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Introduction

We introduce here quarks and gluons. The analogy with electrodynamics
at short distances disappears at larger distances with the emergence
of the string tension, the force that confines the quarks and gluons
permanently into bound states called hadrons.

Subsequently we introduce the simplest relativistic field theory, the
classical scalar field.

1.1 QED, QCD, and confinement

Quantum electrodynamics (QED) is the quantum theory of photons
(γ) and charged particles such as electrons (e±), muons (µ±), protons
(p), pions (π±), etc. Typical phenomena that can be described by
perturbation theory are Compton scattering (γ + e− → γ + e−), and
pair annihilation/production such as e+ + e− → µ+ + µ−. Examples of
non-perturbative phenomena are the formation of atoms and molecules.
The expansion parameter of perturbation theory is the fine-structure
constant1 α = e2/4π.

Quantum chromodynamics (QCD) is the quantum theory of quarks
(q) and gluons (g). The quarks u, d, c, s, t and b (‘up’, ‘down’, ‘charm’,
‘strange’, ‘top’ and ‘bottom’) are analogous to the charged leptons νe, e,
νµ, µ, ντ , and τ . In addition to electric charge they also carry ‘color
charges’, which are the sources of the gluon fields. The gluons are
analogous to photons, except that they are self-interacting because they
also carry color charges. The strength of these interactions is measured
by αs = g2/4π (alpha strong), with g analogous to the electromagnetic
charge e. The ‘atoms’ of QCD are qq̄ (q̄ denotes the antiparticle of q)
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2 Introduction

Fig. 1.1. Intuitive representation of chromoelectric field lines between a static
quark–antiquark source pair in QCD: (a) Coulomb-like at short distances;
(b) string-like at large distances, at which the energy content per unit length
becomes constant.

bound states called mesons† (π, K, η, η′, ρ, K∗, ω, φ, . . . ) and 3q bound
states called baryons (the nucleon N , and furthermore Σ, Λ, Ξ, ∆, Σ∗,
Λ∗, . . .). The mesons are bosons and the baryons are fermions. There
may be also multi-quark states analogous to molecules. Furthermore,
there are expected to be glueballs consisting mainly of gluons. These
bound states are called ‘hadrons’ and their properties as determined by
experiment are recorded in the tables of the Particle Data Group [2].

The way that the gluons interact among themselves has dramatic
effects. At distances of the order of the hadron size, the interactions are
strong and αs effectively becomes arbitrarily large as the distance scale
increases. Because of the increasing potential energy between quarks at
large distances, it is not possible to have single quarks in the theory:
they are permanently confined in bound states.

For a precise characterization of confinement one considers the theory
with gluons only (no dynamical quarks) in which static external sources
are inserted with quark quantum numbers, a distance r apart. The
energy of this configuration is the quark–antiquark potential V (r). In
QCD confinement is realized such that V (r) increases linearly with r as
r →∞,

V (r) ≈ σr, r →∞. (1.1)

The coefficient σ is called the string tension, because there are effective
string models for V (r). Such models are very useful for grasping some
of the physics involved (figure 1.1).

Because of confinement, quarks and gluons cannot exist as free parti-

† The quark content of these particles is given in table 7.1 in section 7.5.

https://doi.org/10.1017/9781009402705.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402705.002


1.1 QED, QCD, and confinement 3

Fig. 1.2. Shape of the static qq̄ potential and the force F = ∂V/∂r.

cles. No such free particles have been found. However, scattering exper-
iments at high momentum transfers (corresponding to short distances)
have led to the conclusion that there are quarks and gluons inside the
hadrons. The effective interaction strength αs is small at short distances.
Because of this, perturbation theory is applicable at short distances or
large momentum transfers. This can also be seen from the force derived
from the qq̄ potential, F = ∂V/∂r. See figure 1.2. Writing conventionally

F (r) =
4
3
αs(r)
r2

, (1.2)

we know that αs → 0 very slowly as the distance decreases,

αs(r) ≈
4π

11 ln(1/Λ2r2)
. (1.3)

This is called asymptotic freedom. The parameter Λ has the dimension
of a mass and may be taken to set the dimension scale in quark-less
‘QCD’. For the glueball mass m or string tension σ we can then write

m = CmΛ,
√
σ = CσΛ. (1.4)

Constants like Cm and Cσ, which relate short-distance to long-distance
properties, are non-perturbative quantities. They are pure numbers
whose computation is a challenge to be met by the theory developed
in the following chapters.

The value of the string tension σ is known to be approximately
(400 MeV)2. This information comes from a remarkable property of the
hadronic mass spectrum, the fact that, for the leading spin states, the
spin J is approximately linear in the squared mass m2,

J = α0 + α′m2. (1.5)

See figure 1.3. Such approximately straight ‘Regge trajectories’ can be
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Fig. 1.3. Plot of spin J versus m2 (GeV2) for ρ- and π-like particles. The dots
give the positions of particles, the straight lines are fits to the data, labeled
by their particles with lowest spin. The line labeled ‘pot’ is L versus H2 for
the solution (1.10), for clarity shifted upward by two units, for mq = mρ/2,
σ = 1/8α′

ρ.

understood from the following simple effective Hamiltonian for binding
of a qq̄ pair,

H = 2
√
m2

q + p2 + σr. (1.6)

Here mq is the mass of the constituent quarks, taken to be equal for
simplicity, p = |p| is the relative momentum, r = |r| is the relative
separation, and the spin of the quarks is ignored. The potential is taken
to be purely linear, because we are interested in the large-mass bound
states with large relative angular momentum L, for which one expects
that only the long-distance part of V (r) is important.

For such states with large quantum number L the classical approx-
imation should be reasonable. Hence, consider the classical Hamilton
equations,

drk
dt

=
∂H

∂pk
,

dpk
dt

= −∂H

∂rk
. (1.7)

and the following Ansatz for a circular solution:

r1 = a cos(ωt), r2 = a sin(ωt), r3 = 0,

p1 = −b sin(ωt), p2 = b cos(ωt), p3 = 0. (1.8)
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Substituting (1.8) into (1.7) we get relations among ω, a, and b, and
expressions for p and r, which can be written in the form

p = b = σω−1, r = a = 2s−1σ−1p, s ≡
√

1 +m2
q/p

2, (1.9)

such that L and H can be written as

L = rp = 2s−1σ−1p2, H = 2(s+ s−1)p. (1.10)

For p2 
 m2
q, s ≈ 1, L ∝ p2 and H ∝ p. Then L ∝ H2 and, because

H = m is the mass (rest energy) of the bound state, we see that

α′ ≡
[
LH−2]

p/mq→∞ = (8σ)−1. (1.11)

It turns out that L is approximately linear in H2 even for quite small
p2, such that L < 1, as shown in figure 1.3. Of course, the classical
approximation is suspect for L not much larger than unity, but the same
phenomenon appears to take place quantum mechanically in nature,
where the lower spin states are also near the straight line fitting the
higher spin states.2

With α′ = 1/8σ, the experimental value α′ ≈ 0.90 GeV−2 gives
√
σ ≈

370 MeV. The effective string model (see e.g. [3] section 10.5) leads
approximately to the same answer: α′ = 1/2πσ, giving

√
σ ≈ 420 MeV.

The string model is perhaps closer to reality if most of the bound-state
energy is in the string-like chromoelectric field, but it should be kept in
mind that both the string model and the effective Hamiltonian give only
an approximate representation of QCD.

1.2 Scalar field

We start our exploration of field theory with the scalar field. Scalar
fields ϕ(x) (x = (x, t), t ≡ x0) are used to describe spinless particles.
Particles appearing elementary on one distance scale may turn out to be
be composite bound states on a smaller distance scale. For example,
protons, pions, etc. appear elementary on the scale of centimeters,
but composed of quarks and gluons on much shorter distance scales.
Similarly, fields may also be elementary or composite. For example, for
the description of pions we may use elementary scalar fields ϕ(x), or
composite scalar fields of the schematic form ψ̄(x)γ5ψ(x), where ψ(x)
and ψ̄(x) are quark fields and γ5 is a Dirac matrix. Such composite fields
can still be approximately represented by elementary ϕ(x), which are
then called effective fields. This is useful for the description of effective
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interactions, which are the result of more fundamental interactions on a
shorter distance scale.

A basic tool in the description is the action S =
∫
dtL, with L the

Lagrangian. For a nonrelativistic particle described by coordinates qk,
k = 1, 2, 3, the Lagrangian has the form kinetic energy minus potential
energy, L = q̇k q̇k/2m − V (q).† For the anharmonic oscillator in three
dimensions the potential has the form V (q) = ω2q2/2 + λ(q2)2/4, q2 ≡
qkqk. In field theory a simple example is the action for the ϕ4 theory,

S =
∫
M

d4xL(x), d4x = dx0 dx1 dx2 dx3, (1.12)

L(x) = 1
2∂tϕ(x)∂tϕ(x)− 1

2∇ϕ(x) ·∇ϕ(x)− 1
2µ

2ϕ(x)2− 1
4λϕ(x)4, (1.13)

Here M is a domain in space–time, ϕ(x) is a scalar field, L(x) is the
action density or Lagrange function, and λ and µ2 are constants (λ is
dimensionless and µ2 has dimension (mass)2 = (length)−2). Note that
the index x is a continuous analog of the discrete index k: ϕ(x, t)↔ qk(t).

Requiring the action to be stationary under variations δϕ(x) of ϕ(x),
such that δϕ(x) = 0 for x on the boundary of M , leads to the equation
of motion:

δS =
∫

d4x
[
−∂2t ϕ(x) +∇2ϕ(x)− µ2ϕ(x)− λϕ(x)3

]
δϕ(x)

= 0 ⇒ (∂2t −∇2 + µ2)ϕ+ λϕ3 = 0. (1.14)

In the first step we made a partial integration. In classical field theory the
equations of motion are very important (e.g. Maxwell theory). In quan-
tum field theory their importance depends very much on the problem
and method of solution. The action itself comes more to the foreground,
especially in the path-integral description of quantum theory.

Various states of the system can be characterized by the energy H =∫
d3xH. The energy density has the form kinetic energy plus potential

energy, and is given by

H = 1
2 ϕ̇

2 + 1
2 (∇ϕ)2 + U, (1.15)

U = 1
2µ

2ϕ2 + 1
4λϕ

4. (1.16)

The field configuration with lowest energy is called the ground state. It
has ϕ̇ = ∇ϕ = 0 and minimal U . We shall assume λ > 0, such that H is

† Unless indicated otherwise, summation over repeated indices is implied, q̇k q̇k ≡∑
k q̇k q̇k.
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Fig. 1.4. The energy density for constant fields for µ2 < 0.

bounded from below for all ϕ. From a graph of U(ϕ) (figure 1.4) we see
that the cases µ2 > 0 and µ2 < 0 are qualitatively different:

µ2 > 0: ϕg = 0, Ug = 0;

µ2 < 0: ϕg = ±v, v2 = −µ
2

λ
, Ug = −1

4
µ2

λ
. (1.17)

So the case µ2 < 0 leads to a doubly degenerate ground state. In this case
the symmetry of S or H under ϕ(x)→ −ϕ(x) is broken, because a non-
zero ϕg is not invariant, and one speaks of spontaneous (or dynamical)
symmetry-breaking.

Small disturbances away from the ground state propagate and dis-
perse in space and time in a characteristic way, which can be found
by linearizing the equation of motion (1.14) around ϕ = ϕg. Writing
ϕ = ϕg + ϕ′ and neglecting O(ϕ′2) gives

(∂2t −∇2 +m2)ϕ′ = 0, (1.18)

m2 = U ′′(ϕg) =
{
µ2, µ2 > 0;
µ2 + 3λv2 = −2µ2, µ2 < 0.

(1.19)

Wavepacket solutions of (1.18) propagate with a group velocity v =
∂ω/∂k, where k is the average wave vector and ω =

√
m2 + k2. In

the quantum theory these wavepackets are interpreted as particles with
energy–momentum (ω,k) and mass m. The particles can scatter with an
interaction strength characterized by the coupling constant λ. For λ = 0
there is no scattering and the field is called ‘free’.
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