−2∑
j=0

|ûj(·, tj+2) − PNj+1 ûj(·, tj+2)|1. (4.44)

The first term on the right-hand side of (4.44) is the error term for which we obtained a
bound in Theorem 4.2. The remaining error terms are all due to the projection operators
PNj , which project a function onto the space spanned by the first Nj + 1 eigenfunctions
of the problem (4.6) with k = j.

Given ε > 0 and T > 0 the following algorithm allows one to compute an approximation
to the exact solution u at time T with error at most ε in the | · |1 norm.

Algorithm 4.8.

(1) Use the bound of Theorem 4.2 to choose a step size δ = T/K (K integer) such that
|u(·, T ) − û(·, T )|1 � ε/2.

(2) Choose N0 such that |û(·, t1) − PN0 û(·, t1)|1 � ε/(2K).
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(3) Starting from the initial condition û0 = PN0f , for j from 0 to K − 2,

(i) compute ûj(·, tj+1) from the initial condition ûj(·, tj) = PNj ûj−1(·, tj),
(ii) choose Nj+1 such that

|ûj(·, tj+2) − ûj+1(·, tj+2)| = |ûj(·, tj+2) − PNj+1 ûj(·, tj+2)|1 � ε/(2K).

In order to realize this algorithm in practice, we need to be able to choose Nj+1 at
each step so that |ûj(·, tj+2) − PNj+1 ûj(·, tj+2)|1 � ε/(2K).

We may suppose that, for t ∈ [tj+1, tj+2), the function ûj has an expansion

ûj(x, t) =
∞∑

ν=0

cν,j+1yν,j+1(x) exp(−λν,j+1(t − tj+1)), (4.45)

in which the coefficients cν,j+1 are given by

cν,j+1 =
∫ 1

0
(ûj(x, tj+1))∗A−1

j+1yν,j+1(x) dx. (4.46)

From (4.45) we have

(ûj − PNj+1 ûj)(x, t) =
∞∑

ν=Nj+1+1

cν,j+1yν,j+1(x) exp(−λν,j+1(t − tj+1)),

and hence

|(ûj − PNj+1 ûj)(·, t)|21 =
∞∑

ν=Nj+1+1

|cν,j+1|2λν,j+1 exp(−2λν,j+1(t − tj+1)). (4.47)

Using the fact that −y′′
ν,j+1 = λν,j+1A

−1
j+1yν,j+1 together with the fact that both yν,j+1

and ûj satisfy the boundary conditions, we obtain from (4.46) the expression

cν,j+1 = − 1
λν,j+1

∫ 1

0
(û′′

j (x, tj+1))∗yν,j+1 dx

= − 1
λν,j+1

∫ 1

0
(A1/2

j+1û
′′
j (x, tj+1))∗A

−1/2
j+1 yν,j+1 dx,

whence Cauchy–Schwarz yields

λν,j+1|cν,j+1|2 � 1
λν,j+1

∫ 1

0
(û′′

j (x, tj+1))∗Aj+1(û′′
j (x, tj+1)) dx. (4.48)

Substituting back into (4.47) yields

|(ûj − PNj+1 ûj)(·, t)|21 � I1I2, (4.49)
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where

I1 =
∞∑

ν=Nj+1+1

1
λν,j+1

exp(−2λν,j+1(t − tj+1)) (4.50)

and

I2 =
∫ 1

0
(û′′

j (x, tj+1))∗Aj+1(û′′
j (x, tj+1)) dx. (4.51)

We now proceed to estimate the terms I1 and I2 separately. For the term I1 we require
a lower bound on the eigenvalues λν,j+1. The lower bound we use comes from (4.29) and
is

λν,j+1 �
(

ν

n
− 2

)2

π2α2
j+1, ν � 2n, (4.52)

where α2
j+1 is the least eigenvalue of Aj+1. This gives

I1 �
∞∑

ν=Nj+1+1

(
ν

n
− 2

)−2

π−2α−2
j+1 exp

(
−2

(
ν

n
− 2

)2

π2α2
j+1(t − tj+1)

)

� 1
π2α2

j+1

∫ ∞

Nj+1

(
x

n
− 2

)−2

exp
(

−2
(

x

n
− 2

)2

π2α2
j+1(t − tj+1)

)
dx.

where we have used the integral test to bound the sum. Making the substitution

v = 2
(

x

n
− 2

)2

π2α2
j+1(t − tj+1),

the integral simplifies to yield

I1 �
√

t − tj+1√
2παj+1

∫ ∞

2((Nj+1/n)−2)2π2α2
j+1(t−tj+1)

v−3/2 exp(−v) dv.

This integral is an incomplete Γ -function; we estimate it by using the fact that over the
range of integration, v−3/2 is monotone decreasing, and can therefore be replaced by its
value at the lower limit without invalidating the upper bound on I1. This yields

I1 �
exp(−2((Nj+1/n) − 2)2π2α2

j+1(t − tj+1))
4π4α4

j+1((Nj+1/n) − 2)3(t − tj+1)
. (4.53)

Next we estimate I2. We start with the inequality

I2 � ‖A
−1/2
j Aj+1A

−1/2
j ‖2

∫ 1

0
(û′′

j (x, tj+1))∗Aj(û′′
j (x, tj+1)) dx, (4.54)

in which ‖ · ‖2 denotes the usual matrix 2-norm. Next we expand ûj in terms of the
eigenfunctions yν,j for t ∈ (tj , tj+1]:

ûj(x, t) =
Nj∑
ν=0

cν,j exp(−λν,j(t − tj))yν,j(x), (x, t) ∈ (0, 1) × (tj , tj+1].
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Using the orthogonality ∫ 1

0
y∗

ν,jA
−1
j yµ,j dx = δν,µ

together with the fact that y′′
ν,j = −λν,jA

−1
j yν,j gives

∫ 1

0
(û′′

j (x, tj+1))∗Aj(û′′
j (x, tj+1)) dx =

Nj∑
ν=0

|cν,j |2 exp(−2λν,j(t − tj))λ2
ν,j

�
Nj∑
ν=0

|cν,j |2λν,j{λν,j exp(−2λν,j(t − tj))}

� 1
2(t − tj)

Nj∑
ν=0

|cν,j |2λν,j

=
1

2(t − tj)
|ûj(·, tj)|21.

Combining this with (4.54) yields

I2 �
‖A

−1/2
j Aj+1A

−1/2
j ‖2

2(t − tj)
|ûj(·, tj)|21. (4.55)

Together with the bound (4.53) for I1 and the inequality |(ûj − PNj+1 ûj)(·, t)|21 � I1I2,
this yields

|(ûj − PNj+1 ûj)(·, tj+2)|21

�
‖A

−1/2
j Aj+1A

−1/2
j ‖2|ûj(·, tj)|21

8π4α4
j+1((Nj+1/n) − 2)3δ2 exp

(
−2

(
Nj+1

n
− 2

)2

π2α2
j+1δ

)
, (4.56)

where we have used tj+2 − tj+1 = tj+1 − tj = δ. We can now choose the integer Nj+1 to
ensure the inequality

|(ûj − PNj+1 ûj)(·, tj+2)|1 � ε

2K
=

εδ

2T
,

as required by Algorithm 4.8 above. Defining

M2
j+1 := 2

(
Nj+1

n
− 2

)2

π2α2
j+1δ, (4.57)

from which Nj+1 is easily found, some simple algebra shows that we require

M−3
j+1 exp(−M2

j+1) �
{

παj+1

21/2T 2‖A
−1/2
j Aj+1A

−1/2
j ‖2|ûj(·, tj)|21

}
ε2δ5/2. (4.58)

At each step the quantity |ûj(·, tj)|21 is known, since ûj(·, tj) is a computed quantity
(computed in terms of a known set of eigenfunctions). The inequality (4.58) can be
solved (e.g. numerically) to find an appropriate value for Mj+1 and hence for Nj+1. We
make three remarks on the size of Mj+1 (and hence Nj+1) as follows.
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(1) As j increases, tj+2 increases and the solution of the PDE decays exponentially.
Thus |ûj(·, tj)|21 may be expected to be exponentially small for large j, which is
good news when choosing Mj+1.

(2) At first sight it may appear that Nj+1 increases only logarithmically with ε and
δ. Unfortunately, while this is true for Mj+1 it is not true for Nj+1. Since (4.57)
involves δ and since δ may be expected to be O(ε4/3) from the error bound in
Theorem 4.3, the dominant effect in the lower bound on Nj+1 is O(ε−2/3). For
large time, however, the previous remark means that that should not be a problem.

(3) A further lower bound on Nj+1 comes from the requirement Nj+1 > 2n, which is
explicit in our lower eigenvalue bound (4.52).
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