SOME EXTREME RAYS OF THE POSITIVE PLURIHARMONIC FUNCTIONS

FRANK FORELLI

1. Introduction.

1.1. We will denote by \mathbf{B} the open unit ball in \mathbf{C}^{n}, and we will denote by $H(\mathbf{B})$ the class of all holomorphic functions on \mathbf{B}. Let

$$
N(\mathbf{B})=\{g: g \in H(\mathbf{B}), \operatorname{Re} g>0, g(0)=1\}
$$

Thus $N(\mathbf{B})$ is convex (and compact in the compact open topology). We think that the structure of $N(\mathbf{B})$ is of interest and importance. Thus we proved in [1] that if

$$
\begin{equation*}
f(z)=\sum_{1}^{n} z_{j}^{2} \tag{1.1}
\end{equation*}
$$

if

$$
\begin{equation*}
g=(1+f) /(1-f) \tag{1.2}
\end{equation*}
$$

and if $n \geqq 2$, then g is an extreme point of $N(\mathbf{B})$. We will denote by $E(\mathbf{B})$ the class of all extreme points of $N(\mathbf{B})$. If $n=1$ and if (1.2) holds, then as is well known $g \in E(\mathbf{B})$ if and only if

$$
\text { (1.3) } \quad f(z)=c z
$$

where $c \in \mathbf{T}$.
Let $\oplus_{1}^{N} V_{k}$ be an orthogonal decomposition of \mathbf{C}^{n} into complex subspaces of positive dimension, and define $\pi: \mathbf{C}^{N} \times \mathbf{C}^{n} \rightarrow \mathbf{C}^{n}$ by

$$
\pi(\mu, w)=\sum_{1}^{N} \mu_{k} w_{k}=\left(\mu_{1} w_{1}, \ldots, \mu_{N} w_{N}\right)
$$

where

$$
w=\sum_{1}^{N} w_{k}=\left(w_{1}, \ldots, w_{N}\right), \quad w_{k} \in V_{k}
$$

Let $f \in H(\mathbf{B})$ and let

$$
f_{\alpha}(w)=\int_{\mathbf{T}^{N}} \bar{\mu}^{\alpha} f(\pi(\mu, w)) d \mu
$$

Received June 28, 1977 and in revised form, May 10, 1978 and June 26, 1978. This work was partially supported by the National Science Foundation.
where $\alpha \in \mathbf{Z}^{N}$. Then $f_{\alpha}=0$ if $\alpha \notin \mathbf{N}^{N}$, and we have

$$
\begin{equation*}
f=\sum_{\alpha \geq 0} f_{\alpha} \tag{1.4}
\end{equation*}
$$

where by $\alpha \geqq 0$ we mean $\alpha \in \mathbf{N}^{N}$. Furthermore $f_{\alpha} \in H_{\alpha}$ where by

$$
H_{\alpha}=H_{\alpha}\left(\begin{array}{cc}
\stackrel{N}{\oplus} & V_{k} \\
1
\end{array}\right)
$$

we mean the class of all polynomials $\varphi(w)$ in \mathbf{C}^{n} such that

$$
\varphi(\pi(\mu, w))=\mu^{\alpha} \varphi(w)
$$

if $\mu \in \mathbf{C}^{N}$. For example if $n=4$ and $N=2$, then

$$
z_{1}^{2} z_{2}^{2}\left(z_{3}^{2}+z_{4}^{2}\right)+\left(z_{1}^{2}+z_{2}^{2}\right)^{2} z_{3} z_{4} \in H_{(4,2)} .
$$

If $j \in \mathbf{N}$, then we will denote by H_{j} the class of all polynomials in \mathbf{C}^{n} that are homogeneous of degree j. Thus if $\varphi \in H_{\alpha}$, then $\varphi \in H_{|\alpha|}$ where by $|\alpha|$ we mean $\sum_{1}^{N} \alpha_{k}$. If $N=1$, then $\alpha=|\alpha|$ and $H_{\alpha}=H_{|\alpha|}$, whereas if $N=n$ (in which case each V_{k} is of dimension 1), then H_{α} is the class of all monomials $c z^{\alpha}$ in \mathbf{C}^{n}.

Let $X \subset \mathbf{C}^{n}$. There is the following property which may or may not hold.

1.1.1. If $\varphi \in \cup_{1}^{\infty} H_{j}$ and if $\varphi=0$ on X, then $\varphi=0$.

If the property 1.1 .1 holds, then we will say that X is thick in \mathbf{C}^{n}.
We will denote by \mathbf{S} the unit sphere in \mathbf{C}^{n}. Thus

$$
\mathbf{S}=\left\{z: z \in \mathbf{C}^{n}, \sum_{1}^{n} z_{j} \bar{z}_{j}=1\right\}=\partial \mathbf{B}
$$

If $\varphi \in \cup_{1}^{\infty} H_{j}$, then we let

$$
\|\varphi\|=\sup \{|\varphi(z)|: z \in \mathbf{S}\}
$$

and we let

$$
X_{\varphi}=\{z: z \in \mathbf{S},|\varphi(z)|=\|\varphi\|\}
$$

We will denote by \mathbf{N}_{+}the class of all positive integers.
In this paper we consider polynomials f in H_{γ} and ask if the Cayley transform of f is extreme in $N(\mathbf{B})$. We have the following sufficient condition.
1.2. Theorem. Let $f \in H_{\gamma},\|f\|=1, \gamma \in \mathbf{N}_{+}{ }^{N}$. Then

$$
(1+f) /(1-f) \in E(\mathbf{B})
$$

if the components of γ are relatively prime and if X_{f} is thick in \mathbf{C}^{n}.
1.3. The function (1.1) (if $n \geqq 3$) stresses the fact that the condition on γ is not necessary (in this case $N=1$ and $\gamma=2$). We do not know if the condition on X_{f} is necessary. The title of this paper refers to the fact that if γ and X_{f} satisfy the conditions of Theorem 1.2 , then $\operatorname{Re}[(1+f) /(1-f)]$ gen-
erates an extreme ray in the positive pluriharmonic functions on \mathbf{B}. Although Theorem 1.2 probably does not tell us much about the extreme points of $N(\mathbf{B})$ (if $n \geqq 2$), it is just about all that is known, and its proof, although not difficult, is lengthy.

The following proposition (whose proof we omit) provides polynomials f which satisfy the conditions of Theorem 1.2.
1.4. Proposition. Let f_{k} be a homogeneous polynomial of positive degree in $V_{k}, 1 \leqq k \leqq N$, and let

$$
f(w)=\prod_{1}^{N} f_{k}\left(w_{k}\right)
$$

Then X_{f} is thick in \mathbf{C}^{n} if $X_{f_{k}}$ is thick in $V_{k}, 1 \leqq k \leqq N$.
1.5. Let f and γ be as in Theorem 1.2. If $N=n$ (in which case f is a monomial) and if $(1+f) /(1-f)$ is extreme in $N(\mathbf{B})$, then by Theorem 1.2 of [2], the components of γ are relatively prime. Thus in this case (by Proposition 1.4) $(1+f) /(1-f)$ is extreme if and only if the components of γ are relatively prime.

Let us denote by $\operatorname{Clos} E(\mathbf{B})$ the closure of $E(\mathbf{B})$ in the compact open topology. If $n=1$, then by (1.3), $E(\mathbf{B})=\operatorname{Clos} E(\mathbf{B})$. Furthermore for every $n, 1 \in N(\mathbf{B})$, but $1 \notin E(\mathbf{B})$. There is the following corollary of Theorem 1.2.
1.6. Corollary. If $n \geqq 2$, then $1 \in \operatorname{Clos} E(\mathbf{B})$; hence $E(\mathbf{B}) \neq \operatorname{Clos} E(\mathbf{B})$.

We will omit the proof.

2. Lemmas and propositions which are preparatory to the proof of Theorem 1.2.

2.1. We recall that if $\lambda, \mu \in \mathbf{C}$ and if $\lambda \neq 1$, then

$$
\begin{equation*}
\operatorname{Re}[(1+\lambda+2 \mu) /(1-\lambda)]=\left(1-|\lambda|^{2}+2 \operatorname{Re}[(1-\bar{\lambda}) \mu]\right) /|1-\lambda|^{2} \tag{2.1}
\end{equation*}
$$

If $f \in H(\mathbf{B})$, then we will denote by A_{f} the class of all φ in $H(\mathbf{B})$ such that

$$
\begin{equation*}
|f|^{2}+2 \operatorname{Re}(\bar{f} \varphi) \leqq 1+2 \operatorname{Re} \varphi \tag{2.2}
\end{equation*}
$$

on \mathbf{B}. Thus A_{f} is convex.
If Y is a compact Hausdorff space, then we will denote by $M_{+}(Y)$ the class of all Radon measures on Y. Thus if $\sigma \in M_{+}(Y)$ and $E \subset Y$, then $\sigma(E) \geqq 0$.

We recall that if $\sigma \in M_{+}\left(\mathbf{T}^{N}\right)$, then $\hat{\sigma}: \mathbf{Z}^{N} \rightarrow \mathbf{C}$ is defined by

$$
\hat{\sigma}(\alpha)=\int \bar{\mu}^{\alpha} d \sigma(\mu) .
$$

If $\gamma \in \mathbf{Z}^{N}$, then we let

$$
G_{\gamma}=\left\{\mu: \mu \in \mathbf{T}^{N}, \mu^{\gamma}=1\right\} .
$$

We recall the following fact from the theory of $M_{+}\left(\mathbf{T}^{N}\right)$.
2.2. Proposition. Let $\sigma \in M_{+}\left(\mathbf{T}^{N}\right)$, let $\hat{\sigma}(0)=1$, and let $\gamma \in \mathbf{Z}^{N}$. If $|\hat{\sigma}(\gamma)|=1$, then $\sigma \in M_{+}\left(\bar{\lambda} G_{\gamma}\right)$ where $\lambda^{\gamma}=\hat{\sigma}(\gamma), \lambda \in \mathbf{T}^{N}$.
2.3. Proposition. Let $g \in N(\mathbf{B})$. Thus

$$
g=1+2 \sum_{1}^{\infty} g_{j}
$$

where $g_{j} \in H_{j}$. Furthermore let $k \in \mathbf{N}_{+}$, let $f \in H_{k}$, and let $\|f\|=1$. If X_{j} is thick in \mathbf{C}^{n} (in which case $k \geqq 2$ if $n \geqq 2$) and if $g_{k}=f$, then

$$
\begin{equation*}
g=(1+f+2 \varphi) /(1-f) \tag{2.3}
\end{equation*}
$$

where φ is a polynomial of degree $\leqq k-1, \varphi(0)=0$, and $\varphi \in A_{f}$.
Proof. Let $z \in X_{f}$ and define $h: \mathbf{D} \rightarrow(0, \infty)$ by $h(\mu)=\operatorname{Re} g(\mu z)$. Thus

$$
h(\mu)=1+2 \operatorname{Re} \sum_{1}^{\infty} g_{j}(z) \mu^{j} .
$$

Since h is harmonic and $\geqq 0$,

$$
h(\mu)=\hat{\sigma}(0)+2 \operatorname{Re} \sum_{i}^{\infty} \hat{\sigma}(j) \mu^{j}
$$

where $\sigma \in M_{+}(\mathbf{T})$. We have $\hat{\sigma}(0)=1$ and $\hat{\sigma}(k)=f(z)$, hence by Proposition 2.2 (with $N=1$ and $\gamma=k$), $\sigma \in M_{+}\left(\bar{\lambda} G_{k}\right)$ where $\lambda^{k}=f(z)$. Thus if $j, m \in \mathbf{Z}$, then

$$
\begin{equation*}
\hat{\sigma}(j+k m)=\int \bar{\mu}^{k m} \bar{\mu}^{j} d \sigma(\mu)=\int \lambda^{k m} \bar{\mu}^{j} d \sigma(\mu)=f(z)^{m} \hat{\sigma}(j) . \tag{2.4}
\end{equation*}
$$

We let $g_{0}=1$. Thus if $j, m \in \mathbf{N}$ and if $z \in X_{f}$, then by (2.4)

$$
g_{j+k m}(z)=f(z)^{m} g_{j}(z) .
$$

Furthermore $g_{j+k m}-f^{m} g_{j} \in H_{j+k m}$; hence by the thickness of $X_{f}, g_{j+k m}=$ $f^{m} g_{j}$. We have

$$
\begin{aligned}
g=1+2 \sum_{j=1}^{k} \sum_{m=0}^{\infty} g_{j+k m}=1+2 \sum_{1}^{k} & g_{j} \sum_{0}^{\infty} f^{m} \\
& =1+2\left(f+\sum_{1}^{k-1} g_{j}\right) /(1-f)
\end{aligned}
$$

thus if $\varphi=\sum_{1}^{k-1} g_{j}$, then (2.3) holds.
By (2.3) and the identity (2.1), $\varphi \in A_{f}$ which completes the proof of Proposition 2.3. (We remark that a special case of Proposition 2.3 is proved in [1].)
2.4. Proposition. Let $k \in \mathbf{N}$, let $k \geqq 2$, let φ be a polynomial in \mathbf{C}^{n} of degree $\leqq k-1$, and let $\varphi(0)=0$. Thus $\varphi=\sum_{1}^{k-1} \varphi_{j}$ where $\varphi_{j} \in H_{j}$. Furthermore let
$f \in H_{k}$. If $\varphi \in A_{f}$, then

$$
\begin{equation*}
\left|\varphi_{j}-\bar{\varphi}_{k-j} f\right| \leqq 1-f \bar{f} \tag{2.5}
\end{equation*}
$$

on $\mathbf{B}=\mathbf{B} \cup \mathbf{S}$.
Proof. Let

$$
g=(1-f \bar{f})+2 \operatorname{Re}[\varphi(1-\bar{f})]
$$

If $(\mu, z) \in \mathbf{T} \times \mathbf{C}^{n}$, then

$$
\begin{equation*}
g(\mu z)=[1-f(z) \bar{f}(z)]+2 \operatorname{Re} \sum_{1}^{k-1}\left[\varphi_{j}(z)-\bar{\varphi}_{k-j}(z) f(z)\right] \mu^{j} \tag{2.6}
\end{equation*}
$$

If $(\mu, z) \in \mathbf{T} \times \overline{\mathbf{B}}$, then by the definition (2.2) of $A_{f}, g(\mu z) \geqq 0$, hence by (2.6), the inequality (2.5) holds.
2.5. We recall that if α is a multi-index, i.e. if $\alpha \in \mathbf{N}^{N}$, then by $|\alpha|$ we mean $\sum_{1}^{N} \alpha_{k}$. We will omit the proof (which is straightforward) of the following proposition.
2.6. Proposition. Let $\alpha, \beta, \gamma \in \mathbf{N}^{N}$ and let $|\alpha|<|\gamma|$.
a. Let $\mu^{\alpha}=1$ if $\mu \in G_{\gamma}$. Then $\alpha=0$.
b. Let $\mu^{\alpha}=\bar{\mu}^{\beta}$ if $\mu \in G_{\gamma}$. If $0<|\beta| \leqq|\gamma|$, then $\alpha+\beta=\gamma$.
c. Let $\mu^{\alpha}=\mu^{\beta}$ if $\mu \in G_{\gamma}$. If $|\beta|<|\gamma|$, then $\alpha=\beta$.

Let the components of γ be relatively prime and let $0<|\alpha|<|\gamma|$ (thus $N \geqq 2$).
d. Then α and γ are linearly independent over \mathbf{R}.
e. If we define $\phi: \mathbf{T}^{N} \rightarrow \mathbf{T}^{2}$ by $\phi(\mu)=\left(\mu^{\alpha}, \mu^{\gamma}\right)$, then $\phi\left(\mathbf{T}^{N}\right)=\mathbf{T}^{2}$.
f. If we define $\phi: G_{\gamma} \rightarrow \mathbf{T}$ by $\phi(\mu)=\mu^{\alpha}$, then $\phi\left(G_{\gamma}\right)=\mathbf{T}$.
2.7. Lemma. Let f and γ be as in Theorem 1.2. Furthermore let $\alpha, \beta \in \mathbf{N}^{N}$, let $0<|\alpha|<|\gamma|$, let $\alpha+\beta=\gamma$, and let $\varphi_{\alpha}+\varphi_{\beta} \in A_{f}$ where $\varphi_{\alpha} \in H_{\alpha}, \varphi_{\beta} \in H_{\beta}$. If the components of γ are relatively prime and if X_{f} is thick in \mathbf{C}^{n}, then $\varphi_{\alpha}=\varphi_{\beta}=0$.

Proof. a. If $|\alpha| \neq|\beta|$, and if $z \in X_{f}$, then by Proposition 2.4, (2.7) $\varphi_{\alpha}(z)=\bar{\varphi}_{\beta}(z) f(z)$.
b. If $|\alpha|=|\beta|$, if $z \in X_{f}$, and if $\mu \in G_{\gamma}$, then by Proposition 2.4,

$$
\mu^{\alpha} \varphi_{\alpha}(z)+\mu^{\beta} \varphi_{\beta}(z)=\left[\bar{\mu}^{\alpha} \bar{\varphi}_{\alpha}(z)+\bar{\mu}^{\beta} \bar{\varphi}_{\beta}(z)\right] f(z),
$$

hence

$$
\mu^{\alpha} \varphi_{\alpha}(z)+\bar{\mu}^{\alpha} \varphi_{\beta}(z)=\bar{\mu}^{\alpha} \bar{\varphi}_{\alpha}(z) f(z)+\mu^{\alpha} \bar{\varphi}_{\beta}(z) f(z)
$$

Thus by Proposition 2.6f,

$$
\begin{equation*}
\varphi_{\alpha}(z)=\bar{\varphi}_{\beta}(z) f(z) \tag{2.8}
\end{equation*}
$$

if $z \in X_{f}$.
c. We have (by the definition of A_{f})

$$
\begin{equation*}
|f|^{2}+2 \operatorname{Re}\left[\bar{f}\left(\varphi_{\alpha}+\varphi_{\beta}\right)\right] \leqq 1+2 \operatorname{Re}\left[\varphi_{\alpha}+\varphi_{\beta}\right] \tag{2.9}
\end{equation*}
$$

on $\overline{\mathbf{B}}$. On X_{f} we have by (2.7) and (2.8),
(2.10) $|f|^{2}+2 \operatorname{Re}\left[\bar{f}\left(\varphi_{\alpha}+\varphi_{\beta}\right)\right]=1+2 \operatorname{Re}\left[\varphi_{\alpha}+\varphi_{\beta}\right]$.

Let $z \in X_{f}$. Then $z=\left(t_{1} w_{1}, \ldots, t_{N} w_{N}\right)$ where $0 \leqq t_{k} \leqq 1, w_{k} \in V_{k} \cap \mathbf{S}$, and $\sum_{1}^{N} t_{k}{ }^{2}=1$.

Let $t=\left(t_{1}, \ldots, t_{N}\right)$ and $w=\left(w_{1}, \ldots, w_{N}\right)$. Then $z=\pi(t, w)$.
Let $x \in \mathbf{R}^{N}, x \cdot x=1$. Then $\pi(x, w) \in \mathbf{S}$; hence by (2.9),
(2.11) $\quad\left(1-A x^{2 \gamma}\right)+\left(D x^{\alpha}+E x^{\beta}-B x^{\gamma+\alpha}-C x^{\gamma+\beta}\right) \geqq 0$
where $A=|f(w)|^{2}, B=2 \operatorname{Re}\left[\bar{f}(w) \varphi_{\alpha}(w)\right], C=2 \operatorname{Re}\left[\bar{f}(w) \varphi_{\beta}(w)\right], D=2 \operatorname{Re} \varphi_{\alpha}(w)$, and $E=2 \operatorname{Re} \varphi_{\beta}(w)$.

Let us define $\rho, \tau, \sigma: \mathbf{R}^{N} \rightarrow \mathbf{R}$ by $\rho(x)=x \cdot x, \tau(x)=1-A x^{2 \gamma}$, and

$$
\sigma(x)=D x^{\alpha}+E x^{\beta}-B x^{\gamma+\alpha}-C x^{\gamma+\beta} .
$$

Thus if $\rho(x)=1$, then by (2.11),
$(2.12) \quad(\tau+\sigma)(x) \geqq 0$.
Furthermore by (2.10), $(\tau+\sigma)(t)=0$, hence by (2.12),

$$
\begin{equation*}
\nabla(\tau+\sigma)(t) \| \nabla \rho(t) \tag{2.13}
\end{equation*}
$$

We have $\tau(x)=1-|f(\pi(x, w))|^{2}$, hence $\nabla \tau(t) \| \nabla \rho(t)$. Thus by (2.13), $\nabla \sigma(t) \| \nabla \rho(t)$.

We have

$$
\begin{equation*}
x_{k} \partial \sigma / \partial x_{k}=D x^{\alpha} \alpha_{k}+E x^{\beta} \beta_{k}-B x^{\gamma+\alpha}\left(\gamma_{k}+\alpha_{k}\right)-C x^{\gamma+\beta}\left(\gamma_{k}+\beta_{k}\right) \tag{2.14}
\end{equation*}
$$

If $\nabla \sigma(t)=\lambda \nabla \rho(t)$ where $\lambda \in \mathbf{R}$, then $\left(\partial \sigma / \partial x_{k}\right)(t)=2 \lambda t_{k}$, hence by (2.14),

$$
\begin{equation*}
D t^{\alpha} \alpha+E t^{\beta} \beta-B t^{\gamma+\alpha}(\gamma+\alpha)-C t^{\gamma+\beta}(\gamma+\beta)=2 \lambda T \tag{2.15}
\end{equation*}
$$

where $T=\left(t_{1}{ }^{2}, \ldots, t_{N}{ }^{2}\right)$. We have

$$
\begin{aligned}
t^{\gamma+\alpha} B & =2 \operatorname{Re}\left[\bar{f}(z) \varphi_{\alpha}(z)\right] \\
t^{\gamma+\beta} C & =2 \operatorname{Re}\left[\bar{f}(z) \varphi_{\beta}(z)\right], \quad t^{\alpha} D=2 \operatorname{Re} \varphi_{\alpha}(z)
\end{aligned}
$$

$t^{\beta} E=2 \operatorname{Re} \varphi_{\beta}(z)$, hence by (2.7), (2.8), and (2.15),
(2.16) $\left[\operatorname{Re} \varphi_{\alpha}(z)\right] \beta+\left[\operatorname{Re} \varphi_{\beta}(z)\right] \alpha=\chi T$
(where $\chi=-\lambda / 2$).
If $\mu \in \mathbf{T}^{N}$, then

$$
\pi(\mu, z)=\left(t_{1} \mu_{1} w_{1}, \ldots, t_{N} \mu_{N} w_{N}\right)
$$

hence by (2.16)
(2.17) $\left(\operatorname{Re}\left[\mu^{\alpha} \varphi_{\alpha}(z)\right]\right) \beta+\left(\operatorname{Re}\left[\mu^{\beta} \varphi_{\beta}(z)\right]\right) \alpha=\chi(\mu) T$.

By Proposition 2.6e (and the fact that $\alpha+\beta=\gamma$), there is a μ in \mathbf{T}^{N} such that $\mu^{\alpha} \varphi_{\alpha}(z)=\left|\varphi_{\alpha}(z)\right|$ and $\mu^{\beta} \varphi_{\beta}(z)=\left|\varphi_{\beta}(z)\right|$. Likewise there is a λ in T^{α} such that $\lambda^{\alpha} \varphi_{\alpha}(z)=\left|\varphi_{\alpha}(z)\right|$ and $\lambda^{\beta} \varphi_{\beta}(z)=-\left|\varphi_{\beta}(z)\right|$. Then by (2.17), and the fact that $\left|\varphi_{\alpha}(z)\right|=\left|\varphi_{\beta}(z)\right|$, we have

$$
\begin{aligned}
& 2\left|\varphi_{\alpha}(z)\right| \beta=[\chi(\mu)+\chi(\lambda)] T \\
& 2\left|\varphi_{\alpha}(z)\right| \alpha=[\chi(\mu)-\chi(\lambda)] T
\end{aligned}
$$

Thus if $\varphi_{\alpha}(z) \neq 0$, then α and β are linearly dependent; hence α and γ are linearly dependent which contradicts Proposition 2.6 d .

Thus $\varphi_{\alpha}(z)=\varphi_{\beta}(z)=0$ if $z \in X_{f}$; hence $\varphi_{\alpha}=\varphi_{\beta}=0$ which completes the proof of Lemma 2.7.
2.8. Lemma. Let f and γ be as in Theorem 1.2. Furthermore let $\alpha \in \mathbf{N}^{N}$, let $0<|\alpha|<|\gamma|$, and let $\varphi_{\alpha} \in A_{f}$ where $\varphi_{\alpha} \in H_{\alpha}$. If the components of γ are relatively prime and if X_{f} is thick in \mathbf{C}^{n}, then $\varphi_{\alpha}=0$.

Proof. If $|\gamma|-|\alpha| \neq|\alpha|$, and if $z \in X_{f}$, then by Proposition 2.4, $\varphi_{\alpha}(z)=0$, hence $\varphi_{\alpha}=0$.

Let $|\gamma|-|\alpha|=|\alpha|$. If $z \in X_{f}$ and if $\mu \in G_{\gamma}$, then by Proposition 2.4

$$
\mu^{\alpha} \varphi_{\alpha}(z)=\bar{\mu}^{\alpha} \bar{\varphi}_{\alpha}(z) f(z)=\bar{\mu}^{\alpha} \varphi_{\alpha}(z)
$$

Thus by Proposition 2.6f, $\varphi_{\alpha}(z)=0$, hence $\varphi_{\alpha}=0$.
2.9. Lemma. Let f and γ be as in Theorem 1.2. Furthermore let φ be a polynomial of degree $\leqq|\gamma|-1$, let $\varphi(0)=0$, and let $\varphi \in A_{f}$. If the components of γ are relatively prime and if X_{f} is thick in \mathbf{C}^{n}, then $\varphi=0$.

Proof. Let $|\gamma| \geqq 2$ (in which case $N \geqq 2$) and let

$$
I=\left\{\alpha: \alpha \in \mathbf{N}^{N}, 0<|\alpha|<|\gamma|\right\} .
$$

We have (see (1.4))

$$
\varphi=\sum_{\alpha \in I} \varphi_{\alpha}
$$

where $\varphi_{\alpha} \in H_{\alpha}$. If $\mu \in \mathbf{T}^{N}$, then

$$
\varphi(\pi(\mu, w))=\sum_{\alpha \in I} \varphi_{\alpha}(\pi(\mu, w))=\sum_{\alpha \in I} \mu^{\alpha} \varphi_{\alpha}(w) .
$$

Thus if $\sigma \in M_{+}\left(\mathbf{T}^{N}\right)$, then

$$
\int \varphi(\pi(\bar{\mu}, w)) d \sigma(\mu)=\sum_{\alpha \in I} \hat{\sigma}(\alpha) \varphi_{\alpha}(w)
$$

hence if $\sigma \in M_{+}\left(G_{\gamma}\right)$ and if $\sigma\left(G_{\gamma}\right)=1$, then by (2.2)

$$
\begin{equation*}
\sum_{\alpha \in I} \hat{\sigma}(\alpha) \varphi_{\alpha} \in A_{f} . \tag{2.18}
\end{equation*}
$$

Let $\beta \in I$ and let

$$
d \sigma(\mu)=\left(1+\operatorname{Re} \mu^{\beta}\right) d \mu, \quad \mu \in G_{\gamma} .
$$

Let $\alpha \in I$. Then by Proposition 2.6a, b, and $\mathrm{c}, \hat{\sigma}(\alpha)=1 / 2$ if $\alpha+\beta=\gamma$ or if $\alpha=\beta$. Otherwise $\hat{\sigma}(\alpha)=0$. If $\gamma-\beta \in \mathbf{N}^{N}$, then we write $\beta \leqq \gamma$. Thus if $\beta \leqq \gamma$, then by (2.18),

$$
\frac{1}{2} \varphi_{\gamma-\beta}+\frac{1}{2} \varphi_{\beta} \in A_{f} .
$$

Likewise if β 本 γ, then $\frac{1}{2} \varphi_{\beta} \in A_{f}$. Thus if $\beta \leqq \gamma$, then by Lemma 2.7, $\varphi_{\beta}=0$, and if $\beta \neq \gamma$, then by Lemma 2.8, $\varphi_{\beta}=0$ which completes the proof of Lemma 2.9.
3. The proof of Theorem 1.2. Let f and γ be as in Theorem 1.2, and let $g=(1+f) /(1-f)$. It is to be proved that if the components of γ are relatively prime and if X_{ρ} is thick in \mathbf{C}^{n}, then g is an extreme point of $N(\mathbf{B})$. Let $h \in C(\mathbf{B})$. If $g+h \in N(\mathbf{B})$, then $h \in H(\mathbf{B})$ and $h(0)=0$, hence $h=2 \sum_{1}^{\infty} h_{j}$ where $h_{j} \in H_{j}$. Thus if

$$
g=1+2 \sum_{1}^{\infty} g_{j}
$$

where $g_{j} \in H_{j}$, then

$$
\begin{equation*}
g+h=1+2 \sum_{1}^{\infty}\left(g_{j}+h_{j}\right) \tag{3.1}
\end{equation*}
$$

We have $g_{|\gamma|}=f$. Let $\psi=h_{|\gamma|}$ and let $z \in \mathbf{S}$. If $\mu \in \mathbf{D}$, then by (3.1)

$$
1+2 \operatorname{Re} \sum_{1}^{\infty}\left[g_{j}(z)+h_{j}(z)\right] \mu^{j}>0
$$

hence $|f(z)+\psi(z)| \leqq 1$. Likewise if $g-h \in N(\mathbf{B})$, then $|f(z)-\psi(z)| \leqq 1$, hence $\psi(z)=0$ if $z \in X_{f}$, hence $\psi=0$. Thus by Proposition 2.3

$$
g+h=(1+f+2 \varphi) /(1-f)
$$

where φ is a polynomial of degree $\leqq|\gamma|-1, \varphi(0)=0$, and $\varphi \in A_{f}$. By Lemma 2.9, $\varphi=0$, hence $g+h=g$, hence $h=0$. Thus $g \in E(\mathbf{B})$.

References

1. F. Forelli, Measures whose Poisson integrals are pluriharmonic II, Illinois J. Math. 19 (1975), 584-592.
2. - A necessary condition on the extreme points of a class of holomorphic functions, Pacific J. Math. 73 (1977), 81-86.

The University of Wisconsin-Madison, Madison, Wisconsin

