SOME EXTREME RAYS OF THE POSITIVE PLURIHARMONIC FUNCTIONS

FRANK FORELLI

1. Introduction.

1.1. We will denote by **B** the open unit ball in \mathbb{C}^n , and we will denote by $H(\mathbf{B})$ the class of all holomorphic functions on **B**. Let

$$N(\mathbf{B}) = \{g : g \in H(\mathbf{B}), \text{Re } g > 0, g(0) = 1\}.$$

Thus $N(\mathbf{B})$ is convex (and compact in the compact open topology). We think that the structure of $N(\mathbf{B})$ is of interest and importance. Thus we proved in [1] that if

$$(1.1) f(z) = \sum_{1}^{n} z_{j}^{2},$$

if

$$(1.2) g = (1+f)/(1-f),$$

and if $n \ge 2$, then g is an extreme point of $N(\mathbf{B})$. We will denote by $E(\mathbf{B})$ the class of all extreme points of $N(\mathbf{B})$. If n = 1 and if (1.2) holds, then as is well known $g \in E(\mathbf{B})$ if and only if

$$(1.3) f(z) = cz$$

where $c \in \mathbf{T}$.

Let $\bigoplus_{1}^{N} V_{k}$ be an orthogonal decomposition of \mathbb{C}^{n} into complex subspaces of positive dimension, and define $\pi: \mathbb{C}^{N} \times \mathbb{C}^{n} \to \mathbb{C}^{n}$ by

$$\pi(\mu, w) = \sum_{1}^{N} \mu_k w_k = (\mu_1 w_1, \dots, \mu_N w_N)$$

where

$$w = \sum_{1}^{N} w_k = (w_1, \dots, w_N), \quad w_k \in V_k.$$

Let $f \in H(\mathbf{B})$ and let

$$f_{\alpha}(w) = \int_{\mathbf{T}^{N}} \bar{\mu}^{\alpha} f(\pi(\mu, w)) d\mu$$

Received June 28, 1977 and in revised form, May 10, 1978 and June 26, 1978. This work was partially supported by the National Science Foundation.

where $\alpha \in \mathbf{Z}^N$. Then $f_{\alpha} = 0$ if $\alpha \notin \mathbf{N}^N$, and we have

$$(1.4) f = \sum_{\alpha \ge 0} f_{\alpha}$$

where by $\alpha \geq 0$ we mean $\alpha \in \mathbb{N}^N$. Furthermore $f_{\alpha} \in H_{\alpha}$ where by

$$H_{\alpha} = H_{\alpha} \left(\underset{1}{\overset{N}{\oplus}} V_{k} \right)$$

we mean the class of all polynomials $\varphi(w)$ in \mathbb{C}^n such that

$$\varphi(\pi(\mu, w)) = \mu^{\alpha}\varphi(w)$$

if $\mu \in \mathbb{C}^N$. For example if n = 4 and N = 2, then

$$z_1^2 z_2^2 (z_3^2 + z_4^2) + (z_1^2 + z_2^2)^2 z_3 z_4 \in H_{(4,2)}.$$

If $j \in \mathbb{N}$, then we will denote by H_j the class of all polynomials in \mathbb{C}^n that are homogeneous of degree j. Thus if $\varphi \in H_{\alpha}$, then $\varphi \in H_{|\alpha|}$ where by $|\alpha|$ we mean $\sum_{1}^{N} \alpha_k$. If N = 1, then $\alpha = |\alpha|$ and $H_{\alpha} = H_{|\alpha|}$, whereas if N = n (in which case each V_k is of dimension 1), then H_{α} is the class of all monomials cz^{α} in \mathbb{C}^n .

Let $X \subset \mathbb{C}^n$. There is the following property which may or may not hold.

1.1.1. If
$$\varphi \in \bigcup_{1}^{\infty} H_{j}$$
 and if $\varphi = 0$ on X, then $\varphi = 0$.

If the property 1.1.1 holds, then we will say that X is *thick* in \mathbb{C}^n . We will denote by S the unit sphere in \mathbb{C}^n . Thus

$$\mathbf{S} = \left\{ z : z \in \mathbf{C}^n, \; \sum_{1}^n \; z_j \bar{z}_j = 1
ight\} = \partial \mathbf{B}.$$

If $\varphi \in \bigcup_{1}^{\infty} H_{j}$, then we let

$$||\varphi|| = \sup \{|\varphi(z)| : z \in \mathbf{S}\}$$

and we let

$$X_{\varphi} = \{z : z \in \mathbf{S}, |\varphi(z)| = ||\varphi||\}.$$

We will denote by N_+ the class of all positive integers.

In this paper we consider polynomials f in H_{γ} and ask if the Cayley transform of f is extreme in $N(\mathbf{B})$. We have the following sufficient condition.

1.2. THEOREM. Let
$$f \in H_{\gamma}$$
, $||f|| = 1$, $\gamma \in \mathbb{N}_{+}^{N}$. Then $(1 + f)/(1 - f) \in E(\mathbf{B})$

if the components of γ are relatively prime and if X_f is thick in \mathbb{C}^n .

1.3. The function (1.1) (if $n \ge 3$) stresses the fact that the condition on γ is not necessary (in this case N = 1 and $\gamma = 2$). We do not know if the condition on X_f is necessary. The title of this paper refers to the fact that if γ and X_f satisfy the conditions of Theorem 1.2, then Re [(1+f)/(1-f)] gen-

erates an extreme ray in the positive pluriharmonic functions on **B**. Although Theorem 1.2 probably does not tell us much about the extreme points of $N(\mathbf{B})$ (if $n \geq 2$), it is just about all that is known, and its proof, although not difficult, is lengthy.

The following proposition (whose proof we omit) provides polynomials f which satisfy the conditions of Theorem 1.2.

1.4. Proposition. Let f_k be a homogeneous polynomial of positive degree in V_k , $1 \le k \le N$, and let

$$f(w) = \prod_{1}^{N} f_k(w_k).$$

Then X_f is thick in \mathbb{C}^n if X_{f_k} is thick in V_k , $1 \leq k \leq N$.

1.5. Let f and γ be as in Theorem 1.2. If N=n (in which case f is a monomial) and if (1+f)/(1-f) is extreme in $N(\mathbf{B})$, then by Theorem 1.2 of [2], the components of γ are relatively prime. Thus in this case (by Proposition 1.4) (1+f)/(1-f) is extreme if and only if the components of γ are relatively prime.

Let us denote by $\operatorname{Clos} E(\mathbf{B})$ the closure of $E(\mathbf{B})$ in the compact open topology. If n=1, then by (1.3), $E(\mathbf{B})=\operatorname{Clos} E(\mathbf{B})$. Furthermore for every $n, 1 \in N(\mathbf{B})$, but $1 \notin E(\mathbf{B})$. There is the following corollary of Theorem 1.2.

1.6. COROLLARY. If $n \ge 2$, then $1 \in \text{Clos } E(\mathbf{B})$; hence $E(\mathbf{B}) \ne \text{Clos } E(\mathbf{B})$. We will omit the proof.

2. Lemmas and propositions which are preparatory to the proof of Theorem 1.2.

2.1. We recall that if $\lambda, \mu \in \mathbb{C}$ and if $\lambda \neq 1$, then

(2.1) Re
$$[(1 + \lambda + 2\mu)/(1 - \lambda)] = (1 - |\lambda|^2 + 2 \operatorname{Re} [(1 - \bar{\lambda})\mu])/|1 - \lambda|^2$$
.

If $f \in H(\mathbf{B})$, then we will denote by A_f the class of all φ in $H(\mathbf{B})$ such that

(2.2)
$$|f|^2 + 2 \operatorname{Re} (\bar{f}\varphi) \le 1 + 2 \operatorname{Re} \varphi$$

on **B**. Thus A_f is convex.

If Y is a compact Hausdorff space, then we will denote by $M_+(Y)$ the class of all Radon measures on Y. Thus if $\sigma \in M_+(Y)$ and $E \subset Y$, then $\sigma(E) \ge 0$. We recall that if $\sigma \in M_+(\mathbf{T}^N)$, then $\hat{\sigma} : \mathbf{Z}^N \to \mathbf{C}$ is defined by

$$\hat{\sigma}(\alpha) = \int \bar{\mu}^{\alpha} d\sigma(\mu).$$

If $\gamma \in \mathbf{Z}^N$, then we let

$$G_{\gamma} = \{ \mu : \mu \in \mathbf{T}^{N}, \, \mu^{\gamma} = 1 \}.$$

We recall the following fact from the theory of $M_+(\mathbf{T}^N)$.

- 2.2. PROPOSITION. Let $\sigma \in M_+(\mathbf{T}^N)$, let $\hat{\sigma}(0) = 1$, and let $\gamma \in \mathbf{Z}^N$. If $|\hat{\sigma}(\gamma)| = 1$, then $\sigma \in M_+(\bar{\lambda}G_{\gamma})$ where $\lambda^{\gamma} = \hat{\sigma}(\gamma)$, $\lambda \in \mathbf{T}^N$.
 - 2.3. Proposition. Let $g \in N(\mathbf{B})$. Thus

$$g = 1 + 2 \sum_{1}^{\infty} g_j$$

where $g_f \in H_f$. Furthermore let $k \in \mathbb{N}_+$, let $f \in H_k$, and let ||f|| = 1. If X_f is thick in \mathbb{C}^n (in which case $k \ge 2$ if $n \ge 2$) and if $g_k = f$, then

$$(2.3) g = (1 + f + 2\varphi)/(1 - f)$$

where φ is a polynomial of degree $\leq k-1$, $\varphi(0)=0$, and $\varphi\in A_f$.

Proof. Let $z \in X_f$ and define $h: \mathbf{D} \to (0, \infty)$ by $h(\mu) = \operatorname{Re} g(\mu z)$. Thus

$$h(\mu) = 1 + 2 \text{ Re } \sum_{1}^{\infty} g_{j}(z)\mu^{j}.$$

Since h is harmonic and ≥ 0 ,

$$h(\mu) = \hat{\sigma}(0) + 2 \operatorname{Re} \sum_{1}^{\infty} \hat{\sigma}(j) \mu^{j}$$

where $\sigma \in M_+(\mathbf{T})$. We have $\hat{\sigma}(0) = 1$ and $\hat{\sigma}(k) = f(z)$, hence by Proposition 2.2 (with N = 1 and $\gamma = k$), $\sigma \in M_+(\bar{\lambda}G_k)$ where $\lambda^k = f(z)$. Thus if $j, m \in \mathbf{Z}$, then

$$(2.4) \qquad \hat{\sigma}(j+km) = \int \bar{\mu}^{km} \bar{\mu}^j d\sigma(\mu) = \int \lambda^{km} \bar{\mu}^j d\sigma(\mu) = f(z)^m \, \hat{\sigma}(j).$$

We let $g_0 = 1$. Thus if $j, m \in \mathbb{N}$ and if $z \in X_f$, then by (2.4)

$$g_{j+km}(z) = f(z)^m g_j(z).$$

Furthermore $g_{j+km} - f^m g_j \in H_{j+km}$; hence by the thickness of X_f , $g_{j+km} = f^m g_j$. We have

$$g = 1 + 2 \sum_{j=1}^{k} \sum_{m=0}^{\infty} g_{j+km} = 1 + 2 \sum_{1}^{k} g_{j} \sum_{0}^{\infty} f^{m}$$
$$= 1 + 2 \left(f + \sum_{1}^{k-1} g_{j} \right) / (1 - f),$$

thus if $\varphi = \sum_{1}^{k-1} g_j$, then (2.3) holds.

By (2.3) and the identity (2.1), $\varphi \in A_f$ which completes the proof of Proposition 2.3. (We remark that a special case of Proposition 2.3 is proved in [1].)

2.4. Proposition. Let $k \in \mathbb{N}$, let $k \geq 2$, let φ be a polynomial in \mathbb{C}^n of degree $\leq k-1$, and let $\varphi(0)=0$. Thus $\varphi=\sum_{1}^{k-1}\varphi_j$ where $\varphi_j\in H_j$. Furthermore let

 $f \in H_k$. If $\varphi \in A_f$, then

$$(2.5) |\varphi_j - \bar{\varphi}_{k-j} f| \le 1 - f \bar{f}$$

on $B = B \cup S$.

Proof. Let

$$g = (1 - f\tilde{f}) + 2 \text{ Re} [\varphi(1 - \tilde{f})].$$

If $(\mu, z) \in \mathbf{T} \times \mathbf{C}^n$, then

(2.6)
$$g(\mu z) = [1 - f(z)\bar{f}(z)] + 2 \operatorname{Re} \sum_{1}^{k-1} [\varphi_{j}(z) - \bar{\varphi}_{k-j}(z)f(z)]\mu^{j}.$$

If $(\mu, z) \in \mathbf{T} \times \overline{\mathbf{B}}$, then by the definition (2.2) of A_f , $g(\mu z) \ge 0$, hence by (2.6), the inequality (2.5) holds.

- 2.5. We recall that if α is a *multi-index*, i.e. if $\alpha \in \mathbf{N}^N$, then by $|\alpha|$ we mean $\sum_{1}^{N} \alpha_k$. We will omit the proof (which is straightforward) of the following proposition.
 - 2.6. Proposition. Let α , β , $\gamma \in \mathbb{N}^N$ and let $|\alpha| < |\gamma|$.
 - a. Let $\mu^{\alpha} = 1$ if $\mu \in G_{\gamma}$. Then $\alpha = 0$.
 - b. Let $\mu^{\alpha} = \bar{\mu}^{\beta}$ if $\mu \in G_{\gamma}$. If $0 < |\beta| \leq |\gamma|$, then $\alpha + \beta = \gamma$.
 - c. Let $\mu^{\alpha} = \mu^{\beta}$ if $\mu \in G_{\gamma}$. If $|\beta| < |\gamma|$, then $\alpha = \beta$.

Let the components of γ be relatively prime and let $0 < |\alpha| < |\gamma|$ (thus $N \ge 2$).

- d. Then α and γ are linearly independent over **R**.
- e. If we define $\phi: \mathbf{T}^N \to \mathbf{T}^2$ by $\phi(\mu) = (\mu^{\alpha}, \mu^{\gamma})$, then $\phi(\mathbf{T}^N) = \mathbf{T}^2$.
- f. If we define $\phi: G_{\gamma} \to \mathbf{T}$ by $\phi(\mu) = \mu^{\alpha}$, then $\phi(G_{\gamma}) = \mathbf{T}$.
- 2.7. Lemma. Let f and γ be as in Theorem 1.2. Furthermore let α , $\beta \in \mathbb{N}^N$, let $0 < |\alpha| < |\gamma|$, let $\alpha + \beta = \gamma$, and let $\varphi_{\alpha} + \varphi_{\beta} \in A_f$ where $\varphi_{\alpha} \in H_{\alpha}$, $\varphi_{\beta} \in H_{\beta}$. If the components of γ are relatively prime and if X_f is thick in \mathbb{C}^n , then $\varphi_{\alpha} = \varphi_{\beta} = 0$.

Proof. a. If $|\alpha| \neq |\beta|$, and if $z \in X_f$, then by Proposition 2.4,

- (2.7) $\varphi_{\alpha}(z) = \bar{\varphi}_{\beta}(z)f(z).$
 - b. If $|\alpha| = |\beta|$, if $z \in X_f$, and if $\mu \in G_\gamma$, then by Proposition 2.4,

$$\mu^{\alpha}\varphi_{\alpha}(z) + \mu^{\beta}\varphi_{\beta}(z) = [\bar{\mu}^{\alpha}\bar{\varphi}_{\alpha}(z) + \bar{\mu}^{\beta}\bar{\varphi}_{\beta}(z)]f(z),$$

hence

$$\mu^{\alpha}\varphi_{\alpha}(z) \; + \; \bar{\mu}^{\alpha}\varphi_{\beta}(z) \; = \; \bar{\mu}^{\alpha}\bar{\varphi}_{\alpha}(z)f(z) \; + \; \mu^{\alpha}\bar{\varphi}_{\beta}(z)f(z).$$

Thus by Proposition 2.6f,

(2.8)
$$\varphi_{\alpha}(z) = \bar{\varphi}_{\beta}(z) f(z)$$

if $z \in X_f$.

c. We have (by the definition of A_f)

$$(2.9) |f|^2 + 2 \operatorname{Re} \left[\bar{f}(\varphi_{\alpha} + \varphi_{\beta}) \right] \le 1 + 2 \operatorname{Re} \left[\varphi_{\alpha} + \varphi_{\beta} \right]$$

on $\overline{\mathbf{B}}$. On X_f we have by (2.7) and (2.8),

$$(2.10) \quad |f|^2 + 2 \operatorname{Re} \left[\bar{f}(\varphi_{\alpha} + \varphi_{\beta}) \right] = 1 + 2 \operatorname{Re} \left[\varphi_{\alpha} + \varphi_{\beta} \right].$$

Let $z \in X_f$. Then $z = (t_1 w_1, \ldots, t_N w_N)$ where $0 \le t_k \le 1, w_k \in V_k \cap S$, and

$$\sum_{k=1}^{N} t_k^2 = 1.$$

Let $t = (t_1, \ldots, t_N)$ and $w = (w_1, \ldots, w_N)$. Then $z = \pi(t, w)$. Let $x \in \mathbb{R}^N$, $x \cdot x = 1$. Then $\pi(x, w) \in \mathbb{S}$; hence by (2.9),

$$(2.11) \quad (1 - Ax^{2\gamma}) + (Dx^{\alpha} + Ex^{\beta} - Bx^{\gamma+\alpha} - Cx^{\gamma+\beta}) \ge 0$$

where $A = |f(w)|^2$, $B = 2 \operatorname{Re} [\bar{f}(w)\varphi_{\alpha}(w)]$, $C = 2 \operatorname{Re} [\bar{f}(w)\varphi_{\beta}(w)]$, $D = 2 \operatorname{Re} \varphi_{\alpha}(w)$, and $E = 2 \operatorname{Re} \varphi_{\beta}(w)$.

Let us define ρ , τ , σ : $\mathbb{R}^N \to \mathbb{R}$ by $\rho(x) = x \cdot x$, $\tau(x) = 1 - Ax^{2\gamma}$, and

$$\sigma(x) = Dx^{\alpha} + Ex^{\beta} - Bx^{\gamma+\alpha} - Cx^{\gamma+\beta}.$$

Thus if $\rho(x) = 1$, then by (2.11),

$$(2.12) \quad (\tau + \sigma)(x) \ge 0.$$

Furthermore by (2.10), $(\tau + \sigma)(t) = 0$, hence by (2.12),

(2.13)
$$\nabla (\tau + \sigma)(t) || \nabla \rho(t)$$
.

We have $\tau(x) = 1 - |f(\pi(x, w))|^2$, hence $\nabla \tau(t) || \nabla \rho(t)$. Thus by (2.13), $\nabla \sigma(t) || \nabla \rho(t)$.

We have

$$(2.14) \quad x_k \partial \sigma / \partial x_k = D x^{\alpha} \alpha_k + E x^{\beta} \beta_k - B x^{\gamma + \alpha} (\gamma_k + \alpha_k) - C x^{\gamma + \beta} (\gamma_k + \beta_k).$$

If $\nabla \sigma(t) = \lambda \nabla \rho(t)$ where $\lambda \in \mathbf{R}$, then $(\partial \sigma/\partial x_k)(t) = 2\lambda t_k$, hence by (2.14),

(2.15)
$$Dt^{\alpha}\alpha + Et^{\beta}\beta - Bt^{\gamma+\alpha}(\gamma + \alpha) - Ct^{\gamma+\beta}(\gamma + \beta) = 2\lambda T$$

where $T = (t_1^2, \ldots, t_N^2)$. We have

$$t^{\gamma+\alpha}B = 2 \operatorname{Re} \left[\bar{f}(z)\varphi_{\alpha}(z)\right],$$

 $t^{\gamma+\beta}C = 2 \operatorname{Re} \left[\bar{f}(z)\varphi_{\beta}(z)\right], \quad t^{\alpha}D = 2 \operatorname{Re} \varphi_{\alpha}(z),$

 $t^{\beta}E = 2 \text{ Re } \varphi_{\beta}(z)$, hence by (2.7), (2.8), and (2.15),

(2.16)
$$[\operatorname{Re} \varphi_{\alpha}(z)]\beta + [\operatorname{Re} \varphi_{\beta}(z)]\alpha = \chi T$$

(where $\chi = -\lambda/2$).

If $\mu \in \mathbf{T}^N$, then

$$\pi(\mu, z) = (t_1 \mu_1 w_1, \ldots, t_N \mu_N w_N),$$

hence by (2.16)

$$(2.17) \quad (\operatorname{Re} \left[\mu^{\alpha} \varphi_{\alpha}(z) \right]) \beta + (\operatorname{Re} \left[\mu^{\beta} \varphi_{\beta}(z) \right]) \alpha = \chi(\mu) T.$$

By Proposition 2.6e (and the fact that $\alpha + \beta = \gamma$), there is a μ in \mathbf{T}^N such that $\mu^{\alpha}\varphi_{\alpha}(z) = |\varphi_{\alpha}(z)|$ and $\mu^{\beta}\varphi_{\beta}(z) = |\varphi_{\beta}(z)|$. Likewise there is a λ in \mathbf{T}^N such that $\lambda^{\alpha}\varphi_{\alpha}(z) = |\varphi_{\alpha}(z)|$ and $\lambda^{\beta}\varphi_{\beta}(z) = -|\varphi_{\beta}(z)|$. Then by (2.17), and the fact that $|\varphi_{\alpha}(z)| = |\varphi_{\beta}(z)|$, we have

$$2|\varphi_{\alpha}(z)|\beta = [\chi(\mu) + \chi(\lambda)]T$$

$$2|\varphi_{\alpha}(z)|\alpha = [\chi(\mu) - \chi(\lambda)]T.$$

Thus if $\varphi_{\alpha}(z) \neq 0$, then α and β are linearly dependent; hence α and γ are linearly dependent which contradicts Proposition 2.6d.

Thus $\varphi_{\alpha}(z) = \varphi_{\beta}(z) = 0$ if $z \in X_f$; hence $\varphi_{\alpha} = \varphi_{\beta} = 0$ which completes the proof of Lemma 2.7.

2.8. Lemma. Let f and γ be as in Theorem 1.2. Furthermore let $\alpha \in \mathbb{N}^N$, let $0 < |\alpha| < |\gamma|$, and let $\varphi_{\alpha} \in A_f$ where $\varphi_{\alpha} \in H_{\alpha}$. If the components of γ are relatively prime and if X_f is thick in \mathbb{C}^n , then $\varphi_{\alpha} = 0$.

Proof. If $|\gamma| - |\alpha| \neq |\alpha|$, and if $z \in X_f$, then by Proposition 2.4, $\varphi_{\alpha}(z) = 0$, hence $\varphi_{\alpha} = 0$.

Let $|\gamma| - |\alpha| = |\alpha|$. If $z \in X_f$ and if $\mu \in G_\gamma$, then by Proposition 2.4

$$\mu^{\alpha}\varphi_{\alpha}(z) = \bar{\mu}^{\alpha}\bar{\varphi}_{\alpha}(z)f(z) = \bar{\mu}^{\alpha}\varphi_{\alpha}(z).$$

Thus by Proposition 2.6f, $\varphi_{\alpha}(z) = 0$, hence $\varphi_{\alpha} = 0$.

2.9. Lemma. Let f and γ be as in Theorem 1.2. Furthermore let φ be a polynomial of degree $\leq |\gamma| - 1$, let $\varphi(0) = 0$, and let $\varphi \in A_f$. If the components of γ are relatively prime and if X_f is thick in \mathbb{C}^n , then $\varphi = 0$.

Proof. Let $|\gamma| \ge 2$ (in which case $N \ge 2$) and let

$$I = \{\alpha : \alpha \in \mathbf{N}^N, 0 < |\alpha| < |\gamma|\}.$$

We have (see (1.4))

$$\varphi = \sum_{\alpha \in I} \varphi_{\alpha}$$

where $\varphi_{\alpha} \in H_{\alpha}$. If $\mu \in \mathbf{T}^{N}$, then

$$\varphi(\pi(\mu, w)) = \sum_{\alpha \in I} \varphi_{\alpha}(\pi(\mu, w)) = \sum_{\alpha \in I} \mu^{\alpha} \varphi_{\alpha}(w).$$

Thus if $\sigma \in M_+(\mathbf{T}^N)$, then

$$\int \varphi(\pi(\bar{\mu}, w)) d\sigma(\mu) = \sum_{\alpha \in I} \hat{\sigma}(\alpha) \varphi_{\alpha}(w),$$

hence if $\sigma \in M_+(G_{\gamma})$ and if $\sigma(G_{\gamma}) = 1$, then by (2.2)

$$(2.18) \quad \sum_{\alpha \in I} \ \hat{\sigma}(\alpha) \varphi_{\alpha} \in A_f.$$

Let $\beta \in I$ and let

$$d\sigma(\mu) = (1 + \operatorname{Re} \mu^{\beta})d\mu, \quad \mu \in G_{\gamma}.$$

Let $\alpha \in I$. Then by Proposition 2.6a, b, and c, $\hat{\sigma}(\alpha) = 1/2$ if $\alpha + \beta = \gamma$ or if $\alpha = \beta$. Otherwise $\hat{\sigma}(\alpha) = 0$. If $\gamma - \beta \in \mathbb{N}^N$, then we write $\beta \leq \gamma$. Thus if $\beta \leq \gamma$, then by (2.18),

$$\frac{1}{2}\varphi_{\gamma-\beta} + \frac{1}{2}\varphi_{\beta} \in A_f$$
.

Likewise if $\beta \leq \gamma$, then $\frac{1}{2}\varphi_{\beta} \in A_f$. Thus if $\beta \leq \gamma$, then by Lemma 2.7, $\varphi_{\beta} = 0$, and if $\beta \leq \gamma$, then by Lemma 2.8, $\varphi_{\beta} = 0$ which completes the proof of Lemma 2.9.

3. The proof of Theorem 1.2. Let f and γ be as in Theorem 1.2, and let g = (1 + f)/(1 - f). It is to be proved that if the components of γ are relatively prime and if X_f is thick in \mathbb{C}^n , then g is an extreme point of $N(\mathbf{B})$. Let $h \in C(\mathbf{B})$. If $g + h \in N(\mathbf{B})$, then $h \in H(\mathbf{B})$ and h(0) = 0, hence $h = 2 \sum_{1}^{\infty} h_f$ where $h_f \in H_f$. Thus if

$$g = 1 + 2\sum_{1}^{\infty} g_{j}$$

where $g_j \in H_j$, then

(3.1)
$$g + h = 1 + 2 \sum_{1}^{\infty} (g_j + h_j).$$

We have $g_{|\gamma|} = f$. Let $\psi = h_{|\gamma|}$ and let $z \in S$. If $\mu \in D$, then by (3.1)

1 + 2 Re
$$\sum_{1}^{\infty} [g_{j}(z) + h_{j}(z)]\mu^{j} > 0$$
,

hence $|f(z) + \psi(z)| \le 1$. Likewise if $g - h \in N(\mathbf{B})$, then $|f(z) - \psi(z)| \le 1$, hence $\psi(z) = 0$ if $z \in X_f$, hence $\psi = 0$. Thus by Proposition 2.3

$$g + h = (1 + f + 2\varphi)/(1 - f)$$

where φ is a polynomial of degree $\leq |\gamma| - 1$, $\varphi(0) = 0$, and $\varphi \in A_f$. By Lemma 2.9, $\varphi = 0$, hence g + h = g, hence h = 0. Thus $g \in E(\mathbf{B})$.

References

- F. Forelli, Measures whose Poisson integrals are pluriharmonic II, Illinois J. Math. 19 (1975), 584-592.
- A necessary condition on the extreme points of a class of holomorphic functions, Pacific
 J. Math. 73 (1977), 81-86.

The University of Wisconsin – Madison, Madison, Wisconsin