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SOME EXTREME RAYS OF THE POSITIVE
PLURIHARMONIC FUNCTIONS

FRANK FORELLI

1. Introduction.

1.1. We will denote by B the open unit ball in C*, and we will denote by
H(B) the class of all holomorphic functions on B. Let

NB) ={g:g¢€ HB),Reg >0, g(0) = 1}.

Thus N(B) is convex (and compact in the compact open topology). We think
that the structure of N(B) is of interest and importance. Thus we proved in
(1] that if

(RVRNIOED WEN

if

(12) g=QaQ+ /A -1,

and if n = 2, then g is an extreme point of N(B). We will denote by E(B) the
class of all extreme points of N(B). If n = 1 and if (1.2) holds, then as is well
known g € E(B) if and only if

(1.3)  f@z) =cz

where ¢ € T.
Let ®Y V. be an orthogonal decomposition of C* into complex subspaces
of positive dimension, and define = : C¥ X C* — C* by

N
7y, w) = 21: ey = (Wi, . . ., pyWy)
where
N

wzzl:YUk:(wlr"'wa)y wkE Vk-

Let f € H(B) and let

fulw) = fT o B (uy w))du
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where a € Z". Then f, = 0 if « ¢ N¥, and we have
9 f= X h
where by @ = 0 we mean « € NV. Furthermore f, € H, where by
N
Ha = Ha(@ Vk)
1
we mean the class of all polynomials ¢(w) in G” such that
e(r(u, w)) = wo(w)
if w € C¥. For example if # = 4 and N = 2, then

212222 (232 + 242) + (212 + 292) %354 € Huo).

If € N, then we will denote by H, the class of all polynomials in C* that are
homogeneous of degree j. Thus if ¢ € H,, then ¢ € H|, where by |a| we mean
SV If N =1, then a = |a| and i, = H\,, whereas if N = n (in which
case cach 17, is of dimension 1), then H, is the class of all monomials cz# in C”.
Let X C CG" There is the following property which may or may not hold.

1.1.1. If ¢ € UT Hyand if ¢ = 0 on X, then ¢ = 0.

If the property 1.1.1 holds, then we will say that X is thick in C".
We will denote by S the unit sphere in G". Thus

S = {z:zGC", Zt: 25, = 1} = 4B.
If o € UT H,, then we let

llell = sup {[e(2)] : 2 € S}
and we let

X, =1{s:2€8, le)]| = e}

We will denote by N, the class of all positive integers.
In this paper we consider polynomials f in H, and ask if the Cayley transform
of f is extreme in N(B). We have the following sufficient condition.

1.2. THEOREM. Let f € H,, ||fll = 1, v € N.¥. Then
1+ /0 = f) e EB)

if the components of v are relatively prime and if X ;s thick in G".

1.3. The function (1.1) (if # = 3) stresses the fact that the condition on vy
is not necessary (in this case V = 1 and v = 2). We do not know if the con-
dition on X, is necessary. The title of this paper refers to the fact that if v and

X, satisfy the conditions of Theorem 1.2, then Re [(1 + f)/(1 - f)] gen-
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erates an extreme ray in the positive pluriharmonic functions on B. Although
Theorem 1.2 probably does not tell us much about the extreme points of N(B)
(if » = 2), it is just about all that is known, and its proof, although not
diffcult, is lengthy.

The following proposition (whose proof we omit) provides polynomials f
which satisfy the conditions of Theorem 1.2.

1.4. PROPOSITION. Let f; be a homogeneous polynomial of positive degree in
Vi,1 £k £ N, and let

N
Then X ;s thick in " of X, is thickin V,, 1 £k < N.

1.5. Let f and v be as in Theorem 1.2. If N = # (in which case f is a mono-
mial) and if (1 4+ f)/(1 — f) is extreme in N(B), then by Theorem 1.2 of
[2], the components of v are relatively prime. Thus in this case (by Proposition
1.4) (1 4+ f)/(1 — f) is extreme if and only if the components of v are rela-
tively prime.

Let us denote by Clos E(B) the closure of E(B) in the compact open
topology. If » = 1, then by (1.3), E(B) = Clos E(B). Furthermore for every
n,1 € N(B), but1 ¢ E(B). There is the following corollary of Theorem 1.2.

1.6. COROLLARY. If n = 2, then 1 € Clos E(B); hence E(B) # Clos E(B).

We will omit the proof.

2. Lemmas and propositions which are preparatory to the proof of
Theorem 1.2.

2.1. We recall that if \, u € C and if X 5 1, then
(21)  Rel[(1 4+ 2u)/(1 = N] = (1 = [\2 4+ 2 Re [(1 — Du])/[1 — A2
If f € H(B), then we will denote by 4, the class of all ¢ in H(B) such that
(2.2) [fI*+2Re (fe) =1+ 2Ree

on B. Thus 4, is convex.
If YV is a compact Hausdorff space, then we will denote by M, (Y) the class
of all Radon measures on V. Thusif ¢ € M, (V) and E C ¥, then ¢(E) = 0.
We recall that if ¢ € M, (TV), then ¢ : Z¥ — C is defined by

§(a) = f Edo (u).
If v € ZV, then we let
Gy={u:p€ TV, uw =1}
We recall the following fact from the theory of M (T¥).
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22 ProrositioN. Let ¢ € M (TY), let 6(0) = (md let v € Z~.
, then ¢ € M (X\G,) where \* = 6(y),\€ T

2.3. ProposiTiON. Let ¢ € N(B). Thus

g=1+221gj

where g5 € H,. Furthermore let k € Ny, let f € Hy, and let ||f|| = 1. If X, 1s
thick in C" (in which case k = 2 if n = 2) and if g, = f, then

(23) g=QQ+f+20)/10~f)
where ¢ 1s a polynomial of degree < k — 1, ¢(0) = 0, and ¢ € 4,.
Proof. Let z € X, and define b : D — (0,0 ) by h(s) = Re g(uz). Thus

h(u) =1+ 2Re 21: 2@,

Since # is harmonic and = 0,

h(w) = ¢0) +2Re 20 ¢
where ¢ € M, (T). We have ¢(0) = 1 and 6(k) = f(z), hence by Proposition
2.2 (with N = land v = k), ¢ € M, (XG) where \* = f(z). Thusifj,m € Z
then
(24) 6+ km) = f "o (n) = fkkmﬁjda(u) = f(z)" 6 (7).
We let g¢ = 1. Thus if j, m € N and if 3 € X, then by (2.4)
Livim(2) = f(2)"g;(2).

Furthermore gji1m — f™g; € Hjirm; hence by the thickness of X, gjvim =
f™g,;. We have

k [es) k ©
g=1+221 Zog;-+km=l+221:gf§0_:fm
j=1 m=

= 1+2(f—|— L}::l g,)/(l - f),

thus if ¢ = > %' g, then (2.3) holds.
By (2.3) and the identity (2.1), ¢ € 4, which completes the proof of
Proposition 2.3. (We remark that a special case of Proposition 2.3 is proved

in [1].)

2.4. ProroSITION. Let k € N, let k = 2, let ¢ be a polynomial in C* of degrec
Sk —1,and let ¢(0) = 0. Thus ¢ = D 51 ¢, where ¢; € H;. Furthermore lel
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f € Hy If o € Ay, then
(2.5) ey — @uufl =1 = fF
on B=BWUS.
Proof. Let
g= 1 —ff) +2Rele — f]
If (u,2) € T X G then

k—1

(2.6)  g(uz) = [1 — f)f(2)] + 2Re D [e;(z) — @ny()f(2)]u’.

1

If (4, 2) € T X B, then by the definition (2.2) of 4,, g(uz) = 0, hence by
(2.6), the inequality (2.5) holds.

2.5. We recall that if « is a multi-index, i.e. if « € NV, then by |a| we mean
SV . We will omit the proof (which is straightforward) of the following
proposition.

2.6. PrOPOSITION. Let a, 8, v € N¥ and let |a| < |v|.

a. Let po = 1if u € Gy. Then a = 0.

b. Let p* = g if p € G,. If 0 < |B] £ |v], then o + 8 = 7.

c. Let p= = pBif uw € G,. If |B| < ||, then « = B.

Let the components of v be relatively prime and let 0 < |a| < |y| (thus N = 2).
d. Then o and v are linearly independent over R.

e. If wedefine ¢ : TV — T2 by ¢(u) = (u, wv), then ¢(TV) = T2

f. If we define ¢ : Gy — T by ¢(u) = po, then ¢(G,) = T.

2.7. LEmMA, Let f and v be as in Theorem 1.2. Furthermore let o, 8 € N¥, let
0 <la| <|vyl, let a4+ B =1, and let oo + o5 € A, where ¢o € Hy, 05 € Hp.
If the components of v are relatively prime and if X, 1s thick im G,
then ¢, = @5 = 0.

Il

Proof. a. If |a| ¢ |8], and if z € X, then by Proposition 2.4,

(2.7)  ¢alz) = 25(2)f(2).
b. If |a| = 18], if 2 € X, and if p € G,, then by Proposition 2.4,

1ea(z) + wlos(z) = [B°0a(z) + #Pos(2)]f(2),

hence

pea(z) + Bep(z) = B°¢a(2)f(z) + u@s(z)f(2).
Thus by Proposition 2.6f,
(2.8)  ¢alz) = 25(2)f(2)

c. We have (by the definition of 4 )

(2.9)  |fI2+ 2 Re [flea + ¢8)] £ 1 + 2 Re [ + @3]
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on B. On X, we have by (2.7) and (2.8),
(2.10) |fI* + 2 Re [f(ea + @5)] = 1 + 2 Re [¢a + 5]

Letz € X, Thenz = (Lyws, . .., tywy) where0 < £, < 1,w, € Ve M S, and
N
Z Ika = 1
1
Lett = (¢,...,ty) and w = (wy,...,wy). Then z = 7 (¢, w).

Letx € RY, x-x = 1. Then #(x, w) € S; hence by (2.9),
(2.11) (1 — Ax2) + (Dx= + Exf — Bavte — Cxv8) = 0

where 4 = [f(w)]?, B =2Re[f(w)¢a(w)], C =2Re[f(w)¢s(w)], D = 2Re ¢o(w),
and E = 2 Re ¢s(w).
Let us define p, 7, 0 : RY¥ > R by p(x) = x - x, 7(x) = 1 — 4x?, and

c(x) = Dx* 4+ Exf — Bxrte — Cxv*5,
Thus if p(x) = 1, then by (2.11),
(212) (4 a)(x) = 0.
Furthermore by (2.10), (r + ¢)(t) = 0, hence by (2.12),
2.13) V(r+ o) () || Volb).

We have 7(x) = 1 — |f(x(x, w))|? hence Vr(i) || Vp(t). Thus by (2.13),
Va(t) || Ve(t).
We have

(2.14)  x,00/0x; = Dx®oy, + ExP8; — Bxvte (v, + a) — Cx" 8 (vy, + B).
If Vo(ty = N Vp(t) where N € R, then (d0/9x;)(t) = 2Ny, hence by (2.14),
(2.15) Dtta + EtB — Btrte(y + a) — Co*(y + B8) = 2AT
where T = (£,2,. .., ix%). We have
treB = 2 Re [f(z)¢a(2)],
8C = 2 Re [f(z)es(2)], D = 2 Re ¢u(z),
PE = 2 Re ¢5(z), hence by (2.7), (2.8), and (2.15),
(2.16) [Re ¢a(2)]8 + [Re ¢s(z)]a = xT°

(where x = —\/2).
If w € T, then

w(u, ) = (tlﬂlwly ce InpNWyN),

hence by (2.16)
(2.17)  (Re [p*¢a(2)])B8 + (Re [whps(z)))a = x(u)T.
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By Proposition 2.6e (and the fact thatae + 8 = v), thereis a win TV such that
peea () = |eo(2)| and wbeps(z) = |es(z)|. Likewise there is a X in TV such that
Moo (2) = |¢a(3)] and Mes(z) = — |es(z)]. Then by (2.17), and the fact that
lea(2)] = los(2)], we have

20ea(2)8 = [x(u) + xMIT
20ea(@)|a = [x(u) — x(M)]T.

Thus if ¢.(z) # 0, then « and 8 are linearly dependent; hence o« and v are
linearly dependent which contradicts Proposition 2.6d.

Thus () = ¢s(z) = 0if 2 € X,; hence ¢, = @5 = 0 which completes the
proof of Lemma 2.7.

2.8. LEmMA. Let f and v be as in Theorem 1.2. Furthermore let a € NV, let
0 < la] < |vl, and let oo € A, where oo € H,. If the components of v are rela-
tively prime and if X ;is thick in C", then ¢o = 0.

Proof. If |y| — |a| # laf, and if 2 € X, then by Proposition 2.4, ¢.(z) = 0,
hence ¢, = 0.

Let |[y| — |a| = |a|. If 2 € X and if p € G,, then by Proposition 2.4

Wen(@) = B0 f(2) = Fe(s).

0.

2.9. LEMMA. Let f and v be as in Theorem 1.2. Furthermore let ¢ be a poly-
nomial of degree < |y| — 1, let ¢(0) = 0, and let ¢ € A,. If the components of v
are relatively prime and if X ;s thick in C", then ¢ = 0.

Proof. Let |y| =2 2 (in which case N = 2) and let

IT={a:ac N 0<|a <[v]}.
We have (see (1.4))
0= 2 ¢a
aec’l
where ¢, € H,. If 4 € T¥, then

o(r(mw) = 2. eal(m(u,w) = 2, wea(®).

acT acl

Thus if ¢ € M, (TY), then

Thus by Proposition 2.6f, ¢,(z) = 0, hence ¢,

f@(W(ﬁ, w))do(n) = 2 &(@)ea(w),

acl

hence if ¢ € M, (G,) and if ¢(G,) = 1, then by (2.2)
(218) Y 6le)ea € 4.

a€cl

Let 8 € I and let
do(p) = (1 + Re pf)du, u € G,
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Let @ € I. Then by Proposition 2.6a, b, and ¢, ¢(a) = 1/2if o« + 3 = vy or if
a = (3. Otherwise ¢(a) = 0. If v — 8 € N¥, then we write 8 < v. Thus if
B8 =< v, then by (2.18),

Tev-8 + 303 € A

Likewise if 8 £ v, then 3¢5 € 4, Thusif 8 < v, then by Lemma 2.7, ¢35 = 0,
and if 8 £ v, then by Lemma 2.8, 93 = 0 which completes the proof of Lemma
2.9.

3. The proof of Theorem 1.2. Let f and v be as in Theorem 1.2, and let
g= (14 f)/(1 — f). It is to be proved that if the components of v are rela-
tively prime and if X, is thick in G, then g is an extreme point of N(B). Let
he CB).Ifg+hc N(B),thenh € H(B)and £(0) = 0,hence’ = 2 3.7 I;
where i; € H, Thus if

g=1+221:g;~

where g; € Hy, then

(3.1) g+h=1+2i (@, + ).

We have g, = f. Let ¢ = h,; and let 2 € S. If p € D, then by (3.1)

I 4+ 2Re i [g,() + hy(2) ]’ > 0,

hence |f(z) + ¢ (z)| < 1. Likewise if g — h € N(B), then |[f(z) — ¢(2)] = 1,
hence ¢ (z) = 0if 3 € X, hence ¢ = 0. Thus by Proposition 2.3

g+h=0+1+20)/10 =)

where ¢ is a polynomial of degree < |y| — 1, ¢(0) = 0, and ¢ € 4,. By
Lemma 2.9, ¢ = 0, hence g + %2 = g, hence & = 0. Thus g € E(B).
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