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Abstract

Introduction:More complex research questions are being posed in early-phase oncology clinical
trials, necessitating design strategies tailored to contemporary study objectives. This paper
describes the proposed design of a Phase I trial concurrently evaluating the safety of a
hematopoietic progenitor kinase-1 inhibitor (Agent A) as a single agent and in combination
with an anti-PD-1 agent in patients with advanced malignancies. The study’s primary objective
was to concurrently determine the maximum tolerated dose (MTD) of Agent A with and
without anti-PD-1 therapy among seven possible study dose levels. Methods: Our solution to
this challenge was to apply a continual reassessment method shift model to meet the research
objectives of the study. Results: The application of this method is described herein, and a
simulation study of the design’s operating characteristics is conducted. This work was
developed through collaboration and mentoring between the authors at the American
Association for Cancer Research (AACR) and the American Society of Clinical Oncology
(ASCO) annual AACR/ASCO Methods in Clinical Cancer Research Workshop. Conclusions:
The aim of this manuscript is to highlight examples of novel design applications as a means of
augmenting the implementation of innovative designs in the future and to demonstrate the
flexibility of adaptive designs in satisfying modern design conditions. Although the design is
presented using an investigation of Agent A with and without anti-PD-1 therapy as an
illustrative example, the approach described is not specific to these agents and could be applied
to other concurrent monotherapy and combination therapy studies with well-defined binary
safety endpoints.

Introduction

The paper describes the proposed design of a Phase I trial concurrently evaluating the safety of a
hematopoietic progenitor kinase-1 inhibitor (Agent A) as a single agent and in combination
with an anti-PD-1 agent in patients with advanced malignancies. This work was developed
through collaboration and mentoring between the authors at the American Association for
Cancer Research (AACR) and the American Society of Clinical Oncology (ASCO) annual
AACR/ASCO Methods in Clinical Cancer Research Workshop. The study’s primary objective
was to concurrently determine the maximum tolerated dose (MTD) of Agent A with and
without anti-PD-1 therapy, among the possible study dose levels provided in Table 1. The
starting dose level was 60 mg once daily. The MTD in each row of Table 1 was defined as the
study dose level with a dose-limiting toxicity (DLT) rate closest to the prespecified target DLT
rate of 30%. In this trial, several assumptions drive the design considerations. First, the DLT
probability increases as Agent A’s dose increases (i.e., across rows of Table 1). Second, the
addition of anti-PD-1 is accompanied by additional DLT-qualifying adverse events to those
related to Agent A which increases the likelihood of DLT of the combination therapy relative to
the monotherapy when holding the dose of Agent A constant (i.e., up columns of Table 1).
Therefore, before the study, clinical information would indicate that the estimated MTD of
Agent A without anti-PD1 therapy should not be below the estimated DLT with anti-PD-1
treatment.

A straightforward way to design this study would be to conduct parallel dose-finding trials to
identify the MTD of Agent A both with and without anti-PD-1 therapy. In this case, a method
intended for single-agent evaluation, such as the 3þ 3 algorithm, could be applied
independently to each row of Table 1. Conducting independent trials for each row is a simple
approach to the problem described, but it is a suboptimal way to proceed because doing so
ignores the available clinical information between the two treatment strategies. This approach
often leads to a reversal, a situation in whichMTD recommendations violate the known order of
toxicity risk by row [1]. Reversals are problematic because the final MTD selection for Agent A
with anti-PD-1 therapy is a higher dose level than the MTD for Agent A without anti-PD-1
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treatment, which is assumed to be less toxic. In this study, either
the MTD in each row should be at the same dose of Agent A or the
MTD with anti-PD-1 should be below the MTD without Agent A.
A more efficient approach would involve adaptively borrowing
information across rows of Table 1 to allow safety data from Agent
A with ant-PD-1 therapy to inform dose assignments for Agent A
without anti-PD-1 treatment and vice versa.

Several existing dose-finding methods for drug combinations
could be applied to this problem. The sequential continual
reassessment method (CRM [2]) proposed by Yin and Yuan [3]
converts the two-dimensional dose-finding trial to a series of one-
dimensional dose-finding subtrials by fixing the dose level of one
drug, but they suggest conducting the subtrials sequentially. An
adaptive approach to this problem was developed by Braun and Jia
[4]. However, neither method has available software for simulation
or implementation. Ivanova and Wang [5] applied bivariate
isotonic regression to estimate multiple MTD in drug combination
studies. An editorial in the Journal of Clinical Oncology by
Mandrekar [6] described the use of the method of Ivanova and
Wang [5] in a real phase I study aiming to identify multiple MTD
[7]. This method also does not have accompanying software for
simulation or implementation. The product of independent beta
priors design, proposed byMander et al. [8], enables the estimation
of a maximum tolerated contour, a set of dose combinations with
acceptable toxicity profiles. The product of independent priors
design has an R package (pipe.design) available for download on
the Comprehensive R Archive Network and accompanying R
shiny web application. However, this method is not explicitly
geared toward finding an MTD combination in each row of a two-
dimensional grid. It may recommend any number (> 2) MTD
combinations for further testing in middle development. The two-
dimensional design of Wages [9] has demonstrated good statistical
properties compared to the Wang and Ivanova [5] method. The
method has available R code for simulation upon request from the
first author. We will use this method to illustrate the advantages of
using a design that efficiently borrows safety data across the dose
levels of Agent A with and without the addition of anti-PD1
therapy. The statistical properties of such an approach will be
contrasted with a framework that conducts independent parallel
trials using a design for single-agent evaluation, such as 3þ 3
decision rules or a Bayesian optimal interval (BOIN) method [10],
in each row.

Methods

A participant is classified as experiencing DLT based on protocol-
specific adverse event definitions occurring during the first
treatment cycle. As data accumulate, each participant is classified
as to whether they experienced a DLT (yes/no). Adverse events
were to be graded using the National Cancer Institute (NCI)
Common Terminology Criteria (CTCAE) Version 5.0. The MTD

of Agent A in each row of Table 1 is defined as the dose
combination with a DLT rate closest to the target rate of 30%.

It is assumed that the MTD for Agent A in each row is either (i)
at the same dose of the anti-PD-1 therapy, or (ii) the MTD for
Agent A is one dose level lower with the addition of anti-PD-1
therapy than without the anti-PD-1 treatment. For instance, if the
MTD dose of Agent Awithout anti-PD-1 therapy is estimated to be
dose level 4 (480 mg). The estimated MTD of Agent A with anti-
PD-1 treatment will also be dose level 4 (480 mg) or will be shifted
one level lower to dose level 3 (240 mg). The truth could be either of
these possibilities. We want to account for this uncertainty in the
design by using the data to estimate the relative location of the
MTD between rows. A similar strategy has been implemented in
methods that account for patient heterogeneity [11,12]. The
relative location of the MTD between rows is illustrated in Table 2.

Estimation and Allocation

The design is based on utilizing a class of working models
corresponding to relative locations (shifts) of theMTD in each row
of the drug combination grid (Table 2). The uncertainty associated
with the relationship between the MTD in each row is expressed
through the specification of multiple one-parameter models in
Table 3 that reflect different locations of the MTD of Agent A with
and without anti-PD-1 therapy. Model selection techniques are
used to choose themodel most consistent with the observed data. A
common model choice [13] in the CRM is to raise a set of initial
DLT probability estimates, also referred to as the “skeleton” of the
model, to a power a that is a parameter to be estimated by the data.
A different skeleton is specified for each possible MTD shift
between the dose levels (i.e., shift= 0 or shift =−1). The skeleton
values displayed in Table 3 for eachmodel were generated using the
algorithm of Lee and Cheung [14]. Using all accumulated toxicity
data, the design fits the CRM for each DLT probability working
model, and the parameter a is estimated for each model by
maximum likelihood estimation. The working model with the
largest likelihood is chosen, and DLT probability estimates are
updated for each dose level using the selected model. If there is a tie
between the highest likelihood values of two or more models, then
the selected model is randomly chosen from among those with tied
likelihood values. The updated DLT probability estimates are used
to identify the dose of Agent A in each row with a DLT rate closest
to the target rate of 30%. The design would then randomize the
next patient to one of the two recommended dose levels with equal
probability.

Getting the Trial Underway

Likelihood-based methods, like the two-stage CRM, fail to have a
solution until at least one DLT and one non-DLT have been
observed in the study [15]. Thus, an initial dose escalation scheme
must be defined before the study begins that will be used until one
DLT and one non-DLT occur in the study. This initial design
essentially amounts to prespecifying a path within the drug
combination grid to adhere to get the trial underway. This process
could, of course, be carried out in several ways and could include
some randomization if more than one dose level could be
considered for escalation, as is often the case in drug combination
studies. In this design, the trial would start at the lowest dose level
and escalate along the bottom row in cohorts of size one until the
first DLT occurs. The design is flexible enough to accommodate
other starting dose levels if necessitated in a specific trial situation.
As long as no DLT is observed in participants not assigned to anti-

Table 1. Study dose levels of a Phase I trial a hematopoietic progenitor kinase-1
inhibitor (Agent A) as a single agent and in combination with an anti-PD-1 agent

Dose (mg)

Agent A 60 120 240 480 800 1200 1600

PD-1 (yes)

PD-1 (no)
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PD-1, escalation would continue at the lowest dose level of Agent A
with anti-PD-1 therapy. After the first DLT, the modeling stage
begins, which proceeds according to the estimation and allocation
procedure described above.

Results

Illustration of the Method

In this section, we illustrate the behavior of the method described
in this article under a set of true DLT probabilities for the 2 × 7
example described in Section 2. The target DLT rate is 30%, and the
total sample size isN= 39, which was chosen using the sample size
calculator for CRM trials [16] using the function getn in R package
dfcrm [17] with the following specifications; (1) the desired
average probability of correction selection (PCS) of 50%, (2) target
DLT rate of 30%, (3) the number of test doses equal to 14 (i.e., 7
dose levels in 2 rows), and (4) effect size equal to 1.78. The set of
true DLT probabilities for row 1 are {0.01, 0.12, 0.18, 0.21, 0.22,
0.31, 0.60}, indicating that dose level 6 (i.e., Agent A at 1200mg
without a-PD-1 therapy) is the true MTD in row 1. For row 2, the
true probabilities are {0.09, 0.14, 0.22, 0.25, 0.32, 0.40, 0.64},
indicating that dose level 5 (i.e., Agent A at 800 mg with a-PD-1
therapy) is the true MTD in row 2. The relative location of these
true MTD combinations indicates a shift of one dose level between
the two rows. The method embodies the characteristics of the
CRM, so we appeal to its features in specifying design parameters.
The skeleton values were chosen by the algorithm of Lee and
Cheung [14] and are provided in Table 3. We assumed that each
working model was equally likely to represent the true shift
between the MTD combinations at the beginning of the trial.

The data from the entire simulated trial are provided in Table 4.
The first four eligible participants are administered escalating dose
levels along row 1, and 0DLT are observed on doses of 60, 120, 240,
and 480 mg of Agent A without anti-PD-1 therapy. The first DLT
occurs in participant 5 on a dose of 800 mg of Agent A without
anti-PD-1, at which point the modeling stage begins. Even with
these limited data, the true shift between MTD combinations is
estimated to be one dose level apart. Combinations (480 mg with a-
PD-1 therapy) and (800 mg without a-PD-1 therapy) are indicated
to have an estimated DLT rate closest to the target rate. Patient 6 is
randomized with probability 1/2 to one of these combinations,
which yields a recommendation of (480 mg with anti-PD-1
therapy), on which they do not experience DLT. It is important to
note that the dose-limiting probabilities are updated in row 2, even

though we have yet to observe a patient in this row, illustrating the
formal borrowing of information across rows afforded by the
model. Overall, in this simulated trial (Table 4), N = 39 patients
were treated, yielding final MTD combination recommendations
of (800 mg with anti-PD-1 therapy) and (1200 mg without anti-
PD-1 treatment).

Operating Characteristics Over a Small Set of Curves

We compared the operating characteristics of three competing
approaches for identifyingMTD of Agent A both with and without
anti-PD-1 therapy. The first approach is to run independent 3þ 3
algorithms in each row. The second approach is to run
independent BOIN designs in each row. The third approach was
the CRM design for identifying multiple MTD combinations using
a shift model described above.

The operating characteristics of the three methods were
compared by simulating 1000 trials under six dose-toxicity cases
of a 2 × 7 dose combination grid with varying positions of actual
MTDs, as shown in Table 5. We randomly generated the dose–
toxicity curves using the method of Conaway and Petroni [18],
with the constraint that the MTD in each row are the same or one
level apart. The target DLT rate that defines the MTD is set to 30%
in all scenarios. The sample size is N= 39 for the CRM shift model
design, and n= 20 in each row (total N= 40) for the independent
BOIN designs. The sample size for the two separate 3þ 3 trials is
estimated from the simulation studies. Throughout the simulation
studies, participants are assigned to doses in cohorts of size one in
the independent BOIN and shift model approaches. In the
specification of our working models, we restrict the possible shift
between MTD to be either 0 or −1, indicating that we do not allow
for more than a one-dose-level shift between two adjacent rows of
thematrix; these shifts represent the clinical setting in which we are
operating. However, shifts of two or more are possible, and the
CRM shift model can handle such possibilities by including more
working models, as demonstrated in Wages [9]. In general, our
goal is to evaluate (i) how well each method locates MTD at and
around the target DLT rate in each row (percentage of correct
recommendation; PCR) and (ii) how well each method allocates
patients to combinations at and around the target DLT rate in each
row (proportion of correct allocation; PCA), and (iii) how many
times did the independent designs “reverse” the order of the MTD
(i.e., chooses a higher MTD with anti-PD-1 than without anti-PD-
1)? This percentage will be 0% for the CRM design since the shift
model structure prevents it from happening, and thus it is not
possible.

Tables 5 and 6 show the operating characteristics of the three
methods under the six dose-toxicity cases. Table 7 reports the
proportion of trials correctly identifying neither, one, or both
MTDs. In case I, the shift model method yields a higher PCR than
the parallel BOIN and 3þ 3 approaches in both of the rows (40.5%
vs. 33.1% vs. 14.1% in row 1; 40.0% vs. 20.3% vs. 9.2% in row 2) and
an average PCR of 40.25% across both rows, compared with
11.65% for the independent 3þ 3 approach and 26.7% for the
parallel BOIN approach. For patient allocation, the proposed
method allocates the highest proportion of patients to the true
MTD in both of the rows in case I (0.14 vs. 0.10 vs. 0.04 in row 1;
0.13 vs. 0.08 vs. 0.04 in row 2) and yields the highest overall PCA
(0.27) than parallel 3þ 3 and BOIN algorithms (0.08 and 0.10,
respectively). The average sample size is 31.8 for the parallel 3þ 3
design, 39.6 for the parallel BOIN designs, and 39.0 for the shift
model approach in case I – the parallel 3þ 3 approach results in a

Table 2. Illustration of the relative location between maximum tolerated doses
in each row of a drug combination grid. Colored cells indicate the hypothesized
MTD in each row

Doses of
Agent A

Maximum tolerated doses are the same in each row

60
mg

120
mg

240
mg

480
mg

800
mg

1200
mg

1600
mg

PD-1 (þ) MTDþ

PD-1 (−) MTD-

Doses of
Agent A

Maximum tolerated doses differ by one dose level

60
mg

120
mg

240
mg

480
mg

800
mg

1200
mg

1600
mg

PD-1 (þ) MTDþ

PD-1 (−) MTD-

MTD, maximum tolerated dose.
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reversal in 29.2% of simulated trials and the parallel BOIN
approach does so in 29.3% of simulated trials.

In case 2, the shift model method yields a higher PCR than the
parallel BOIN and 3þ 3 approaches in both of the rows (63.3% vs.
44.8% vs. 32.7% in row 1; 52.2% vs. 27.6% vs. 15.2% in row 2). The
average PCR is 57.75% across all rows for the shift model approach,
compared with 23.95% for the 3þ 3 approach and 36.2% for the
BOIN approach. For patient allocation, the proposed method
allocates the highest proportion of patients to the true MTD
combinations in both of the rows in case 2 (0.22 vs. 0.17 vs. 0.14 in
row 1; 0.16 vs. 0.12 vs. 0.07 in row 2) and yields a higher overall
PCA (0.38) than parallel BOIN (0.29) and 3þ 3 algorithms (0.21).
The average sample size is 26.9 for the parallel 3þ 3 design, 38.1
for the parallel BOIN design, and 39.0 for the shift model approach
in case 2 – the parallel 3þ 3 approach results in a reversal in 6.5%
of simulated trials and the BOIN approach does so in 10.7% of
trials.

In case 3, the shift model method again produces a higher PCR
than the parallel BOIN and 3þ 3 approaches in both of the rows
(48.9% vs. 38.9% vs. 40.5% in row 1; 67.6% vs. 32.6% vs. 27.2% in
row 2). The average PCR is 58.25% for the proposed approach
across all rows, compared with 33.85% for the 3þ 3 approach and
38.9% for the BOIN approach. For patient allocation, the 3þ 3 and
shift model methods allocate a similar proportion of patients to the
true MTD combinations in both of the rows in case 3 (0.28 vs. 0.29
in row 1; 0.31 vs. 0.30 in row 2) and produce a similar overall PCA
(0.59). The parallel BOIN approach allocates a slightly lower
proportion of patients to trueMTD combinations in each row. The
average sample size is 14.5 for the parallel 3þ 3 design, 31.6 for the
BOIN approach, and 36.7 for the shift model approach in case 1.
This discrepancy is due to the aggressive nature in which the 3þ 3
stops early for safety concerns. Despite the safe doses in each row,
the 3þ 3 stops early in 44.1% and 59.9% of simulated trials in rows
1 and 2, respectively. The parallel 3þ 3 approach results in a

Table 3. Working models for the dose-limiting toxicity probabilities at each dose level. Colored cells indicate the hypothesized MTD in each row

Working model 1 (maximum tolerated doses are the same in each row)

m = 1 (shift= 0) 0.06exp(a) 0.12 exp(a) 0.20 exp(a) 0.30 exp(a) 0.40 exp(a) 0.50 exp(a) 0.59 exp(a)

0.06 exp(a) 0.12 exp(a) 0.20 exp(a) 0.30 exp(a) 0.40 exp(a) 0.50 exp(a) 0.59 exp(a)

Working model 2 (maximum tolerated doses differ by one level)

m = 2 (shift=−1) 0.12 exp(a) 0.20 exp(a) 0.30 exp(a) 0.40 exp(a) 0.50 exp(a) 0.59 exp(a) 0.67 exp(a)

0.06 exp(a) 0.12 exp(a) 0.20 exp(a) 0.30 exp(a) 0.40 exp(a) 0.50 exp(a) 0.59 exp(a)

MTD, maximum tolerated dose.

Table 4. Illustration of proposed method

Pt Dose of A a-PD-1 (±) DLT? Est shift Pt Dose of A a-PD1 (±) DLT? Est shift

1 60 – No n/a 21 1200 – No −1

2 120 – No n/a 22 1200 – No −1

3 240 – No n/a 23 800 þ No −1

4 480 – No n/a 24 800 þ No −1

5 800 – Yes −1 25 1200 – No −1

6 480 þ No 0 26 1200 – No −1

7 800 – No 0 27 1200 þ Yes −1

8 1200 – No 0 28 800 – Yes −1

9 1200 þ No 0 29 1200 – No −1

10 1600 þ Yes 0 30 1200 – No −1

11 1200 þ Yes −1 31 1200 – No −1

12 800 þ No −1 32 1200 – Yes −1

13 800 þ No 0 33 1200 – No −1

14 1200 – No −1 34 1200 – Yes −1

15 800 þ No 0 35 1200 – No −1

16 1200 þ Yes −1 36 800 þ No −1

17 800 þ Yes −1 37 800 þ No −1

18 1200 – No −1 38 800 þ No −1

19 800 þ No −1 39 1200 – No −1

20 800 þ Yes −1

MTDþ= 800 MTD−= 1200

DLT, dose-limiting toxicity; MTD, maximum tolerated dose.
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Table 5. Percent of maximum tolerated dose selection, percent of trials that stopped early for safety, and the percentage of trials that resulted in a reversal for each of
the three approaches. Colored cells indicate the hypothesized MTD in each row

Hypothesized probability of dose-limiting toxicity at each
treatment combination. % trials w/a reversal % stop early

Case 1 PD-1 (þ) 0.09 0.14 0.22 0.25 0.32 0.40 0.64

PD-1 (−) 0.01 0.12 0.18 0.21 0.22 0.31 0.60

3þ 3 PD-1 (þ) 15.3 27.3 19.9 15.0 9.2 4.7 0.3 29.2% 6.5%

PD-1 (−) 11.6 21.9 20.2 15.3 15.5 14.1 1.2 0.0%

BOIN PD-1 (þ) 5.3 13.2 17.4 21.7 20.3 17.7 2.0 29.3% 2.4%

PD-1 (−) 4.2 10.2 12.1 13.2 21.6 33.1 5.5 0.1%

Shift PD-1 (þ) 0.0 2.4 10.4 26.7 40.0 20.3 0.2 0% 0%

PD-1 (−) 0.0 0.2 6.6 16.3 31.9 40.5 4.5

Case 2 PD-1 (þ) 0.20 0.24 0.31 0.43 0.56 0.65 0.72

PD-1 (−) 0.01 0.05 0.09 0.31 0.45 0.55 0.68

3þ 3 PD-1 (þ) 26.1 23.8 15.2 6.1 0.9 0.1 0.0 6.5% 29.9%

PD-1 (−) 2.3 8.4 45.3 32.7 9.9 1.2 0.2 0.2%

BOIN PD-1 (þ) 18.0 23.5 27.6 15.4 3.6 1.1 0.2 10.7 10.6%

PD-1 (−) 3.2 3.8 24.3 44.8 16.9 5.9 1.1 0.0%

Shift PD-1 (þ) 0.4 14.2 52.2 29.7 3.5 0.0 0.0 0% 0%

PD-1 (−) 0.0 0.7 18.6 63.3 17.0 0.4 0.0

Case 3 PD-1 (þ) 0.34 0.41 0.45 0.57 0.65 0.69 0.79

PD-1 (−) 0.26 0.40 0.43 0.52 0.55 0.60 0.71

3þ 3 PD-1 (þ) 27.2 10.6 2.3 0.2 0.0 0.0 0.0 22.1% 59.3%

PD-1 (−) 40.5 12.8 4.3 0.7 0.1 0.0 0.0 44.1%

BOIN PD-1 (þ) 32.6 15.7 9.2 2.0 0.6 0.2 0.0 28.3 39.7%

PD-1 (−) 38.9 19.3 11.7 5.4 1.2 0.5 0.0 23.1%

Shift PD-1 (þ) 67.6 17.6 4.6 0.3 0.0 0.0 0.0 0% 9.9%

PD-1 (−) 48.9 29.1 10.7 1.3 0.1 0.0 0.0

Case 4 PD-1 (þ) 0.03 0.08 0.15 0.33 0.41 0.85 0.88

PD-1 (−) 0.01 0.04 0.07 0.32 0.40 0.82 0.85

3þ 3 PD-1 (þ) 6.5 19.4 41.6 22.0 9.1 0.0 0.0 22.0% 0.7%

PD-1 (−) 1.3 4.6 50.0 31.2 12.9 0.0 0.0 0.2%

BOIN PD-1 (þ) 3.2 6.5 31.8 36.0 21.8 0.6 0.0 31.3% 0.1%

PD-1 (−) 3.7 3.5 25.2 41.6 25.3 0.7 0.0 0.0

Shift PD-1 (þ) 0.0 1.1 26.1 57.2 15.4 0.2 0.0 0.0% 0.0%

PD-1 (−) 0.0 0.0 9.3 57.0 32.9 0.8 0.0

Case 5 PD-1 (þ) 0.11 0.16 0.32 0.37 0.47 0.51 0.74

PD-1 (−) 0.06 0.14 0.18 0.32 0.44 0.44 0.70

3þ 3 PD-1 (þ) 19.1 40.0 19.3 8.5 2.6 0.2 0.0 23.3% 10.5%

PD-1 (−) 16.1 18.9 33.6 22.0 4.8 1.4 0.0 2.7%

BOIN PD-1 (þ) 8.5 29.7 26.9 19.6 8.9 3.8 0.2 24.7% 2.4%

PD-1 (−) 5.0 11.8 25.1 32.4 13.5 10.0 1.1 1.1%

Shift PD-1 (þ) 0.9 13.6 47.0 29.4 7.7 1.4 0.0 0% 0%

PD-1 (−) 0.1 2.6 28.6 48.1 16.9 3.3 0.4

Case 6 PD-1 (þ) 0.07 0.08 0.16 0.21 0.31 0.50 0.60

(Continued)
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reversal in 22.1% of simulated trials and the parallel BOIN
approach does so 28.3% of the time. Similar findings are reported
for cases 4-6.

Operating Characteristics Over Many Curves

We also simulated the operating characteristics of the three
competing approaches over numerous randomly generated dose–
toxicity curves. We randomly generated 50 dose–toxicity curves
using the method of Conaway and Petroni [18], with the constraint
that the MTDs in each row are the same or one level apart. The
curves have a variety of actual MTD locations and shapes (i.e.,
steep, flat). We then simulated 1000 trials under each curve and
evaluated the methods on four performance metrics reported in
the previous section. First, how many times did each design
correctly recommend neither of the true MTDs in each row (i.e.,
zero MTDs correct)? Second, how many times did each design
correctly recommend at least one of the true MTDs in either row
(i.e., at least one MTD correct)? Third, how many times did each
design correctly recommend both true MTDs in each row (i.e.,
both MTD right)? Fourth is the percentage of reversals generated
by the independent 3þ 3 design. This percentage will be 0% for the
CRM design because the shift model structure prevents it from
happening. We summarize the results of the 50 curves with
boxplots for each of the first three metrics and a bar plot for the
fourth metric (Fig. 1).

The average sample size, estimated from simulations, was
approximately 26.9 for the independent 3þ 3 designs. The
maximum sample size for the CRM shift model design and the
parallel BOIN design was 39 and 40 participants, respectively.
The probability of correctly selecting neither of the two true
MTDs was 60% for the parallel 3þ 3 design, 40% for the parallel
BOIN approach, and 35% for the CRM shift model design
[Figure 1(a)]. The probability of correctly selecting at least one
true MTD is 40% for the parallel 3þ 3 approach, 60% for the
parallel BOIN approach, and 64% for the CRM shift model
approach [Figure 1(b)]. The probability of selecting both true
MTDs is 5% for the independent 3þ 3 algorithms, 12.5% for the
independent BOIN designs, and 38% for the CRM shift model
[Figure 1(c)]. Finally, the probability that the parallel 3þ 3
approach reverses the MTD between each row is 31.5 and 0% for
the CRM shift model [Figure 1(d)]. The reversal percentage is
30.3% for the parallel BOIN approach. These results are
consistent with our findings in the previous section on a smaller
number of dose–toxicity curves.

Conclusions

More complex research questions are being posed in early-phase
oncology clinical trials, necessitating design strategies tailored to
the contemporary study objectives. Rule-based methods intended
for MTD-based dose-finding are inflexible and cannot account for
additional complexity presented by contemporary early develop-
ment trials [19,20]. We have described an adaptive design strategy
for a proposed early-phase trial concurrently evaluating the safety
of a hematopoietic progenitor kinase-1 inhibitor (Agent A) as a
single agent and in combination with an anti-PD-1 agent in
patients with advanced malignancies. Although the design is
presented using a specific example, the approach described could
be generalized to other drug combination structures. For instance,
Wages [9] applied the methodology described in this paper in
settings with four dose levels in each of two rows and six dose levels
in each of three rows. These settings studied the use of multiple
models representing all possible shifts between dose levels in each
row. Furthermore, our approach can connect with the vast body of
published designs for determining an optimal administration
schedule for each agent, incorporating efficacy outcomes in the
dose selection model, and considering any potential ordering of
toxicity and/or efficacy in subgroups of participants (see Lin et al.
[21] for a recent example).

This manuscript highlights an example of a novel design
application to augment future innovative design implementation
and demonstrate adaptive designs’ flexibility in satisfying dynamic
design conditions. The FDA and others encouragemore innovative
approaches [22,23]. The description of the general design strategy
and thought process for implementation is the information that
improves understanding, acceptance, and approval of novel
designs [24,25]. Unfortunately, details of study designs often are
not found on sites such as clinicaltrials.gov so that modern clinical
trials lack the transparency needed to support the timely
implementation of novel methods. Thus, displays of current trials
that use novel methods are needed to overcome barriers of
infrequent implementation of innovative design strategies in early-
phase trials, so we believe this work can aid in the uptake of novel
design use. In addition, given the often-lengthy timeline between
study concepts and protocol completion, it is valuable to present
design considerations with broad application. It is worth noting
that even after study completion, journals do not require complete
protocols as supplemental material for dose-finding trials, and
final clinical trial publications do not have sufficient room to
describe the details of novel designs. Therefore, we feel the message
that novel methods are being used in clinical practice is timely and

Table 5. (Continued )

Hypothesized probability of dose-limiting toxicity at each
treatment combination. % trials w/a reversal % stop early

PD-1 (−) 0.06 0.08 0.10 0.20 0.27 0.43 0.54

3þ 3 PD-1 (þ) 5.5 17.8 21.5 26.8 19.8 3.4 0.3 35.2% 4.2%

PD-1 (−) 4.8 10.7 25.2 27.1 22.2 6.2 0.6 4.0%

BOIN PD-1 (þ) 3.8 6.7 14.3 26.8 32.0 12.9 2.4 32.6% 1.1%

PD-1 (−) 2.4 4.9 10.9 23.7 29.9 22.3 5.0 0.9%

Shift PD-1 (þ) 0.1 0.5 7.0 32.3 47.3 12.2 0.5 0.0% 0.1%

PD-1 (−) 0.0 0.1 2.1 19.0 46.8 29.2 2.7

BOIN, Bayesian optimal interval; MTD, maximum tolerated dose.
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Table 6. Proportion of patient allocation and sample size for each of the three approaches. Colored cells indicate the hypothesized MTD in each row

Hypothesized probability of dose-limiting toxicity at each treatment
combination. Sample size by row Total sample size

Case 1 PD-1 (þ) 0.09 0.14 0.22 0.25 0.32 0.40 0.64

PD-1 (−) 0.01 0.12 0.18 0.21 0.22 0.31 0.60

3þ 3 PD-1 (þ) 0.12 0.11 0.10 0.07 0.04 0.02 0.01 14.7 31.8

PD-1 (−) 0.10 0.12 0.11 0.09 0.06 0.04 0.02 17.1

BOIN PD-1 (þ) 0.06 0.09 0.09 0.09 0.08 0.06 0.03 19.6 39.6

PD-1 (−) 0.05 0.08 0.08 0.08 0.08 0.10 0.05 20.0

Shift PD-1 (þ) 0.02 0.03 0.06 0.11 0.13 0.08 0.02 17.5 39.0

PD-1 (−) 0.03 0.04 0.07 0.10 0.13 0.14 0.05 21.5

Case 2 PD-1 (þ) 0.20 0.24 0.31 0.43 0.56 0.65 0.72

PD-1 (−) 0.01 0.05 0.09 0.31 0.45 0.55 0.68

3þ 3 PD-1 (þ) 0.16 0.11 0.07 0.03 0.01 0.00 0.00 10.5 26.9

PD-1 (−) 0.12 0.13 0.13 0.14 0.07 0.02 0.00 16.4

BOIN PD-1 (þ) 0.12 0.12 0.12 0.08 0.03 0.01 0.00 18.1 38.1

PD-1 (−) 0.03 0.05 0.14 0.17 0.09 0.04 0.01 20.0

Shift PD-1 (þ) 0.02 0.07 0.16 0.13 0.05 0.01 0.00 17.2 39.0

PD-1 (−) 0.03 0.04 0.12 0.22 0.11 0.03 0.01 21.8

Case 3 PD-1 (þ) 0.34 0.41 0.45 0.57 0.65 0.69 0.79

PD-1 (−) 0.26 0.40 0.43 0.52 0.55 0.60 0.71

3þ 3 PD-1 (þ) 0.30 0.12 0.03 0.01 0.00 0.00 0.00 6.7 14.5

PD-1 (−) 0.29 0.17 0.06 0.01 0.00 0.00 0.00 7.8

BOIN PD-1 (þ) 0.23 0.12 0.07 0.03 0.01 0.00 0.00 14.7 31.6

PD-1 (−) 0.25 0.14 0.08 0.04 0.02 0.01 0.00 16.9

Shift PD-1 (þ) 0.31 0.09 0.04 0.02 0.01 0.0 0.0 17.1 36.7

PD-1 (−) 0.28 0.14 0.08 0.03 0.01 0.0 0.0 19.6

Case 4 PD-1 (þ) 0.03 0.08 0.15 0.33 0.41 0.85 0.88

PD-1 (−) 0.01 0.04 0.07 0.32 0.40 0.82 0.85

3þ 3 PD-1 (þ) 0.10 0.11 0.12 0.10 0.04 0.01 0.00 15.2 31.4

PD-1 (−) 0.10 0.11 0.11 0.13 0.06 0.01 0.00 16.2

BOIN PD-1 (þ) 0.04 0.07 0.14 0.14 0.10 0.03 0.00 20.0 40.0

PD-1 (−) 0.03 0.04 0.14 0.15 0.11 0.03 0.00 20.0

Shift PD-1 (þ) 0.00 0.02 0.12 0.20 0.09 0.01 0.00 17.1 39.0

PD-1 (−) 0.03 0.03 0.08 0.22 0.17 0.03 0.00 21.9

Case 5 PD-1 (þ) 0.11 0.16 0.32 0.37 0.47 0.51 0.74

PD-1 (−) 0.06 0.14 0.18 0.32 0.44 0.44 0.70

3þ 3 PD-1 (þ) 0.14 0.13 0.11 0.05 0.02 0.00 0.00 12.4 27.1

PD-1 (−) 0.13 0.14 0.12 0.10 0.04 0.01 0.00 14.7

BOIN PD-1 (þ) 0.07 0.14 0.12 0.08 0.05 0.02 0.01 19.6 39.4

PD-1 (−) 0.06 0.08 0.12 0.12 0.07 0.04 0.02 19.8

Shift PD-1 (þ) 0.03 0.07 0.15 0.12 0.06 0.02 0.00 17.5 39.0

PD-1 (−) 0.04 0.06 0.13 0.17 0.10 0.04 0.01 21.5

Case 6 PD-1 (þ) 0.07 0.08 0.16 0.21 0.31 0.50 0.60

PD-1 (−) 0.06 0.08 0.10 0.20 0.27 0.43 0.54

(Continued)
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Table 6. (Continued )

Hypothesized probability of dose-limiting toxicity at each treatment
combination. Sample size by row Total sample size

3þ 3 PD-1 (þ) 0.10 0.10 0.10 0.09 0.06 0.03 0.00 16.8 34.4

PD-1 (−) 0.10 0.10 0.10 0.10 0.07 0.04 0.01 17.6

BOIN PD-1 (þ) 0.04 0.06 0.09 0.11 0.11 0.06 0.02 19.8 39.6

PD-1 (−) 0.04 0.05 0.08 0.10 0.11 0.08 0.04 19.8

Shift PD-1 (þ) 0.01 0.02 0.05 0.13 0.15 0.06 0.02 17.2 39.0

PD-1 (−) 0.03 0.03 0.05 0.11 0.18 0.12 0.04 21.8

BOIN, Bayesian optimal interval; MTD, maximum tolerated dose.

Table 7. Percentage of trials that correctly recommend zero, one, and two maximum tolerated dose combinations for each method

0 1 2

Method 3þ 3 BOIN Shift 3þ 3 BOIN Shift 3þ 3 BOIN Shift

Case 1 77.6% 54.3% 44.0% 21.5% 38.0% 31.5% 0.9% 7.7% 24.5%

Case 2 57.3% 39.8% 32.0% 37.5% 48.6% 20.5% 5.2% 11.6% 47.5%

Case 3 43.1% 40.3% 32.4% 46.1% 47.9% 18.7% 10.8% 11.8% 48.9%

Case 4 54.5% 36.3% 24.9% 37.8% 49.8% 36.0% 7.7% 13.9% 39.1%

Case 5 62.4% 50.0% 35.1% 33.9% 40.7% 34.7% 3.7% 9.3% 30.2%

Case 6 62.7% 48.0% 34.0% 32.6% 42.1% 37.9% 4.7% 9.9% 28.1%

Mean 59.6% 44.8% 33.7% 34.9% 44.5% 29.9% 5.5% 10.7% 36.4%

BOIN, Bayesian optimal interval.

Figure 1. Operating characteristics of the three competing approaches over 50 randomly generated dose–toxicity curves. BOIN, Bayesian optimal interval; CRM, continual
reassessment method; MTD, maximum tolerated dose.

8 Wages et al.

https://doi.org/10.1017/cts.2023.542 Published online by Cambridge University Press

https://doi.org/10.1017/cts.2023.542


important. This support for adaptive strategies will augment
efficient early-phase trial design in drug combination studies.
Well-performing dose-findingmethods can have a great impact on
the drug development process [18].
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