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SOME EXTREME RAYS OF THE POSITIVE 
PLURIHARMONIC FUNCTIONS 

FRANK FORELLI 

1. Introduction. 

1.1. We will denote by B the open unit ball in Cn, and we will denote by 
H(B) the class of all holomorphic functions on B. Let 

N(B) = {g:ge H(B), Re £ > 0 , g(0) = 1}. 

Thus N(B) is convex (and compact in the compact open topology). We think 
that the structure of N(B) is of interest and importance. Thus we proved in 
[1] that if 

n 

(i-i) m = £ *A 
1 

if 

(1.2) g = ( l + / ) / ( l - / ) , 

and if n ^ 2, then g is an extreme point of N(B). We will denote by £ ( B ) the 
class of all extreme points of iVYB). If n = 1 and if (1.2) holds, then as is well 
known g G E(B) if and only if 

(1.3) f(z) = cz 

where c Ç T. 
Let ©f Vk be an orthogonal decomposition of Cn into complex subspaces 

of positive dimension, and define ir : C^ X Cn —» Cn by 

N 

7r()U, W ) = X I MfcW* = (jLtl^l, . . . , fJLNWN) 
1 

where 

AT 

i 

L e t / Ç H(E) and let 
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where a G ZA\ Then fa = 0 if a G N^ , and we have 

(1-4) / = Z /-

where by a = 0 we mean a G N^. Fur thermore fa G i7 a where by 

we mean the class of all polynomials <p(w) in Cw such t ha t 

<p(ir(n,w)) = fiacp(w) 

if /x 6 C^. For example if n = 4 and TV = 2, then 

Z l W O ^ 2 + Z4
2) + (Zl2 + £22)23324 G #(4,2) . 

If j G N, then we will denote by Hj the class of all polynomials in Cn t h a t are 
homogeneous of degree j . T h u s if ç> G Ha, then p G i^i«i where by |a| we mean 
Si^ojfc. If TV = 1, then a = |a| and Ha = H\a\, whereas if TV = n (in which 
case each Vk is of dimension 1), then Ha is the class of all monomials cza in C". 

Let X C Cn. There is the following proper ty which may or may not hold. 

1.1.1. If <p G Uî H j and if <p = 0 on X, then <p = 0. 

If the proper ty 1.1.1 holds, then we will say t h a t X is thick in Cn . 
We will denote by S the unit sphere in Cn. T h u s 

S = \z : s G Cn , £ *Pi = I f = *B. 

If <p G U r # ; , then we let 

H^ll = sup {\(p(z)\ : z G S} 

and we let 

X , = \z:zt S, |*>(z)| = | H | } -

We will denote by N + the class of all positive integers. 
In this paper we consider po lynomia l s / in Hy and ask if the Cayley transform 

of / is extreme in N(B). We have the following sufficient condition. 

1.2. T H E O R E M . LetfeHy,\\f\\ = l , y e N+
N. Then 

( ! + / ) / ( ! - / ) e £ ( B ) 

i / the components of y are relatively prime and if Xf is thick in Cw. 

1.3. T h e function (1.1) (if n = 3) stresses the fact t h a t the condition on y 
is not necessary (in this case N = 1 and 7 = 2). We do not know if the con­
dition on Xf is necessary. T h e title of this paper refers to the fact t h a t if y and 
Xf satisfy the conditions of Theorem 1.2, then Re [(1 + / ) / ( ! — / ) ] gen-
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erates an extreme ray in the positive pluriharmonic functions on B. Although 
Theorem 1.2 probably does not tell us much about the extreme points of N(B) 
(if n ^ 2), it is just about all that is known, and its proof, although not 
difficult, is lengthy. 

The following proposition (whose proof we omit) provides polynomials / 
which satisfy the conditions of Theorem 1.2. 

1.4. PROPOSITION. Let fk be a homogeneous polynomial of positive degree in 
Vk, 1 g k ^ N, and let 

f(w) = I l Mwk). 
i 

Then Xf is thick in Cn if Xfk is thick in Vk, 1 ^ k ^ N. 

1.5. L e t / and y be as in Theorem 1.2. If N = n (in which case/ is a mono­
mial) and if (1 + / ) / ( l — / ) is extreme in iV(B), then by Theorem 1.2 of 
[2], the components of y are relatively prime. Thus in this case (by Proposition 
1.4) (1 + / ) / ( l — / ) is extreme if and only if the components of y are rela­
tively prime. 

Let us denote by ClosE(B) the closure of E(B) in the compact open 
topology. If n = 1, then by (1.3), E(B) = Clos EÇB). Furthermore for every 
n, 1 G N(B), but 1 (? -E(B). There is the following corollary of Theorem 1.2. 

1.6. COROLLARY. If n ^ 2, then 1 £ Clos£(B) ; hence E(B) ^ ClosE(B). 

We will omit the proof. 

2. Lemmas and propositions which are preparatory to the proof of 
Theorem 1.2. 

2.1. We recall that if X, \x G C and if X ̂  1, then 

(2.1) Re [(1 + X + 2M)/(1 - X)] = (1 - |X|2 + 2 Re [(1 - X)/x])/|l - X|'. 

If / G H(B), then we will denote by Af the class of all <p in H(B) such that 

(2.2) l / l ' + 2 Re CM Û l + 2 R e ^ 

on B. Thus Afis convex. 
If Y is a compact Hausdorff space, then we will denote by M+(Y) the class 

of all Radon measures on F. Thus if a- G M+(Y) and E C Y, then a(E) ^ 0. 
We recall that if a £ M+(TN), then & : Z'Y -> C is defined by 

o-(a) = j Pad<r(n). 

If 7 € ZN, then we let 

We recall the following fact from the theory of M+(TN). 
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2.2. PROPOSITION. Let a 6 M+(TN), let &(0) = 1, and let y G ZA\ 
If \à(y)\ = l, then a e M+(\Gy) where X? = &(y), X G T". 

2.3. PROPOSITION. L ^ g ç iV(B). 77ms 

g = 1 + 2 £ g, 
1 

w&ere gj 6 iï^. Furthermore let k £ N+, /^ / G fl*, awd to | | / | | = 1. If Xf is 
thick in Cn (in which case k ^ 2 if n ^ 2) cmd if ĝ  = / , then 

(2.3) g= ( 1 + / + 2 * 0 / ( 1 - / ) 

where <p is a polynomial of degree S k — 1, <p(0) = 0, and p Ç Ar. 

Proof. Let s f l / and define h : D —> (0, oo ) by fe(/x) = Re gOxz). Thus 

(X) 

MM) = l + 2 R e E g ^ V -
1 

Since A is harmonic and ^ 0, 

CO 

A(M) = *(0) + 2 Re E *OV 
1 

where a £ ikf+(T). We have &(0) = 1 and &(k) = f(z), hence by Proposition 
2.2 (with N = 1 and y = jfe), o- G M+(XG,) where X* - / (z) . Thus if j , m Ç Z, 
then 

(2.4) *(j +km)= f /Z*V^G0 = / X^p'dab) = f(z)mâ(j). 

We let go = 1. Thus if j , m G N and if z G X,, then by (2.4) 

g W ) = /(*)w^(s)-

Furthermore gm-m - /mg;- G Hj+km; hence by the thickness of Xf, gj+km = 
fmgj. We have 

k oo fc oo 

g = i + 2 £ z «,+*,» = i + 2 z g,- z r 
j=l w = 0 1 0 

= 1 + 2 ( 7 + Ç g i ) / ( i - / ) f 

thus if ^ = Z r 1 ^ ; , then (2.3) holds. 
By (2.3) and the identity (2.1), <p £ Af which completes the proof of 

Proposition 2.3. (We remark that a special case of Proposition 2.3 is proved 
in [1].) 

2.4. PROPOSITION. Let k £ N, let k ^ 2, let <p be a polynomial in Cn of degree 
S k — 1, and let <p(0) = 0. Thus cp = S i - 1 <Pj where <pj 6 H j . Furthermore let 
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/ Ç Hk. If <p 6 Af, then 

(2.5) k - W l ^ l " / / 

o » B = B U S . 

Proof. Let 

g = (1 - / / ) + 2 R e f r ( l - / ) ] . 

If (M, Z) 6 T X C", then 

(2.6) gG*) = [1 - /(8)/(z)] + 2 Re É [*,,(*) - *t_,(2)/(2)]M'. 
1 

If (ii, z) G T X B, then by the definition (2.2) of Af, g(ixz) ^ 0, hence by 
(2.6), the inequality (2.5) holds. 

2.5. We recall that if a: is a multi-index, i.e. if a G N^, then by |a| we mean 
X ^ ak. We will omit the proof (which is straightforward) of the following 
proposition. 

2.6. PROPOSITION. Let a, 0, y G N^ awd / ^ |a| < |Y|. 

a. Le/ M" = 1 if ix G G7. 77&ew a = 0. 
b. L ^ na = tfif n £ Gy. If0< \p\ ^ |Y|, then a + /3 = y. 
c. L ^ Ma = v? if M € G7. 7/ |]8| < |T|, then a = p. 
Let the components of y be relatively prime and letO < |a| < |Y| (thus N ^ 2). 
d. Then a and y are linearly independent over R. 
e. If we define <t> : T" -> T2 by 0(/x) = (/xa, M7), ^ 4>(TN) = T2 

f. 7/ we define <£ : G7 —> T by <£(/*) = na, /feew <t>(Gy) = T. 

2.7. LEMMA. Le / / a^J y be as in Theorem 1.2. Furthermore let a, /3 G N^, /e/ 
0 < |a| < |Y|, let a + (3 = y, and let (pa + <Pp £ A f where <pa G Ha, <p$ G 7^. 
7/ the components of y are relatively prime and if Xf is thick in Cn, 
then (fa = (pj3 = 0. 

Proof, a. If \a\ ^ |/3|, and if z G X f, then by Proposition 2.4, 
(2.7) ' <pa(z) = n(z)f(z). 

b. If |a| = |/3|, if z G Xfj and if JU G G7, then by Proposition 2.4, 

/***>« (z) + tfMz) = inaVa(z) + /Z^(z)]/(z), 
hence 

/x<Va(z) + Ma^W = Uaëa(z)f(z) + }xan(z)f(z). 

Thus by Proposition 2.6f, 

(2.8) *>«(*) = n(z)f(z) 

if s G X,. 
c. We have (by the definition of Af) 

(2.9) |/ |2 + 2 Re [f(ça + ^ ) ] g 1 + 2 Re |>a + n] 
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on B. On Xf we have by (2.7) and (2.8), 

(2.10) |/ |2 + 2 Re [/(*>« + n)] = 1 + 2 Re [<pa + <p& 

Lets Ç X/. Then z = (hivi, . . . , /#?%) where 0 ^ /fc ^ 1, ^ G Vk C\ S, and 

TV 

E 42 = 1. 
1 

Let t = (ti, . . . , tN) and w = (wi, . . . , T%)- Then z = w(t, w). 
Let x G RA, x • x = 1. Then 7r(x, W) Ç S; hence by (2.9), 

(2.11) (1 - Ax2y) + (Dx* + Ex? - Bx-y+« - Cx^) ^ 0 

where A = \f(w)\2,B = 2 Re [f(w)<pa(w)], C = 2 Re [/(w)^(w)], Z) = 2 Re pa(w), 
and £ = 2 Re (p$(w). 

Let us define p, T, a : KN —> R by p(x) = x • x, r(x) = 1 — Ax2y, and 

o-(x) = Dxa + £x^ - £x^+« - Cx^. 

Thus if p(x) = 1, then by (2.11), 

(2.12) (r + a)(x) ^ 0. 

Furthermore by (2.10), (r + a)(t) = 0, hence by (2.12), 

(2.13) V ( r + c 0 ( 0 | | Vp(0-

We have r(x) = 1 - |/(TT(X, W))\2, hence Vr( / ) || Vp(/). Thus by (2.13), 
Va(t) || Vp(0-

We have 

(2.14) xkda/dxk = Dx«ak + £ x % - 3**+" (7* + a*) - C^ + / 3 (Y* + &). 

If V(j(0 = X Vp(/) where X G R, then (da/dxk)(t) = 2\tk, hence by (2.14), 

(2.15) Dtaa + EPp - BP+«(y + a) - CP+*{y + /3) = 2X7 

where T = (/i2, . . . , tN
2). We have 

P+"3 = 2 Re [/(*)*>«(*)], 

P+*C = 2 Re [/(*)*>„(*)], *"!> = 2 Re ^ ( * ) , 

**E = 2 Re ^ ( z ) , hence by (2.7), (2.8), and (2.15), 

(2.16) [Re v>«(z)]/3 + [Re ^(z)]« = x r 

(where x = —• V2) . 
If M G T", then 

7T(JLI, JS) = ( / i M i ^ i , . . . , tNixNWN), 

hence by (2.16) 

(2.17) (Re [/x"*«(s)])0 + (Re [A*G0])« = X(M)T. 
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By Proposition 2.6e (and the fact tha t a + P = y), there is a /x in TiV such tha t 
fxa(pa(z) = \<pa{z)\ and //«^(z) = \<pp(z)\. Likewise there is a X in TiV such tha t 
\a<pa(z) = \<Pa(z)\ and \ % ( z ) = - \<pp(z)\. Then by (2.17), and the fact t ha t 
|<pa(s)| = \<pp(z)\, we have 

2\<Pa(z)\p = [ X (M) +XM]T 

2|*>a(s)|a = [x(/x) - x ( X ) ] T . 

T h u s if <£>a(z) ^ 0, then a and /3 are linearly dependent ; hence a and y are 
linearly dependent which contradicts Proposition 2.6d. 

T h u s (pa(z) = <pp{z) = 0 if z G X/-; hence <̂« = ^ = 0 which completes the 
proof of Lemma 2.7. 

2.8. LEMMA. Le£ / and y be as in Theorem 1.2. Furthermore let a G NN, let 
0 < \a\ < |Y| , and let cpa (z Af where <pa G Ha. If the components of y are rela­
tively prime and if Xf is thick in Cn, then <pa = 0. 

Proof. If \y\ — \a\ 9e \a\, and if z G Xf, then by Proposition 2.4, <pa(z) = 0, 
hence <pa = 0. 

Let |Y| — |a| = \a\. If z G X r and if /x G G7, then by Proposition 2.4 

lla<Pa(z) = UaVa(z)f(z) = A7V«(S) . 

T h u s by Proposition 2.6f, <^a(z) = 0, hence <pa — 0. 

2.9. LEMMA. Let f and y be as in Theorem 1.2. Furthermore let <p be a poly­
nomial of degree ^ \y\ — 1, let <p(0) = 0, and let <p G Af. If the components of y 
are relatively prime and if X f is thick in Cn, then cp = 0. 

Proof. Let \y\ ^ 2 (in which case N ^ 2) and let 

7 = {a : a G N " , 0 < |a| < | T | } -

We have (see (1.4)) 

<p = z2 <pa 

where <pa G Ha. If M G T" , then 

^(7r(/X, W)) = X) ?<*(*(»> W)) = J2 lf<Pa(w). 

T h u s if a- G M+(TN), then 

J (p(T(fI,w))d(j(fJL) = X) O-(û0pa(«0, 

hence if a G M+(GT) and if a(Gy) = 1, then by (2.2) 

(2.18) £ *(«)<>„ G 4 / . 

Let 0 G / and let 

d(r(|Li) = (1 + R e ^ M , M € G7. 
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Let a f l . Then by Proposition 2.6a, b, and c, à {a) = 1/2 if a + fi = y or if 
a = /3. Otherwise a (a) = 0. If y — /3 G NN, then we write /3 ^ y. Thus if 
0 ^ 7 , then by (2.18), 

2^7-/3 + 2 /̂3 G ^4/-

Likewise if /3 $ 7, then | ^ G ^4/. Thus if /5 ^ 7, then by Lemma 2.7, ^ = 0, 
and if (3 J 7, then by Lemma 2.8, ^ = 0 which completes the proof of Lemma 
2.9. 

3. The proof of Theorem 1.2. L e t / and 7 be as in Theorem 1.2, and let 
g = (1 + / ) / ( l — / ) . It is to be proved that if the components of 7 are rela­
tively prime and if Xf is thick in Cn, then g is an extreme point of N(B). Let 
h G C(B).Ug + h e JV(B),thenA G H(B)and/*(0) = 0, hence h = 2 £ f A, 
where /^ G Hj. Thus if 

g = 1 + 2 E g , 

1 

where gj G ^ , then 
00 

(3.1) g + h = 1 + 2 J: (g, + A,) . 

1 

We have g|7| = / . Let \p = &|7| and let z G S. If M G D, then by (3.1) 

l + 2Re £ [ g , ( 2 ) + M s ) W > 0 , 
1 

hence \f(z) + ^(s) | ^ 1. Likewise if g - h G iV(B), then \f(z) - ^(z)| ^ 1, 
hence \f/(z) = 0 if z G -X"/, hence ^ = 0. Thus by Proposition 2.3 

g + fe = ( l + / + 2„ ) / ( l - / ) 

where ^ is a polynomial of degree ^ I7I — 1, <p(0) = 0, and ^ G ^4/. By 
Lemma 2.9, <£> = 0, hence g + h = g, hence h = 0. Thus g G £ ( B ) . 
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