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Abstract. An estimate is made of the maximum range over which the motion of a particle about the 
Sun and in the galactic field is stable in Hill's sense. An equation fitting the Hill surface is found, 
with allowance made for the fact that the galactic potential differs from that of a point mass. The 
volume enclosed by the surface is 3.35 cubic parsecs, the greatest distance from the Sun being 
1.42 parsecs, this being along the line to the centre of the Galaxy. 

It is well known that the motions of the planets of the solar system are not affected 
to any noticeable extent by stellar perturbations. On the other hand, it is not satis­
factory to regard the solar system as isolated when one is studying the motion of a 
comet whose orbit has a semimajor axis of 2000 AU. What would happen if the orbit 
of the comet (or other particle) were extended even further? It is inevitable that the 
solar and galactic gravitational fields of force would become comparable in their 
effect on the particle. The orbit would lose all semblance to a Keplerian ellipse, and 
many of the conventional conceptions of celestial mechanics would be invalid. In such 
cases the classical methods of celestial mechanics must be complemented with other 
methods which have been used with various degrees of success in the solution of 
problems of stellar dynamics. 

In this paper we consider a problem in which the particle would make many revo­
lutions about the Sun at the greatest possible distance. The size of an appropriate 
surface was estimated by Chebotarev (1963, 1964, 1965, 1966), who proceeded from 
the assumption that all the mass of the Galaxy is concentrated at its centre. In actuality, 
the attracting material is distributed over an extended volume, and the potential of the 
real galactic field clearly differs from that of a point mass. On the average, a star 
can be expected to pass close enough to the Sun to have a significant influence once 
every 105 yr or so. Accordingly, a particle with a revolution period longer than this 
would respond to the smoothed gravitational field of several passing stars, rather than 
to their individual attractions. For such a particle the attracting matter is, as it were, 
spread over space in a continuous manner. 

The galactic orbit of the Sun is taken to be almost exactly circular. Since the mass 
of the Sun is small compared to that of the Galaxy it is natural to expect that the 
dimensions of Hill's surface would be small compared to the distance R0 from the 
Sun to the galactic centre. 

We shall proceed now to the analytical derivation of Hill's surface. A rotating helio­
centric system of coordinates is defined such that the x-axis is directed away from 
the galactic centre, the j-axis in the direction of galactic rotation and the z-axis 
towards the north galactic pole. The Jacobi integral in this system of coordinates is 
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-u(x,y,z)--=f^ 2 = 0, (1) 
V x2 + y2 + z2 

where x, y9 z are the coordinates of the particle, co is the angular velocity of the co­
ordinate system (i.e., the angular velocity of the Sun in the Galaxy), / is the con­
stant of gravitation, MQ the solar mass, u the galactic potential and W the constant 
of integration. 

If we take x=y = z = 0, we obtain a family of zero velocity surfaces with parameter 
W: 

W = ^ [(J?0 + xf + y2) + u(x, y, z) + ; ^ = i = § = = - (2) 
2 V ; r + yz + zz 

It is clear that a particle whose motion is governed by a Jacobi integral with a given 
value of W is not able to pass through the surface determined by Equation (2) and 
must therefore remain consistently on one side of the surface. 

We expand the galactic potential u with respect to x, y, z, considering terms up to the 
second order only. This is simplified if we suppose that the Galaxy has a plane of 
symmetry (z = 0) and an axis of rotational symmetry. The distance R from the axis of 
symmetry is given by 

i>2 

R = V(R0 + x)2 + y2 ~ R0 + x + fj- (3) 

Taking into account the solar motion, 

(du/dR)0 = -OJ2R0, (4) 

it follows that 

-■-mi-um^mh 
+ fM® , ( 5 ) 

v x2 + y2 + z2 

where W is a constant and the subscript 0 indicates that the derivatives are to be taken 
at the origin. For convenience we write Equation (5) in the form 

W = }(«*2 + yz2) + ffe , (6) 
v x2 + y2 + z2 

where a and y may easily be expressed in terms of the local kinematic parameters of the 
Galaxy. Specifically, we make use of the well-known relationship between Oort's 
parameters A and B and the linear velocity of galactic rotation Q = wR\ 

. 1 (0 d&\ 1 (0 d0\ , . , 
A = 2\R-dRy B=-2\R + dR)' ( 7 ) 
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Numerical values, according to Schmidt (1965), are 

A = 15 10ns-1 k p c ' \ B = - l O k m s " 1 kpc"1. 

Solar motion may be taken as a specific phenomenon of galactic rotation for R = R0, 
the peculiar velocity of the Sun being small compared with 0. Differentiating Equation 
(4) and comparing it with Equation (7), we obtain 

a = 4A(A - B); (8) 

and according to Agekyan et ah (1962), y may be written 

y = - c 2 , (9) 

where C=68 km s _ 1 kpc"1. 
It is significant that the above procedure did not require any model for the Galaxy 

as a whole. Indeed, we have reduced everything to consideration of the observational 
parameters A, B, and C and have not had to make any assumptions about the structure 
of the Galaxy at great distances. For large values of W Equation (6) gives almost 
spherical surfaces encircling the Sun. But our interest is in the critical Hill surface, 
i.e., a surface which ceases to be bounded as W decreases further. A simple analysis 
shows that the critical value of W is 

W = ifWMg'W3. (10) 

For this value of W two specific conical points, given by 

will appear on the surface. Apart from these points the surface is smooth and resem­
bles a triaxial ellipsoid whose major axis coincides with the x-axis. Numerical values 
for the semiaxes are 

*max = 1.42 pc = 293 x 103 AU 

J W = 0.92 pc = 196 x 103 AU 

zmax = 0.74 pc = 152 x 103 AU. 

The triaxial form would be preserved in the case of a spherically symmetric gravita­
tional field as well. Figure 1 shows a section by the plane xOz of the surfaces for diffe­
rent values of W. 

The assumption that the closed Hill surface is small compared to galactic dimensions 
seems to be justified. It is interesting that this is the case for our Galaxy, for the situa­
tion would be very different in the inner parts of an elliptical galaxy. Then w^const, 
the parameter A is small and the Hill surface is much larger, which indicates that a 
particle can return to its star after covering a distance several times the mean inter­
stellar distance. 

But in our Galaxy the volume of the critical Hill surface about the Sun is 28% of 
what it would be if all the stars were uniformly distributed. In absolute terms the volume 
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is 3.35 pc3. This estimate was obtained by means of an approximate numerical in­
tegration; despite a thorough investigation we have not been able to determine this 
volume analytically. 

The two critical points are merely libration points in the particle-Sun-Galaxy 
system without the assumption of Newtonian gravitation. This modified three-body 
problem, like the basic problem, contains five libration points (Duboshin, 1969), but 
the other three points are far from the Sun and thus devoid of any physical meaning. 

Fig. 1. A section by the plane xOz of the surfaces for different values of W'. The critical points 
are a and a and the critical surface ama'm. 

In conclusion, briefly we consider some further questions: 
(1) Will a particle for which the surface given by Equation (6) is not closed be cer­

tain to escape from the Sun? The problem involves the existence of other integrals of 
motion in addition to that of Jacobi. There is reason to believe that the meanderings 
of the orbit are not limited; at least, something of this kind is observed in related 
numerical experiments on galactic orbits of stars (Aarseth, 1966). 

(2) What is the physical interpretation of the problem? Our approach is confined to 
considering the geometry of possible orbits and does not involve any numerical 
predictions concerning the density of the circumsolar cloud. Nor do we wish to state 
the cosmogonical importance of particles moving in extremely extended orbits. It is 
quite possible that our hypothetical particles bear no relation at all to comets that 
could be seen from the Earth. On the other hand, statements concerning a circum­
solar cloud at the distance of 1 to 2 x 105 AU can, in principle, be checked by analogy, 
since similar particles from other stars should, even if very rarely, enter the solar 
system and be detected. In the solar system, they will be easily distinguished by their 
highly hyperbolic orbits. Further, we may expect to find, not only comet-like, but also 
star-like satellites at these great distances from a particular star. Such extended 
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binary systems have recently begun to interest astronomers; and there is no a priori 
reason why the Sun should not have a dwarf, stellar satellite. 
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