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KRONECKER LIMIT FUNCTIONS AND AN EXTENSION
OF THE ROHRLICH–JENSEN FORMULA

JAMES W. COGDELL , JAY JORGENSON and LEJLA SMAJLOVIĆ

Abstract. In [20], Rohrlich proved a modular analog of Jensen’s formula.

Under certain conditions, the Rohrlich–Jensen formula expresses an integral of

the log-norm log‖f‖ of a PSL(2,Z) modular form f in terms of the Dedekind

Delta function evaluated at the divisor of f. In [2], the authors re-interpreted the

Rohrlich–Jensen formula as evaluating a regularized inner product of log‖f‖
and extended the result to compute a regularized inner product of log‖f‖
with what amounts to powers of the Hauptmodul of PSL(2,Z). In the present

article, we revisit the Rohrlich–Jensen formula and prove that in the case

of any Fuchsian group of the first kind with one cusp it can be viewed as

a regularized inner product of special values of two Poincaré series, one of

which is the Niebur–Poincaré series and the other is the resolvent kernel of

the Laplacian. The regularized inner product can be seen as a type of Maass–

Selberg relation. In this form, we develop a Rohrlich–Jensen formula associated

with any Fuchsian group Γ of the first kind with one cusp by employing a type

of Kronecker limit formula associated with the resolvent kernel. We present two

examples of our main result: First, when Γ is the full modular group PSL(2,Z),

thus reproving the theorems from [2]; and second when Γ is an Atkin–Lehner

group Γ0(N)+, where explicit computations of inner products are given for

certain levels N when the quotient space Γ0(N)+\H has genus zero, one, and

two.

§1. Introduction and statement of results

1.1 The Poisson–Jensen formula

Let DR = {z = x+ iy ∈ C : |z|<R} be the disk of radius R centered at the origin in the

complex plane C. Let F be a nonconstant meromorphic function on the closure DR of DR.

Denote by cF the leading nonzero coefficient of F at zero, meaning that for some integer

m, we have that F (z) = cF z
m+O(zm+1) as z approaches zero. For any a ∈DR, let nF (a)

denote the order of F at a; there are a finite number of points a for which nF (a) �= 0; in

this notation, nF (0) =m. Jensen’s formula, as stated on page 341 of [18], asserts that

1

2π

2π∫
0

log |F (Reiθ)|dθ+
∑

a∈DR

nF (a) log(|a|/R)+nF (0) log(1/R) = log |cF |. (1)

One can consider the action of a Möbius transformation which preserves DR and seek to

compute the resulting expression from (1). Such a consideration leads to the Poisson–Jensen

formula, and we refer the reader to page 161 of [17] for a statement and proof.
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AN EXTENSION OF THE ROHRLICH-JENSEN FORMULA 811

On their own, the Jensen formula and the Poisson–Jensen formula paved the way toward

Nevanlinna theory, which in its most elementary interpretation establishes subtle growth

estimates for meromorphic functions (see Chapter VI of [18]). Going further, Nevanlinna

theory provided motivation for Vojta’s conjectures whose insight into arithmetic algebraic

geometry is profound. In particular, page 34 of [23] contains a type of “dictionary” which

translates between Nevalinna theory and number theory where Vojta proposes that Jensen’s

formula should be viewed as analogous to the Artin–Whaples product formula from class

field theory.

1.2 A modular generalization

In [20], Rohrlich proved what he aptly called a modular version of Jensen’s formula. We

now shall describe Rohrlich’s result.

Let f be a meromorphic function on the upper half plane H which is invariant with respect

to the action of the full modular group PSL(2,Z). Set F to be the “usual” fundamental

domain of the quotient PSL(2,Z)\H, and let dμ denote the area form of the hyperbolic

metric. Assume that f does not have a pole at the cusp ∞ of F , and assume further that

the Fourier expansion of f at ∞ has its constant term equal to one. Let P (w) be the

Kronecker limit function associated with the parabolic Eisenstein series associated with

PSL(2,Z); below we will write P (w) in terms of the Dedekind Delta function, but for now,

we want to keep the concept of a Kronecker limit function in the conversation. With all

this, the Rohrlich–Jensen formula is the statement that

1

2π

∫
PSL(2,Z)\H

log |f(z)|dμ(z)+
∑
w∈F

ordw(f)

ord(w)
P (w) = 0. (2)

In this expression, ordw(f) denotes the order of f at w as a meromorphic function, and

ord(w) denotes the order of the action of PSL(2,Z) on H. As a means by which one can see

beyond the above setting, one can view (2) as evaluating the inner product

〈1, log |f(z)|〉=
∫

PSL(2,Z)\H

1 · log |f(z)|dμ(z)

within the Hilbert space of L2 functions on PSL(2,Z)\H.

There are various directions in which (2) has been extended. In [20], Rohrlich described

the analog of (2) for general Fuchsian groups of the first kind and for meromorphic modular

forms f of nonzero weight (see page 19 of [20]). In [10], the authors studied the quotient

of hyperbolic three space when acted upon by the discrete group PSL(2,OK), where OK

denotes the ring of integers of an imaginary quadratic field K. In that setting, the function

log |f | is replaced by a function which is harmonic at all but a finite number of points and at

those points the function has prescribed singularities. As in [20], the analog of (2) involves

a function P which is constructed from a type of Kronecker limit formula.

In [2], the authors returned to the setting of PSL(2,Z) acting on H. Let qz = e2πiz

be the standard local coordinate near ∞ of PSL(2,Z)\H. The Hauptmodul j(z) is the

unique PSL(2,Z) invariant holomorphic function on H whose expansion near ∞ is j(z) =

q−1
z +744+O(qz) as z approaches ∞. Define j1(z) = j(z)−744. For integers n≥ 2, let Tn

denote the nth Hecke operator, and set jn(z) = j|Tn(z). The main results of [2] are the

derivation of formulas for the regularized scalar product 〈jn(z), log((Im(z))k|f(z)|)〉, where
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f is a weight 2k meromorphic modular form with respect to PSL(2,Z). Below, we will

discuss further the formulas from [2] and describe the way in which their results are natural

extensions of (2).

1.3 Revisiting Rohrlich’s theorem

The purpose of this article is to extend the point of view that the Rohlrich–Jensen formula

is the evaluation of a particular type of inner product and to prove the extension of this

formula in the setting of an arbitrary, not necessarily arithmetic, Fuchsian group of the first

kind with one cusp. To do so, we shall revisit the role of each of the two terms j|Tn(z) and

log((Im(z))k|f(z)|).
The function j|Tn(z) can be characterized as the unique holomorphic function, up to

an additive constant, which is PSL(2,Z) invariant on H and whose expansion near ∞ is

q−n
z +o(q−1

z ). These properties hold for the special value s= 1 of the Niebur–Poincaré series

FΓ
−n(z,s), which is defined in [19] for any Fuchsian group Γ of the first kind with one cusp

(see §3.1). As proved in [19], for any m ∈ Z\{0}, the Niebur–Poincaré series FΓ
m(z,s) is an

eigenfunction of the hyperbolic Laplacian Δhyp; specifically, we have that

ΔhypF
Γ
m(z,s) = s(1−s)FΓ

m(z,s).

Also, FΓ
m(z,s) is orthogonal to constant functions. Furthermore, if Γ = PSL(2,Z), then for

any positive integer n there is an explicitly computable constant cn such that

F
PSL(2,Z)
−n (z,1) =

1

2π
√
n
jn(z)+ cn. (3)

As a result, the Rohrlich–Jensen formula proved in [2], when combined with Rohrlich’s

formula from [20], reduces to computing the regularized inner product of F
PSL(2,Z)
−n (z,1)

with log((Im(z))k|f(z)|).
As for the term log((Im(z))k|f(z)|), we begin by recalling Proposition 12 from [16]. Let

Γ be a cofinite Fuchsian group with one cusp; the cusp is assumed to be at ∞ with the

identity as its scaling matrix. Let 2k ≥ 2 be any even positive integer, and let f be a weight

2k holomorphic form which is Γ invariant and with q-expansion at ∞ that is normalized

so its constant term is equal to one. Set ‖f‖(z) = yk|f(z)|, where z = x+ iy. Let Eell
Γ,w(z,s)

be the elliptic Eisenstein series associated with the aforementioned data; a summary of the

relevant properties of Eell
Γ,w(z,s) is given in §4.3. Then, in [16], it is proved that one has the

asymptotic relation∑
w∈FΓ

ordw(f)Eell
Γ,w(z,s) =−s log

(
|f(z)||η4Γ,∞(z)|−k

)
+O(s2) ass→ 0, (4)

where FΓ is the fundamental domain for the action of Γ on H and ηΓ,∞(z) is the analog of

the classical eta function for the modular group (see (28) for the Kronecker limit formula for

the non-holomorphic parabolic Eisenstein series). With this, formula (4) can be written as

log(‖f‖(z)) = kPΓ(z)−
∑

w∈FΓ

ordw(f) lim
s→0

1

s
Eell
Γ,w(z,s), (5)
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where PΓ(z) = log(|η4Γ,∞(z)|Im(z)) is the Kronecker limit function associated with the

non-holomorphic parabolic Eisenstein series Epar
Γ,∞(z,s); the precise normalizations and

expressions which define Epar
Γ,∞(z,s) will be clarified below.

Following [3], one can recast (5) in terms of the resolvent kernel, which we now shall

undertake.

The resolvent kernel, also called the automorphic Green’s function, GΓ
s (z,w) is the

integral kernel which for almost all s ∈ C inverts the operator Δhyp + s(s− 1), meaning

that for each s ∈ C for which s(1− s) is not the eigenvalue of Δhyp, function GΓ
s (z,w) it is

the integral kernel of the operator (Δhyp+s(s−1))−1. Moreover,

ΔhypG
Γ
s (z,w) = s(1−s)GΓ

s (z,w).

The resolvent kernel is closely related to the elliptic Eisenstein series (see [25] as well

as [3]). Specifically, from Corollary 7.4 of [25], after taking into account a sign difference in

our normalization, we have that

ord(w)Eell
Γ,w(z,s) =−2s+1

√
πΓ(s+1/2)

Γ(s)
GΓ

s (z,w)+O(s2) as s→ 0 (6)

for all z,w ∈H with z �= γw when γ ∈ Γ. It is now evident that one can express log(‖f‖(z))
as a type of Kronecker limit function. Indeed, upon using the functional equation for the

Green’s function, we will prove below (§5.2) the following result.

Proposition 1. Let Γ be a cofinite Fuchsian group with one cusp at ∞ with identity

as its scaling matrix. Let 2k ≥ 0 be an even integer, and let f be a weight 2k meromorphic

form which is Γ invariant and with q-expansion at ∞ normalized so its constant term is

equal to one. Then,

log (‖f‖(z)) =−2k+2π
∑

w∈FΓ

ordw(f)

ord(w)
lim
s→1

(
GΓ

s (z,w)+Epar
Γ,∞(z,s)

)
= 2π

∑
w∈FΓ

ordw(f)

ord(w)

[
lim
s→1

(
GΓ

s (z,w)+Epar
Γ,∞(z,s)

)
− 2

volhyp(Γ\H)

]
. (7)

With all this, it is evident that one can view the inner product realization of the Rohrlich–

Jensen formula as a special value of the inner product of the Niebur–Poincaré series FΓ
m(z,s)

form∈Z<0 and the resolvent kernel GΓ
s (z,w) plus the parabolic Eisenstein series Epar

Γ,∞(z,s).

Furthermore, because all terms are eigenfunctions of the Laplacian, one can seek to

compute the inner product in hand in a manner similar to that which yields the Maass–

Selberg formula.

1.4 Our main results

Unless otherwise explicitly stated, we will assume for the remainder of this article that

Γ is any Fuchsian group of the first kind with one cusp. By conjugating Γ, if necessary, we

may assume that the cusp is at ∞, with the cuspidal width equal to one. The group Γ will

be arbitrary, but fixed, throughout this article, so, for the sake of brevity, in the sequel, we

will suppress the index Γ in the notation for Eisenstein series, the Niebur–Poincaré series,

the Kronecker limit function, the fundamental domain, and the resolvent kernel. When Γ

is taken to be the modular group or the Atkin–Lehner group, that will be indicated in the

notation.
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With the above discussion, we have established that one manner in which the Rohrlich–

Jensen formula can be understood is through the study of the regularized inner product

〈F−n(·,1), lim
s→1

(Gs(·,w)+Epar
∞ (·, s))〉, (8)

which is defined as follows. Since Γ has one cusp at ∞, one can construct a (Ford)

fundamental domain F of the action of Γ on H. Let M = Γ\H. A cuspidal neighborhood

F∞(Y ) of ∞ is given by 0 < x ≤ 1 and y ≥ Y , where z = x+ iy and some Y ∈ R

sufficiently large. (We recall that we have normalized the cusp to be of width one.) Let

F(Y ) = F \F∞(Y ). Then, we define (8) to be

lim
Y→∞

∫
F(Y )

F−n(z,1) lim
s→1

(Gs(z,w)+Epar
∞ (z,s))dμhyp(z),

where dμhyp(z) denotes the hyperbolic volume element. The function Gs(z,w)+Epar
∞ (z,s)

is unbounded as z → w. However, the asymptotic growth of the function is logarithmic,

thus integrable; hence, it is not necessary to regularize the integral in (8) in a neighborhood

containing w. The need to regularize the inner product (8) stems solely from the exponential

growth behavior of the factor F−n(z,1) as z →∞.

Our first main result of this article is the following theorem.

Theorem 1. For any positive integer n and any point w ∈ F ,

〈F−n(·,1), lim
s→1

(Gs(·,w)+Epar
∞ (·, s))〉=− ∂

∂s
F−n(w,s)

∣∣∣
s=1

. (9)

We can combine Theorem 1 with the factorization formula (7) together with properties

of F−n(z,1), as proved in [19], in order to obtain the following extension of the Rohrlich–

Jensen formula.

Corollary 1. In addition to the notation above, assume that the even weight 2k ≥ 0

meromorphic form f has been normalized so its q-expansion at ∞ has constant term equal

to 1. Then we have that

〈F−n(·,1), log‖f‖〉=−2π
∑
w∈F

ordw(f)

ord(w)

∂

∂s
F−n(w,s)

∣∣∣
s=1

. (10)

Let g be a Γ invariant analytic function which has a pole at ∞. As such, there is a

positive integer K and set of complex numbers {an}Kn=1 such that

g(z) =

K∑
n=1

anq
−n
z +O(1) asz →∞.

It is proved in [19] that

g(z) =
K∑

n=1

2π
√
nanF−n(z,1)+ c(g) (11)

for some constant depending only upon g. With this, we can combine Corollary 1 and the

theorem on page 19 of [20] to obtain the following result.
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Corollary 2. With notation as above, there is a constant β, defined by the Laurent

expansion of Epar
∞ (z,s) near s= 1, such that

〈g, log‖f‖〉=−2π
∑
w∈F

ordw(f)

ord(w)

(
2π

K∑
n=1

√
nan

∂

∂s
F−n(w,s)

∣∣∣
s=1

+ c(g)(P (w)−β volhyp(M)+2)

)
. (12)

The constant β is given in (28). We refer the reader to equation (28) for further details

regarding the normalizations which define β and the parabolic Kronecker limit function P.

Finally, we will consider the generating function of the normalized series constructed

from the right-hand side of (9). Specifically, we will prove the following result.

Theorem 2. With notation as above, the generating series∑
n≥1

2π
√
n
∂

∂s
F−n(w,s)

∣∣∣
s=1

qnz

is, in the z variable, the holomorphic part of the weight two biharmonic Maass form

Gw(z) := i
∂

∂z

(
∂

∂s
(Gs(z,w)+Epar

∞ (w,s))
∣∣∣
s=1

)
.

Note that a weight two biharmonic Maass form is a function which satisfies the weight two

modularity in z and which is annihilated by Δ2
2 = (ξ0 ◦ξ2)2, where, classically ξκ := 2iyκ ∂

∂z .

It is clear from the definition that Gw(z) satisfies the weight two modularity in the z variable.

In §5.4, we will prove that (ξ0 ◦ ξ2)2Gw(z) = 0.

In the case Γ=PSL(2,Z), our results yield the main theorems from [2], as we will discuss

below.

1.5 Outline of the paper

In §2, we will establish notation and recall certain results from the literature. There are

two specific examples of Poincaré series which are particularly important for our study,

the Niebur–Poincaré series and the resolvent kernel. Both series are defined, and basic

properties are summarized in §3. In §4, we state the Kronecker limit formulas associated

with parabolic and elliptic Eisenstein series, and then prove Proposition 1. The proofs of

the main results listed above will be given in §5.
To illustrate our results, various examples are given in §6. Our first example is when

Γ=PSL(2,Z), where, as claimed above, our results yield the main theorems of [2]. We then

turn to the case when Γ is an Atkin–Lehner group Γ0(N)+ for square-free level N. The

first examples are when the genus of the quotient spaces Γ0(N)+\H are zero and when

the function g in Corollary 2 is the Hauptmodul j+N (z). In somewhat common notation, we

write Γ0(N)+ to denote the projection of Γ0(N)+ onto PSL(2,R). The next two examples

we present are for levels N = 37 and N = 103. For these levels, the genus of the quotients

of H by Γ0(N)+ are one and two, respectively. In these cases, certain generators of the

corresponding function fields were constructed in [13]. Consequently, we are able to employ

the results from [13] and fully develop Corollary 2.
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§2. Background material

2.1 Basic notation

Let Γ ⊂ PSL(2,R) denote a Fuchsian group of the first kind acting by fractional linear

transformations on the hyperbolic upper half-plane H := {z = x+ iy ∈ C |x,y ∈ R; y > 0}.
We let M := Γ\H, which is a finite volume hyperbolic Riemann surface, and denote by

p :H−→M the natural projection. We assume that M has eΓ elliptic fixed points and one

cusp at∞ of width one. By an abuse of notation, we also say that Γ has a cusp at∞ of width

one, meaning that the stabilizer Γ∞ of ∞ is generated by the matrix
(
1 1
0 1

)
. We identify M

locally with its universal cover H. By F we denote the “usual” (Ford) fundamental domain

for Γ acting on H.

We let μhyp denote the hyperbolic metric on M which is compatible with the complex

structure of M and has constant negative curvature equal to minus one. The hyperbolic line

element ds2hyp, respectively, the hyperbolic Laplacian Δhyp acting on functions, are given

in the coordinate z = x+ iy on H by

ds2hyp :=
dx2+dy2

y2
, respectively, Δhyp :=−y2

(
∂2

∂x2
+

∂2

∂y2

)
.

By dhyp(z,w), we denote the hyperbolic distance between the two points z ∈H and w ∈H.

Our normalization of the hyperbolic Laplacian is different from the one considered in [9]

and [19] where the Laplacian is taken with the plus sign.

2.2 Modular forms

Following [21], we define a weakly modular form f of even weight 2k for k ≥ 0 associated

with Γ to be a function f which is meromorphic on H, and at the cusps of Γ, and satisfies

the transformation property

f

(
az+ b

cz+d

)
= (cz+d)2kf(z), forany

(
a b

c d

)
∈ Γ. (13)

In the setting of this paper, any weakly modular form f will satisfy the relation f(z+1)=

f(z), so that for some positive integer N, we can write

f(z) =
∞∑

n=−N

anq
n
z , where qz = e(z) = e2πiz.

If an = 0, for all n < 0, then f is said to be holomorphic at the cusp at ∞. A holomorphic

modular form with respect to Γ is a weakly modular form which is holomorphic on H and

at all the cusps of Γ.

When the weight k is zero, the transformation property (13) indicates that the function

f is invariant with respect to the action of elements of the group Γ, so it may be viewed as

a meromorphic function on the surface M = Γ\H. In other words, a meromorphic function

on M is a weakly modular form of weight 0.

For any two weight 2k weakly modular forms f and g associated with Γ, with integrable

singularities at finitely many points in F , the generalized inner product 〈·, ·〉 is defined as

〈f,g〉= lim
Y→∞

∫
F(Y )

f(z)g(z)(Im(z))2kdμhyp(z), (14)
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where the integration is taken over the portion F(Y ) of the fundamental domain F equal

to F \F∞(Y ).

2.3 Atkin–Lehner groups

Let N = p1 . . .pr be a square-free, nonnegative integer including the case N = 1. The

subset of SL(2,R), defined by

Γ0(N)+ :=
{ 1√

e

(
a b

c d

)
∈ SL(2,R) :ad− bc= e, a,b,c,d,e ∈ Z, e > 0,

e |N, e | a, e | d, N | c
}

is an arithmetic subgroup of SL(2,R). We use the terminology Atkin–Lehner group of level

N to describe Γ0(N)+ in part because the group is obtained by adding all Atkin–Lehner

involutions to the congruence group Γ0(N) (see [1]). Let {±Id} denote the set of two

elements, where Id is the identity matrix. In general, if Γ is a subgroup of SL(2,R), we let

Γ := Γ/{±Id} denote its projection into PSL(2,R).

Set Y +
N := Γ0(N)+\H. According to [5], for any square-free N, the quotient space Y +

N

has one cusp at ∞ with the cusp width equal to one. The spaces Y +
N will be used in

the last section where we give examples of our results for generators of function fields of

meromorphic functions on Y +
N .

2.4 Generators of function fields of Atkin–Lehner groups of small genus

An explicit construction of generators of function fields of all meromorphic functions on

Y +
N with genus gN,+ ≤ 3 was given in [13].

When gN,+ = 0, the function field of meromorphic functions on Y +
N is generated by a

single function, the Hauptmodul j+N (z), which is normalized so that its q-expansion is of the

form q−1
z +O(qz). The Hauptmodul j+N (z) appears in the “Monstrous Moonshine” and was

investigated in many papers, starting with Conway and Norton [4]. The action of the mth

Hecke operator Tm on j+N (z) produces a meromorphic function on Y +
N with the q-expansion

j+N |Tm(z) = q−m
z +O(qz).

When gN,+ ≥ 1, the function field of meromorphic functions on Y +
N is generated by two

functions. For gN,+ ≤ 3, the results in [13] provided the explicit construction of certain

generators x+
N (z) and y+N (z). Furthermore, it is shown that the q-expansions of these

generators are of the form

x+
N (z) = q−a

z +
a−1∑
j=1

ajq
−j
z +O(qz) and y+N (z) = q−b

z +
b−1∑
j=1

bjq
−j
z +O(qz),

where a,b are positive integers with a≤ 1+gN,+, and b≤ 2+gN,+. Furthermore, for gN,+ ≤
3, it is shown in [13] that all coefficients in the q-expansion for x+

N (z) and y+N (z) are integers.

For all such N, the precise values of these coefficients out to large order were computed,

and the results are available at [15].

§3. Two Poincaré series

In this section, we will define the Niebur–Poincaré series Fm(z,s) and the resolvent

kernel Gs(z,w); one also refers to Gs(z,w) as the automorphic Green’s function. We refer

the reader to [19] for additional information regarding Fm(z,s) and to [9] and [11] and
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references therein for further details regarding Gs(z,w). As said above, we will suppress the

group Γ from the notation.

3.1 Niebur–Poincaré series

We start with the definition and properties of the Niebur–Poincaré series Fm(z,s)

associated with a co-finite Fuchsian group with one cusp. We then will specialize results to

the setting of Atkin–Lehner groups.

3.1.1. Niebur–Poincaré series associated with a co-finite Fuchsian group with one cusp

Let m be a nonzero integer, z = x+ iy ∈H, and s∈C with Re(s)> 1. Recall the notation

e(x) := exp(2πix), and let Is−1/2 denote the modified I -Bessel function of the first kind

(see (A.2)). The Niebur–Poincaré series Fm(z,s) is defined formally by the series

Fm(z,s) = FΓ
m(z,s) :=

∑
γ∈Γ∞\Γ

e(mRe(γz))(Im(γz))1/2Is−1/2(2π|m|Im(γz)). (15)

For fixed m and z, the series (15) converges absolutely and uniformly on any compact subset

of the half plane Re(s) > 1. Moreover, ΔhypFm(z,s) = s(1− s)Fm(z,s) for all s ∈ C in the

half plane Re(s)> 1. From Theorem 5 of [19], we have that for any nonzero integer m, the

function Fm(z,s) admits a meromorphic continuation to the whole complex plane s ∈ C.

Moreover, Fm(z,s) is holomorphic at s= 1 and, according to the spectral expansion given

in Theorem 5 of [19], Fm(z,1) is orthogonal to constant functions, meaning that

〈Fm(z,1),1〉= 0.

For our purposes, it is necessary to employ the Fourier expansion of Fm(z,s) in the

cusp ∞. The Fourier expansion is proved in [19] and involves the Kloosterman sums

S(m,n;c), which we now define. For any integers m and n, and real number c �= 0, define

S(m,n;c) :=
∑(

a ∗
c d

)
∈Γ∞�Γ�Γ∞

e

(
ma+nd

c

)
.

For Re(s)> 1 and z = x+ iy ∈H, the Fourier expansion of Fm(z,s) is given by

Fm(z,s) = e(mx)y1/2Is−1/2(2π|m|y)+
∞∑

k=−∞
bk(y,s;m)e(kx), (16)

where

b0(y,s;m) =
y1−s

(2s−1)Γ(s)
2πs|m|s−1/2

∑
c>0

S(m,0;c)c−2s =
y1−s

(2s−1)
B0(s;m).

The function B0(s;m) is denoted by am(s) in [19]. For k �= 0, we have that

bk(y,s;m) =Bk(s;m)y1/2Ks−1/2(2π|k|y),

with

Bk(s;m) = 2
∑
c>0

S(m,k;c)c−1 ·

⎧⎨⎩ J2s−1

(
4π
c

√
mk

)
, ifmk > 0,

I2s−1

(
4π
c

√
|mk|

)
, ifmk < 0,
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where we corrected certain typos in Theorem 1 of [19]. In the above expression, J2s−1

denotes the J -Bessel function and Ks−1/2 is the modified Bessel function (see formulas

(A.1) and (A.3)). According to the proof of Theorem 6 from [19], the Fourier expansion

(16) extends by the principle of analytic continuation to the case when s = 1. Hence, by

putting Bk(1;m) := lims↓1Bk(s;m), and using the special values (A.5) of I -Bessel and

K -Bessel functions of order 1/2, we have that

Fm(z,1) =
sinh(2π|m|y)

π
√

|m|
e(mx)+B0(1;m)+

∑
k∈Z\{0}

1

2
√

|k|
e−2π|k|yBk(1;m)e(kx). (17)

From page 75 of [11], one has the trivial bounds I1(y) � min{y,y−1/2}ey and J1(y) �
min{y,y−1/2}, which hold for any positive real number y. From this, we obtain the bound

that

Bk(1;m)�
√
|km|exp(4π

√
|km|/cΓ). (18)

The constant cΓ > 0 is equal to the smallest left-lower entry c > 0 of Γ, and the implied

constant is independent of k,m.

It is clear from (17) that for n > 0 one has that

F−n(z,1) =
1

2π
√
n
q−n
z +O(1) asz →∞

(see also [19, Th. 6]). The Fourier expansion (17) combined with (18) also suffices to show

that

Fn(z,1)� exp(2π|n|Im(z)), as Im(z)→∞ (19)

for any nonzero integer n.

A similar bound holds true for the derivative of Fn(z,s) in s, at s = 1. More precisely,

we have the following lemma.

Lemma 3. Let n be a nonzero integer. Then

∂

∂s
Fn(z,s)

∣∣∣∣
s=1

� exp(2π|n|Im(z)) asIm(z)→∞. (20)

Proof. The proof is similar to that of Lemma 4.3(1), page 19 of [2]. We begin by applying
∂
∂s to the Fourier expansion (16) and then take s=1. Recall that the series in (16) converges

uniformly in compact subsets of the half plane Re(s)> 1. Also, Fn(z,s) is holomorphic at

s= 1. Therefore, we can differentiate the series (16) termwise at s= 1 to get that

∂

∂s
Fn(z,s)

∣∣∣∣
s=1

= e(nx)y1/2
∂

∂ν
Iν(2π|n|y)

∣∣∣∣
ν=1/2

+
∞∑

k=−∞

∂

∂s
bk(y,s;n)

∣∣∣∣
s=1

e(kx). (21)

The bound (A.15) ensures that the first term on the right-hand side of (21) is of order

O(exp(2π|n|y)) as y = Im(z)→∞.

Next, we estimate ∂
∂sbk(y,s;n)

∣∣
s=1

as y →∞. When k = 0, it is immediate that

∂

∂s
b0(y,s;n)

∣∣∣∣
s=1

=O(log(y)) as y →∞.
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For k �= 0,

∂

∂s
bk(y,s;n)

∣∣∣∣
s=1

=
√
y

(
∂

∂s
Bk(s;n)

∣∣∣∣
s=1

K1/2(2π|k|y)+Bk(1;n)
∂

∂ν
Kν(2π|k|y)

∣∣∣∣
ν=1/2

)
.

(22)

The first term on the right-hand side of (22) can be estimated using the identity (A.5)

combined with bounds (A.18) to deduce

√
y

∂

∂s
Bk(s;n)

∣∣∣∣
s=1

K1/2(2π|k|y)�
e−2π|k|y

2
√
k

· e
4π
√

|kn|/cΓ√
|kn|

.

Combining (18) with (A.15) yields that the second term on the right-hand side of (22) is

O
(
exp

(
−2π|k|y+ 4π

cΓ

√
|nk|

))
as y →∞.

This shows that the series on the right-hand side of (21) converges uniformly for y large

enough and tends to zero as y→∞. Since the first term isO(exp(2π|n|y)) as y=Im(z)→∞,

the proof is complete.

We note that the value of the derivative of the Niebur–Poincaré series at s = 1 satisfies

a differential equation, namely that

Δhyp

(
∂

∂s
F−n(z,s)|s=1

)
= lim

s→1
Δhyp

(
F−n(z,s)−F−n(z,1)

(s−1)

)
= lim

s→1

(
s(1−s)F−n(z,s)−0

(s−1)

)
=−F−n(z,1) (23)

for positive integers n.

3.1.2. Fourier expansion when Γ is an Atkin–Lehner group

One can explicitly evaluate B0(1;m) for m > 0 when Γ is an Atkin–Lehner group. Set

Γ = Γ0(N)+ where N is squarefree, which we express as N =
r∏

ν=1
pν . Let B

+
0,N (1;m) denote

the coefficient B0(1;m) for Γ0(N)+.

From Theorem 8 and Proposition 9 of [13], we get that

B+
0,N (1;m) =

12σ(m)

π
√
m

r∏
ν=1

⎛⎝1− p
αpν (m)+1
ν (pν −1)(

p
αpν (m)+1
ν −1

)
(pν +1)

⎞⎠ , (24)

where σ(m) denotes the sum of divisors of a positive integer m and αp(m) is the largest

integer such that pαp(m) divides m. These expressions will be used in our explicit examples

in §6.

3.2 Automorphic Green’s function

The automorphic Green’s function, or resolvent kernel, Gs(z,w) for the Laplacian on M

is defined on page 31 of [9]. In the notation of [9], let χ be the identity character, z,w ∈H

with w �= γz, for γ ∈ Γ, and s ∈ C with Re(s)> 1. Consider the series

Gs(z,w) =
∑
γ∈Γ

ks(γz,w),
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where

ks(z,w) :=− Γ(s)2

4πΓ(2s)

[
1−

∣∣∣∣z−w

z−w

∣∣∣∣2]sF (s,s;2s;1− ∣∣∣∣z−w

z−w

∣∣∣∣2)
with F (α,β;γ;u) denoting the classical hypergeometric function. We should point out that

the normalization we are using, which follows [9], differs from the normalization for the

Green’s function in Chapter 5 of [11]; the two normalizations differ by a minus sign. With

this said, it is proved in [9], Proposition 6.5 on page 33 that the series which defines Gs(z,w)

converges uniformly and absolutely on compact subsets of (z,w,s) ∈ (F ×F)′ ×{s ∈ C :

Re(s)> 1}, where (F ×F)′ = (F ×F)\{(z,w) ∈ F : z = w}.
Furthermore, for all s ∈ C with Re(s) > 1, and all z,w ∈ H with z �= γw for γ ∈ Γ, the

function Gs(z,w) is the eigenfunction of Δhyp associated with the eigenvalue s(1−s).

Combining formulas 9.134.1 and 8.703 from [8] and applying the identity

cosh(dhyp(z,w)) =

(
2−

[
1−

∣∣∣∣z−w

z−w

∣∣∣∣2])(1− ∣∣∣∣z−w

z−w

∣∣∣∣2)−1

,

we get that

ks(z,w) =− 1

2π
Q0

s−1(cosh(dhyp(z,w))),

where Qμ
ν is the associated Legendre function, as defined by formula 8.703 in [8], with

ν = s−1 and μ= 0.

Now, we can combine Theorem 4 of [19] with Theorem 5.3 of [11] to obtain the Fourier

expansion of the automorphic Green’s function in terms of the Niebur–Poincaré series.

Specifically, let w ∈ F be fixed. Assume z ∈ F with y = Im(z)>max{Im(γw) : γ ∈ Γ}, and
assume s ∈ C with Re(s)> 1. Then Gs(z,w) admits the expansion

Gs(z,w) =− y1−s

2s−1
Epar
∞ (w,s)−

∑
k∈Z\{0}

y1/2Ks−1/2(2π|k|y)F−k(w,s)e(kx), (25)

where Epar
∞ (w,s) is the parabolic Eisenstein series associated with the cusp at ∞ of Γ (see

the next section for its full description).

The function Gs(z,w) is unbounded as z→w and, according to Proposition 6.5 from [9],

we have the asymptotic formula

Gs(z,w) =
ord(w)

2π
log |z−w|+O(1) as z → w.

§4. Eisenstein series and their Kronecker limit formulas

The purpose of this section is twofold. First, we state the definitions of parabolic and

elliptic Eisenstein series as well as their associated Kronecker limit formulas. Specific

examples of the parabolic Kronecker limit formulas are recalled from [13]. Second, we

prove the factorization theorem for meromorphic forms in terms of elliptic Kronecker limit

functions, as stated in (5).

4.1 Parabolic Kronecker limit functions

Associated with the cusp at ∞ of Γ one has a parabolic Eisenstein series Epar
∞ (z,s). Let

Γ∞ denote the stabilizer subgroup within Γ of ∞. For z ∈ H and s ∈ C with Re(s) > 1,
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Epar
∞ (z,s) is defined by the series

Epar
∞ (z,s) =

∑
γ∈Γ∞\Γ

Im(γz)s.

It is well known that Epar
∞ (z,s) admits a meromorphic continuation to all s ∈ C and a

functional equation in s.

For us, the Kronecker limit formula means the determination of the constant term in

the Laurent expansion of Epar
∞ (z,s) at s = 1. Classically, Kronecker’s limit formula is the

assertion that for Γ = PSL(2,Z) one has that

Epar
∞ (z,s) =

3

π(s−1)
− 1

2π
log
(
|Δ(z)|Im(z)6

)
+C+O(s−1) as s→ 1, (26)

where C = 6(1− 12ζ ′(−1)− log(4π))/π and Δ(z) is Dedekind’s Delta function which is

defined by

Δ(z) =

[
q1/24z

∞∏
n=1

(1− qnz )

]24
= η(z)24. (27)

We refer to [22] for a proof of (26), though the above formulation follows the normalization

from [13].

For general Fuchsian groups of the first kind, Goldstein [7] studied analogs of the

Kronecker’s limit formula associated with parabolic Eisenstein series. After a slight

renormalization and trivial generalization, Theorem 3-1 from [7] asserts that the parabolic

Eisenstein series Epar
∞ (z,s) admits the Laurent expansion

Epar
∞ (z,s) =

1

volhyp(M)(s−1)
+β− 1

volhyp(M)
log(|η4∞(z)|Im(z))+O(s−1), (28)

as s→ 1 and where β = βΓ is a certain real constant depending only on the group Γ. As the

notation suggests, the function η∞(z) is a holomorphic form for Γ and can be viewed as a

generalization of the eta function η(z) which is defined in (27) for the full modular group.

By employing the functional equation for the parabolic Eisenstein series, as stated in

Theorem 6.5 of [11], one can re-write the Kronecker limit formula as stating that

Epar
∞ (z,s) = 1+log(|η4∞(z)|Im(z)) ·s+O(s2) as s→ 0 (29)

(see [16, Cor. 3]). In this formulation, we will call the function

P (z) = PΓ(z) := log(|η4∞(z)|Im(z)),

the parabolic Kronecker limit function of Γ.

4.2 Atkin–Lehner groups

Let N = p1 . . .pr be a positive square-free number, which includes the possibility that

N = 1 and set

�N = 21−rlcm
(
4, 2r−1 24

gcd(24,σ(N))

)
,
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where lcm stands for the least common multiple of its argument and gcd denotes the greatest

common divisor of its argument. In [13, Th. 16], it is proved that

ΔN (z) :=

⎛⎝∏
v|N

η(vz)

⎞⎠	N

(30)

is a weight kN = 2r−1�N holomorphic form for Γ0(N)+ vanishing only at the cusp. By the

valence formula, the order of vanishing of ΔN (z) at the cusp is νN := kN volhyp(Y
+
N )/(4π),

where volhyp(Y
+
N ) = πσ(N)/(3 ·2r) is the hyperbolic volume of the surface Y +

N .

The Kronecker limit formula (28) for the parabolic Eisenstein series Epar,N
∞ (z,s)

associated with Y +
N reads as

Epar,N
∞ (z,s) =

1

volhyp(Y
+
N )(s−1)

+βN − 1

volhyp(Y
+
N )

PN (z)+O((s−1)) (31)

as s→ 1. From Examples 4 and 7 of [16], we have the explicit evaluations of βN and PN (z).

Namely,

βN =− 1

volhyp(Y
+
N )

⎛⎝ r∑
j=1

(pj −1) logpj
2(pj +1)

− logN +2log(4π)+24ζ ′(−1)−2

⎞⎠ (32)

and the parabolic Kronecker limit function PN (z) is given by

PN (z) = log

⎛⎝
2r

√∏
v|N

|η(vz)|4 · Im(z)

⎞⎠ .

4.3 Elliptic Kronecker limit functions

Elliptic subgroups of Γ have finite order and a unique fixed point within H. For all but a

finite number of w ∈ F , the order ord(w) of the elliptic subgroup Γw which fixes w is one.

For z ∈ H with z �= γw, for γ ∈ Γ and s ∈ C with Re(s) > 1, the elliptic Eisenstein series

Eell
w (z,s) is defined by the series

Eell
w (z,s) =

∑
γ∈Γw\Γ

sinh(dhyp(γz,w))
−s =

∑
γ∈Γw\Γ

(
2Im(w)Im(γz)

|γz−w| |γz−w|

)s

. (33)

It was first shown in [24] that (33) admits a meromorphic continuation to all s ∈ C.

The analog of the Kronecker limit formula for Eell
w (z,s) was first proved in [24] (see also

[16, (4)], [25, Th. 5.2]). In the setting of this paper, it is shown in [24] that for any w ∈ F
and z ∈H with z �= γw, the series (33) admits the Laurent expansion

Eell
w (z,s)−

2s
√
πΓ(s− 1

2)

ord(w)Γ(s)
Epar
∞ (w,1−s)Epar

∞ (z,s)

=−cw− log
(
|HΓ(z,w)|Im(z)cw

)
·s+O(s2) as s→ 0, (34)

where

cw =
2π

ord(w)volhyp(M)
.

In the notation of [25], we are writing that |HΓ(z,w)|= |Hw(z)|Im(w)cw .
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Moreover, von Pippich proved that when viewed as a function of z, H(z,w) :=HΓ(z,w) is

holomorphic on H and uniquely determined up to multiplication by a complex constant of

absolute value one. Additionally,H(z,w) is an automorphic form with a nontrivial multiplier

system with respect to Γ acting on z and which depends on w.

In order to deduce behavior of H(z,w) as z → γw for γ ∈ Γ, we apply Proposition 5.1

of [25]. In doing so, one gets that

Eell
w (z,s)−

2s
√
πΓ(s− 1

2)

ord(w)Γ(s)
Epar
∞ (w,1−s)Epar

∞ (z,s) =−cw+Kw(z) ·s+O(s2) ass→ 0,

and with Kw(z) =− log |z−γw|+O(1) as z→ γw for some γ ∈ Γ. Combining this statement

with (34), we immediately deduce that H(z,w), viewed as a function of variable z ∈ H,

vanishes if and only if z = γw for some γ ∈ Γ. Furthermore, the order of vanishing of

H(z,w) equals one.

4.4 A factorization theorem

In this section, we prove that equation (5) holds for meromorphic forms on Γ of even

weight 2k, suitably normalized at the cusp at ∞. For meromorphic forms, we let ordw(f)

denote the order of f at w which is positive if w is a zero of f and negative if w is a pole

of f. Let us start by proving that the factorization theorem holds for meromorphic forms.

Proposition 2. With notation as above, let f be an even weight 2k ≥ 0 meromorphic

form on H with q-expansion at ∞ given by

f(z) = 1+
∞∑

n=1

bf (n)q
n
z . (35)

Let ordw(f) denote the order f at w and define the function

Hf (z) :=
∏
w∈F

H(z,w)ordw(f),

where H(z,w) = HΓ(z,w) is given in (34). Then there exists a complex constant cf such

that

f(z) = cfHf (z). (36)

Furthermore,

|cf |= exp

(
− 2π

volhyp(M)

∑
w∈F

ordw(f)

ord(w)
(2− log2+P (w)−β volhyp(M))

)
,

where P (w) and β are defined through the parabolic Kronecker limit function (28).

Proof. The proof closely follows the proof of Theorem 9 from [16]. Specifically, following

the first part of the proof almost verbatim, we conclude that the quotient

Ff (z) :=
Hf (z)

f(z)

is a nonvanishing holomorphic function on M which is bounded and nonzero at the cusp

at ∞. The argument for this assertion is as follows. When viewed as a (multi-valued)
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function of z ∈M , H(z,w) vanishes if and only if z = w, and the order of vanishing is one.

Therefore, we conclude that Ff (z) is a quotient of two multi-valued meromorphic functions

on M with the same divisors. By applying the Riemann–Roch theorem as in the proof of

Theorem 9 from [16], we conclude that yields that Hf (z) is a weight 2k meromorphic form

on M, possibly twisted by a unitary character. Therefore, Ff (z) is holomorphic on M.

From [16, Prop. 6], we have the asymptotic expansion in the cusp of H(z,w), namely

that

H(z,w) = aw,∞ exp(−Bw,∞)+O(exp(−2πIm(z))) asIm(z)→∞, (37)

where aw,∞ is a constant of modulus one and

Bw,∞ =− 2π

ord(w)volhyp(M)
(2− log2+P (w)−β volhyp(M)) .

When combining (37) with the q-expansion of f, as stated in (35), we obtain that Ff (z) is

bounded and nonzero at the cusp ∞.

Since Ff is holomorphic, nonvanishing and nonzero in the cusp, then the function

log |Ff (z)| is L2 and bounded onM. From its spectral expansion and the fact that log |Ff (z)|
is harmonic, one concludes log |Ff (z)| is constant, hence so is Ff (z). The evaluation of the

constant is obtained by considering the limiting behavior (37) as z approaches ∞.

In summary, by following the proof of Proposition 12 from [16] verbatim, we obtain (4),

and hence (5), for meromorphic forms f on H with q-expansion (35).

§5. Proofs of main results

5.1 Proof of Theorem 1

Let Y > 1 be sufficiently large so that the cuspidal neighborhood F∞(Y ) of the cusp ∞
in F is of the form {z ∈H : 0< x≤ 1,y > Y }. For s ∈ C with Re(s)> 1, and arbitrary, but

fixed w ∈ F , we then have that∫
F(Y )

Δhyp(F−n(z,1))(Gs(z,w)+Epar
∞ (w,s))dμhyp(z)

−
∫

F(Y )

F−n(z,1)Δhyp (Gs(z,w)+Epar
∞ (w,s))dμhyp(z)

=−s(1−s)

∫
F(Y )

F−n(z,1)(Gs(z,w)+Epar
∞ (w,s))dμhyp(z).

Actually, the first summand on the left-hand side is zero since F−n(z,1) is holomorphic;

however, this judicious form of the number zero is significant since we will use the method

behind the Maass–Selberg theorem to study the left-hand side of the above equation. Before

this, note that the integrand on the right-hand side of the above equation is holomorphic

at s= 1. As a result, we can write
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∂

∂s

⎛⎜⎝−s(1−s)

∫
F(Y )

F−n(z,1)(Gs(z,w)+Epar
∞ (w,s))dμhyp(z)

⎞⎟⎠
∣∣∣∣∣∣∣
s=1

=

∫
F(Y )

F−n(z,1) lim
s→1

(Gs(z,w)+Epar
∞ (w,s))dμhyp(z).

When reversing the order of the above steps, we get that

〈F−n(z,1), lim
s→1

(Gs(z,w)+Epar
∞ (w,s))〉

= lim
Y→∞

∫
F(Y )

F−n(z,1) lim
s→1

(Gs(z,w)+Epar
∞ (z,s))dμhyp(z)

= lim
Y→∞

⎡⎢⎣ ∂

∂s

⎛⎜⎝ ∫
F(Y )

Δhyp(F−n(z,1))(Gs(z,w)+Epar
∞ (w,s))dμhyp(z)

−
∫

F(Y )

F−n(z,1)Δhyp (Gs(z,w)+Epar
∞ (w,s))dμhyp(z)

⎞⎟⎠
∣∣∣∣∣∣∣
s=1

⎤⎥⎦ . (38)

The quantity on the right-hand side of (38) is setup for an application of Green’s theorem

as in the proof of the Maass–Selberg relations for the Eisenstein series. As described on

page 89 of [11], when applying Green’s theorem to each term on the right-side of (38) for

fixed Y, the resulting boundary terms on the sides of the fundamental domain, which are

identified by Γ, will sum to zero. Therefore, we get that

〈F−n(z,1), lim
s→1

(Gs(z,w)+Epar
∞ (w,s))〉

= lim
Y→∞

⎡⎣ ∂

∂s

⎛⎝ 1∫
0

∂

∂y
F−n(z,1)(Gs(z,w)+Epar

∞ (w,s))dx

−
1∫

0

F−n(z,1)
∂

∂y
(Gs(z,w)+Epar

∞ (w,s))dx

⎞⎠∣∣∣∣∣∣
s=1

⎤⎦ , (39)

where the functions of z and their derivatives with respect to y = Im(z) are evaluated at

z = x+ iY .

In order to compute the difference of the two integrals of the right-hand side of (39),

we will use the Fourier expansions (17) and (25) of the series F−n(z,1) and Gs(z,w),

respectively. It will be more convenient to write the first coefficient in the expansion (17) as

e(−nx)
√
yI1

2
(2πny), as in (16). As is well known, the various exponential functions e(−nx)

when integrated with respect to x are orthogonal to each other for different values of n.

Using this observation, we can write the difference of two integrals on the right-hand side

of (39) when evaluated at z = x+ iY as
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−F−n(w,s)
√
Y

(
∂

∂y

(
√
yI1

2
(2πny)

)∣∣∣∣
y=Y

·K
s−1

2
(2πnY )

− I1
2
(2πnY ) · ∂

∂y

(
√
yK

s−1
2
(2πny)

)∣∣∣∣
y=Y

)
+B0(1;−n)(1−s)

Y −s

2s−1
Epar
∞ (w,s)

+
∑

k∈Z\{0}
Fk(w,s)

(
bk(Y,1;−n) · ∂

∂y

(
√
yK

s−1
2
(2π|k|y)

)∣∣∣∣
y=Y

− ∂

∂y
bk(y,1;−n)

∣∣∣∣
y=Y

·
√
Y K

s−1
2
(2π|k|Y )

)
= T1(Y,s;w)+T2(Y,s;w)+T3(Y,s;w),

where the last equality above provides the definitions of the functions T1, T2, and T3.

Therefore, from (39), we have that

〈F−n(z,1), lim
s→1

(Gs(z,w)+Epar
∞ (w,s))〉

= lim
Y→∞

[
∂

∂s
(T1(Y,s;w)+T2(Y,s;w)+T3(Y,s;w))

∣∣∣∣
s=1

]
. (40)

We will study each of the three terms on the right-hand side of (40) separately.

To evaluate the term T1 in (40), we apply formulas (A.19) and (A.20) in order to compute

the derivatives of the Bessel functions in hand. In doing so, we conclude that

T1(Y,s;w) =−X

2
F−n(w,s)

[
K

s−1
2
(X)(I−1

2
(X)

+ I3
2
(X))+ I1

2
(X)(K

s−3
2
(X)+K

s+
1
2
(X))

]
,

where we setX =2πnY . Next, we can expressK
s+

1
2
(X) in terms ofK

s−1
2
(X) andK

s−3
2
(X)

by using formula (A.6) with ν = s−1/2, which gives that

K
s+

1
2
(X) =K

s−3
2
(X)+

2s−1

X
K

s−1
2
(X). (41)

Therefore,

T1(Y,s;w) =−X

2
F−n(w,s)

[
K

s−1
2
(X)

(
I−1

2
(X)+ I3

2
(X)+

2s−1

X
I1
2
(X)

)
+2I1

2
(X)K

s−3
2
(X)

]
.

Now, let us use formula (A.14) in order to differentiate K
s−1

2
(X) and K

s−3
2
(X) with

respect to s at s= 1. When combined with the expression (A.5), for I1
2
(X), we deduce that
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∂

∂s

[
K

s−1
2
(X)

(
I−1

2
(X)+ I3

2
(X)+

2s−1

X
I1
2
(X)

)
+2I1

2
(X)K

s−3
2
(X)

]∣∣∣∣
s=1

=

√
π

2X
eXEi(−2X)

[
−(I−1

2
(X)+ I3

2
(X))+

√
2

πX
(2−1/X)sinh(X)

]

+
2

X2
e−X sinh(X),

where Ei(x) denotes the exponential integral (see (A.7)).

Continuing, we now employ the bound (A.11) with ν = −1/2 and when ν = 3/2. This

result, together with the bound (A.8) for the exponential integral yields that

lim
X→∞

X

2

∂

∂s

[
K

s−1
2
(X)

(
I−1

2
(X)+ I3

2
(X)+

2s−1

X
I1
2
(X)

)
+2I1

2
(X)K

s−3
2
(X)

]∣∣∣∣
s=1

= 0.

Therefore,

lim
Y→∞

∂

∂s
T1(Y,s;w)|s=1 =− ∂

∂s
F−n(w,s)|s=1 ·

· lim
X→∞

X

2

[
K1

2
(X)(I−1

2
(X)+ I3

2
(X))+ I1

2
(X)(K−1

2
(X)+K3

2
(X))

]
.

Finally, by applying (A.11) and (A.12) with ν =±1/2 and ν = 3/2, we deduce that

lim
X→∞

X

2

[
K1

2
(X)(I−1

2
(X)+ I3

2
(X))+ I1

2
(X)(K−1

2
(X)+K3

2
(X))

]
= 1.

Therefore, we have proved that

lim
Y→∞

∂

∂s
T1(Y,s;w)|s=1 =− ∂

∂s
F−n(w,s)|s=1 . (42)

As for the term T2 in (40), let us use the Laurent series expansion (28) of Epar
∞ (w,s),

from which one easily deduces that

∂

∂s
(s−1)

Y −s

2s−1
Epar
∞ (w,s)

∣∣∣∣
s=1

=
1

Y

(
β− P (w)+2+logY

volhyp(M)

)
.

Therefore,

lim
Y→∞

∂

∂s
T2(Y,s;w)|s=1 = 0. (43)

It remains to study the term T3 in (40). Let us set g(s,y,�) :=
√
yK

s−1
2
(2π�y) for some

positive integer �. Then bk(y,1;−n) =Bk(1;−n)g(1,y, |n|) and

T3(Y,s;w) =
∑

k∈Z\{0}
Bk(1;−n)Fk(w,s)

(
g(1,Y, |n|) ∂

∂y
g(s,y, |k|)|y=Y

− g(s,Y, |k|) ∂

∂y
g(1,y, |n|)|y=Y

)
. (44)

For positive integers m and �, let us define, for notational convenience,

G(s,Y,m,�) := g(1,Y,m)
∂

∂y
g(s,y,�)|y=Y −g(s,Y,�)

∂

∂y
g(1,y,m)|y=Y ;
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observe that, according to (A.5),

g(1,y,m) =
1

2
√
m
e−2πmy.

In order to compute the derivative of the K -Bessel function with respect to the argument,

we will use formula (A.20). When combining with equation (41), for K
s+

1
2
(2π�Y ), we get

that

G(s,Y,m,�) =
e−2πmY

2
√
mY

(
((1−s)+2πmY )K

s−1
2
(2π�Y )−2π�Y K

s−3
2
(2π�Y )

)
. (45)

When s= 1, the bound (A.12) for the K -Bessel function immediately yields that

G(s,Y,m,�)|s=1 � (m+ �)exp(−2πY (m+ �)) asY →∞

and for any two positive integers m,�. Also, the implied constant is independent of m,�,Y .

Observe that when differentiating the expression (45) for G(s,Y,m,�) with respect to s

and taking s=1, the computations amount to computing various derivatives of the K -Bessel

functions Kν(z) with respect to the order ν at ν = ±1
2 which is easily done by applying

formula (A.14). In doing so, and when combined with the bound (A.8) for the exponential

integral, one immediately gets the bound that

max

{
G(s,Y,m,�),

∂

∂s
G(s,Y,m,�)

∣∣∣∣
s=1

}
� (m+ �)exp(−2πY (m+ �)) asY →+∞. (46)

As above, the implied constant is independent of Y,m,�.

Notice that G(s,Y,m,�) with m = |n| and � = |k| equals the expression inside the

parenthesis in the sum (44) which defines T3(Y,s;w). Therefore, in order to estimate
∂
∂sT3(Y,s;w)

∣∣
s=1

as Y →∞ it suffices to combine the bound (46), with m= |n| and �= |k|,
with the bounds (19) and (20) for Fk(w,s) and

∂
∂sFk(w,s) at s= 1. In doing so, we get that

∂

∂s
T3(Y,s;w)

∣∣∣
s=1

�
∑

k∈Z\{0}
(|n|+ |k|)|Bk(1;−n)|exp(−2πY (|k|+ |n|)+2π|k|Im(w)) .

It remains to estimate the sum on the right-hand side of the above equation as Y →∞.

The bound (18) gives that

∂

∂s
T3(Y,s;w)|s=1

�
∑

k∈Z\{0}
(|n|+ |k|)

√
|kn|exp

(
−2π

(
(|k|+ |n|)Y −2

√
|kn|/cΓ−|k|Im(w)

))
.

For Y > 2Im(w)+2
√
n/cΓ, this series over j is uniformly convergent and is o(1) as Y →∞.

In other words,

lim
Y→∞

∂

∂s
T3(Y,s;w)|s=1 = 0. (47)

With all this, when combining (47) with (40), (42), and (43), we have that

〈F−n(z,1), lim
s→1

(Gs(z,w)+Epar
∞ (w,s))〉=− ∂

∂s
F−n(w,s)|s=1 ,

which completes the proof of (9).
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5.2 Proof of Corollary 1

The proof of Corollary 1 is a combination of Theorem 1 and the factorization theorem

as stated in Proposition 1. The details are as follows.

To begin, we shall prove Proposition 1. Starting with (5), which is written as

log
(
yk|f(z)|

)
= kP (z)−

∑
w∈F

ordw(f)

ord(w)
lim
s→0

1

s
ord(w)Eell

w (z,s),

we can express lims→0
1
sord(w)Eell

w (z,s) in terms of the resolvent kernel. Specifically,

using (6), we have that

log
(
yk|f(z)|

)
= kP (z)+

∑
w∈F

ordw(f)

ord(w)
lim
s→0

(
2s
√
πΓ(s−1/2)

Γ(s+1)
(2s−1)Gs(z,w)

)
. (48)

By applying the functional equation for the Green’s function, see Theorem 3.5 of [9] on

pages 250–251, we get

lim
s→0

2s
√
πΓ(s−1/2)

Γ(s+1)
(2s−1)Gs(z,w) = lim

s→1

21−s
√
πΓ(1/2−s)

Γ(2−s)
(1−2s)G1−s(z,w)

= lim
s→1

(
21−s

√
πΓ(1/2−s)

Γ(2−s)

(
(1−2s)Gs(z,w)− Epar

∞ (z,1−s)Epar
∞ (w,s)

))
.

From the Kronecker limit formula (29), we know that

Epar
∞ (z,1−s) = 1+P (z)(1−s)+O((1−s)2) ass→ 1.

When combined with the standard Taylor series expansion of the gamma function, we get

that

lim
s→0

2s
√
πΓ(s−1/2)

Γ(s+1)
(2s−1)Gs(z,w) = lim

s→1

(
(2π(−1+(s−1)(2− log2))·

· [2(1−s)Gs(z,w)− (Gs(z,w)+Epar
∞ (w,s))−P (z)(1−s)Epar

∞ (w,s)]
)
.

According to [11, p. 106], the point s = 1 is the simple pole of Gs(z,w) with the residue

−1/volhyp(M). (Note: Our Gs(z,w) differs from the automorphic Green’s function from

[11] by a factor of −1.) Therefore, the Kronecker limit formula (28) gives that

lim
s→0

2s
√
πΓ(s−1/2)

Γ(s+1)
(2s−1)Gs(z,w) =− 2π

volhyp(M)
P (z)− 4π

volhyp(M)
(49)

+2π lim
s→1

(Gs(z,w)+Epar
∞ (w,s)) .

Recall that the classical the Riemann–Roch theorem implies that

k
volhyp(M)

2π
=
∑
w∈F

ordw(f)

ord(w)
;

hence, after multiplying (49) by ordw(f)
ord(w) and taking the sum over all w ∈ F from (48), we

arrive at (7), as claimed.

Having proved Proposition 1, observe that the left-hand side of (7) is real-valued. As

proved in [19], F−n(z,1) is orthogonal to constant functions. Therefore, in order to prove

(10) one simply applies (9), which was established above.
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5.3 Proof of Corollary 2

In order to prove (12), it suffices to compute 〈1, lims→1(Gs(z,w)+Epar
∞ (w,s))〉, which we

will write as∫
F

lim
s→1

(
Gs(z,w)+

1

volhyp(M)(s−1)
+Epar

∞ (w,s)− 1

volhyp(M)(s−1)

)
dμhyp(z).

From its spectral expansion, the function lims→1

(
Gs(z,w)+

1
volhyp(M)(s−1)

)
is L2 on F and

orthogonal to constant functions. Therefore, by using the Laurent series expansion (28), we

get that

〈1, lim
s→1

(Gs(z,w)+Epar
∞ (w,s))〉= volhyp(M)

(
β− P (w)

volhyp(M)

)
,

which completes the proof.

5.4 Proof of Theorem 2

Our starting point is the Fourier expansion of the sum Gs(z,w)+Epar
∞ (w,s). Namely, for

Re(s)> 1 and Im(w) sufficiently large, we have that

Gs(z,w)+Epar
∞ (w,s) =

(
1− y1−s

2s−1

)
Epar
∞ (w,s)

−
∑

k∈Z\{0}

√
yK

s−1
2
(2π|k|y)F−k(w,s)e(kx). (50)

If Im(z) is sufficiently large, the exponential decay of K
s−1

2
(2π|k|y) is sufficient to ensure

that the right-hand side of (50) is holomorphic at s = 1. The Laurent series expansion of

Epar
∞ (w,s), when combined with the expansions

y1−s = 1+(1−s) logy+ 1
2(1−s)2 log2 y+O((1−s)3)

and

(2s−1)−1 = (1−2(s−1))−1 = 1−2(s−1)+4(s−1)2+O((s−1)3)

yields that

∂

∂s

(
1− y1−s

2s−1

)
Epar
∞ (w,s)

∣∣∣∣
s=1

=
1

volhyp(M)

[
−4+2β volhyp(M)−2P (w)

+ logy

(
βvolhyp(M)−P (w)−2

)
− 1

2 log
2 y

]
.

Additionally, for Im(z) sufficiently large, the series on the right-hand side of (50) is a

uniformly convergent series of functions which are holomorphic at s= 1. As such, we may

differentiate the series term by term. By employing (A.5) and (A.14), we deduce, for k �= 0,

that

∂

∂s

(
√
yK

s−1
2
(2π|k|y)F−k(w,s)

)∣∣∣∣
s=1

=
e−2π|k|y

2
√

|k|
·

·
[
∂

∂s
F−k(w,s)|s=1−F−k(w,1)e

4π|k|yEi(−4π|k|y)
]
,
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where Ei(x) denotes the exponential integral function. From this, we get the expression

that

∂

∂s
(Gs(z,w)+Epar

∞ (w,s))
∣∣∣
s=1

= (logy+2)

(
β− P (w)+2

volhyp(M)

)
− log2 y

2volhyp(M)

−
∑

k∈Z\{0}

1

2
√

|k|

[
∂

∂s
F−k(w,s)|s=1−F−k(w,1)e

4π|k|yEi(−4π|k|y)
]
e2πikx−2π|k|y.

Let us now compute the derivative ∂
∂z of the above expression. After multiplying by i=

√
−1,

we get that

Gw(z) =
1

y

(
β− P (w)+2

volhyp(M)

)
− logy

yvolhyp(M)
+
∑
k≥1

2π
√
k
∂

∂s
F−k(w,s)|s=1 q

k
z

+
∑
k≥1

F−k(w,1)

2
√
ky

qkz −
∑
k≤−1

2π
√

|k|F−k(w,1)Ei(4πky)q
k
z +

∑
k≤−1

F−k(w,1)

2
√
|k|y

e2πik(x−iy).

The proof of the assertion that
∑

k≥1 2π
√
k ∂
∂s F−k(w,s)|s=1 q

k
z is the holomorphic part of

Gw(z) follows by citing the uniqueness of the analytic continuation in z.

It is left to prove that Gw(z) is weight two biharmonic Maass form. Since Gw(z) is obtained

by taking the derivative ∂
∂z of a Γ-invariant function, it is obvious that Gw(z) is weight two

in z. Moreover, the straightforward computation that

iy2
∂

∂z̄
Gw(z) = Δhyp

(
∂

∂s
(Gs(z,w)+Epar

∞ (w,s))
∣∣∣
s=1

)
=− lim

s→1
(Gs(z,w)+Epar

∞ (w,s)) ,

when combined with the fact that Δhyp (lims→1 (Gs(z,w)+Epar
∞ (w,s))) = 0, proves that

Gw(z) is biharmonic.

§6. Examples

6.1 The full modular group

Throughout this subsection, let Γ = PSL(2,Z), in which case the parabolic Kronecker

limit function, P (w) can be expressed, in the notation of [2], as

P (w) = PPSL(2,Z)(w) = log(|η(w)|4 · Im(w)) = j(w)−1,

where η(w) is Dedekind’s eta function and the last equality follows from the definition of

j0(w) = j(w) given on page 1 of [2].

In this setting, Corollary 1, when combined with (3) and Rohrlich’s theorem (2) yields

that

〈jn, log ||f ||〉= 2π
√
n

(
−2π

∑
w∈F

ordw(f)

ord(w)

(
∂

∂s
F−n(w,s)

∣∣∣∣
s=1

− cnP (w)

))
. (51)

Moreover, equating the constant terms in the Fourier series expansions for F−n(z,1)

and jn(z), one easily deduces that 2π
√
ncn = 24σ(n). This proves Theorem 1.2 of [2].

Furthermore, we have shown, in the notation of [2] one has that

jn(w) = 2π
√
n
∂

∂s
F−n(w,s)|s=1−24σ(n)P (w). (52)

https://doi.org/10.1017/nmj.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2023.7


AN EXTENSION OF THE ROHRLICH-JENSEN FORMULA 833

This identity provides a description of jn(w), for n ≥ 1 different from the one given by

formula (3.10) of [2]. Finally, from the identity (23), when combined with the fact that

ΔhypP (w) = 1, which is a straightforward implication of the Kronecker limit formula (28),

it follows that

Δhypjn(w) = 2π
√
n(F−n(w,1)− cn) = jn(w),

which agrees with formula (3.10) of [2].

By reasoning as above, we easily see that Theorem 1.3 of [2] follows from Corollary 2

with g(z) = jn(z).

Finally, in view of (51), Theorem 2 is closely related to the first part of Theorem 1.4

of [2]. Namely, for large enough Im(z), in the notation of [2], we can write

Hw(z) =
∑
n≥0

jn(w)q
n
z = j0(w)+

∑
n≥1

(
2π

√
n
∂

∂s
F−n(w,s)|s=1−24σ(n)P (w)

)
qnz

= 1+P (w)

⎛⎝1−24
∑
n≥1

σ(n)qnz

⎞⎠+
∑
n≥1

2π
√
n
∂

∂s
F−n(w,s)|s=1 q

n
z .

Theorem 2 implies that the function Hw(z) is the holomorphic part of the weight two

biharmonic Maass form

Ĥw(z) = P (w)Ê2(z)+Gw(z),

where

Ê2(z) = 1−24
∑
n≥1

σ(n)qnz − 3

πy

is the weight two completed Eisenstein series for the full modular group.

Remark 4. The identity (52) also appears on page 99 of [12]. Furthermore, it is observed

in [12] that h∗
n(w) = ξ0

(
∂
∂s F−n(w,s)|s=1

)
is a harmonic weak Maass form of weight 2 for

which ξ2(h
∗
n(w)) = jn(w)+24σ(n) and where ξκ := 2iyκ ∂

∂z . Moreover, in Section 4 of [12],

it is proved that each hn(w) is a harmonic Maass forms with bounded holomorphic parts.

Additionally, it is shown in [12] that for each n > 0 one has that h∗
n(w) = 4πhn(w), where

the set {hm(w)}m∈Z is a basis for the space V of weight 2 harmonic weak Maass forms; the

basis was constructed in [6].

6.2 Genus zero Atkin–Lehner groups

Let N =
∏r

ν=1 pν be a positive square-free integer which is one of the 44 possible values

for which the quotient space Y +
N = Γ+

0 (N)\H has genus zero (see [5] for a list of such N

as well as [14]). Let ΔN (z) be the Kronecker limit function on Y +
N associated with the

parabolic Eisenstein series; it is given by formula (30) above.

In the notation of §4.2, the function ΔN (z)(j+N (z)− j+N (w))νN , is the weight kN =

2r−1�N holomorphic modular form which possesses the constant term 1 in its q-expansion.

Furthermore, this function vanishes only at the point z = w, and, by the Riemann–Roch

formula, its order of vanishing is equal to kN volhyp(Y
+
N ) ·ord(w)/(4π).
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When N =1, one has k1 =12, �1 =24, ν1 =1 and volhyp(Y
+
N ) = π/3, hence Δ1(z)(j

+
1 (z)−

j+1 (w))ν1 equals the prime form (Δ(z)(j(z)− j(w)))1/ord(w) taken to the power ord(w) (see

page 3 of [2]).

For any integer m> 1, the q-expansion of the form j+N |Tm(z) is q−m
z +O(qz); hence there

exists a constant Cm,N such that j+N |Tm(z) = 2π
√
mF−m(z,1)+Cm,N . The constant Cm,N

can be explicitly evaluated in terms of m and N by equating the constant terms in the

q-expansions. Upon doing so, one obtains, using equation (24), that

Cm,N =−2π
√
mB+

0,N (1;−m) =−24σ(m)
r∏

ν=1

⎛⎝1− p
αpν (m)+1
ν (pν −1)(

p
αpν (m)+1
ν −1

)
(pν +1)

⎞⎠
=−24σ(m)

r∏
ν=1

(1−κm(pν)) ,

where we simplified the notation by denoting the second term in the product over ν by

κm(pν). We now can apply Corollary 2 with

g(z) = j+N |Tm(z) = 2π
√
mF−m(z,1)−24σ(m)

r∏
ν=1

(1−κm(pν))

and f(z) = ΔN (z)(j+N (z)− j+N (w))νN . Corollary 2 becomes the statement that

〈j+N |Tm(z), log(y
kN

2 |ΔN (z)(j+N (z)− j+N (w))νN |)〉

=−kN volhyp(Y
+
N )

[
π
√
m

∂

∂s
F−m(w,s)

∣∣∣∣
s=1

+12σ(m)

r∏
ν=1

(1−κm(pν))
(
βN volhyp(Y

+
N )− log

(
|ΔN (w)|2/kN · Im(w)

)
−2

)]
,

where βN is given by (32).

In this form, we have obtained an alternate proof and generalization of formula (1.2)

from [2], which is the special case N = 1.

6.3 A genus one example

Let us consider the case when Γ = Γ0(37)+. The choice of N = 37 is significant since this

level corresponds to the smallest square-free integer N such that Y +
N is genus one. From

Proposition 11 of [13], we have that volhyp(Y
+
37) = 19π/3 and

β37 =
3

19π

(
10

19
log37+2−2log(4π)−24ζ ′(−1)

)
.

The function field generators are x+
37(z) = q−2

z +2q−1
z +O(qz) and y+37(z) = q−3

z +3q−1
z +

O(qz), as displayed in Table 5 of [13]. The generators x+
37(z) and y+37(z) satisfy the cubic

relation y2−x3+6xy−6x2+41y+49x+300 = 0.

The functions x+
37(z) and y+37(z) can be expressed in in terms of the Niebur–Poincaré

series by comparing their q-expansions. The resulting expressions are that

x+
37(z) = 2π[

√
2F−2(z,1)+2F−1(z,1)]−2π(

√
2B+

0,37(1;−2)+2B+
0,37(1;−1))

= 2π[
√
2F−2(z,1)+2F−1(z,1)]−

60

19
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and

y+37(z) = 2π[
√
3F−3(z,1)+3F−1(z,1)]−2π(

√
3B+

0,37(1;−3)+3B+
0,37(1;−1))

= 2π[
√
3F−3(z,1)++3F−1(z,1)]−

84

19
.

It is important to note that x+
37(z) has a pole of order two at z = ∞, that is, its

q-expansion begins with q−2
z . As such, x+

37(z) is a linear transformation of the Weierstrass

℘-function, in the coordinates of the upper half plane, associated with the elliptic curve

obtained by compactifying the space Y +
37 . Hence, there are three distinct points {w} on

Y +
37 , corresponding to the two torsion points under the group law, such that x+

37(z)−x+
37(w)

vanishes as a function of z only when z = w. The order of vanishing necessarily is equal to

two. The cusp form Δ37(z) vanishes at ∞ to order 19. Therefore, for such w, the form

f37,w(z) = Δ2
37(z)(x

+
37(z)−x+

37(w))
19

is a weight 2k37 = 24 holomorphic form. The constant term in its q-expansion is equal to 1,

and f37,w(z) vanishes for points z ∈ F only when z = w. The order of vanishing of f37,w(z)

at z = w is 38 ·ord(w).
With all this, we can apply Corollary 2. The resulting formulas are that

〈x+
37, log(‖f37,w‖)〉=−152π2

(
∂

∂s
(
√
2F−2(w,s)+2F−1(w,s))

∣∣∣∣
s=1

)
+240π

(
log

(
|η(w)η(37w)|2 · Im(w)

)
− 10

19
log37+2log(4π)+24ζ ′(−1)

)
and

〈y+37, log(‖f37,w‖)〉=−152π2

(
∂

∂s
(
√
3F−3(w,s)+3F−1(w,s))

∣∣∣∣
s=1

)
+336π

(
log

(
|η(w)η(37w)|2 · Im(w)

)
− 10

19
log37+2log(4π)+24ζ ′(−1)

)
.

Of course, one does not need to assume that w corresponds to a two torsion point. In

general, Corollary 2 yields an expression where the right-hand side is a sum of two terms,

and the corresponding factor in front would be one-half of the factors above.

6.4 A genus two example

Consider the level N = 103. In this case, volhyp(Y
+
103) = 52π/3 and the function field

generators are x+
103(z) = q−3

z + q−1
z +O(qz) and y+103(z) = q−4

z + 3q−2
z + 3q−1

z +O(qz), as

displayed in Table 7 of [13]. The generators x+
103(z) and y+103(z) satisfy the polynomial

relation y3−x4− 5yx2− 9x3+16y2− 21yx− 60x2+65y− 164x+18 = 0. The surface Y +
103

has genus two.

From Theorem 6 of [19], we can write x+
103(z) and y+103(z) in terms of the Niebur–Poincaré

series. Explicitly, we have that

x+
103(z) = 2π[

√
3F−3(z,1)+F−1(z,1)]−2π(

√
3B+

0,103(1;−3)+B+
0,103(1;−1))

= 2π[
√
3F−3(z,1)+F−1(z,1)]−

15

13
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and

y+103(z) = 2π[
√
4F−4(z,1)+3

√
2F−2(z,1)+3F−1(z,1)]

−2π(
√
4B+

0,103(1;−4)+3
√
2B+

0,103(1;−2)+3B+
0,103(1;−1))

= 2π[2F−4(z,1)+3
√
2F−2(z,1)+3F−1(z,1)]−

57

13
.

The order of vanishing of Δ103(z) at the cusp is ν103 = (12 ·52π/3)/(4π) = 52. Therefore,

for an arbitrary, fixed w ∈H, the form

f103,w(z) = Δ3
103(z)(x

+
103(z)−x+

103(w))
52

is the weight 3k103 = 36 holomorphic form which has constant term in the q-expansion

equal to 1. Let {w1,w2,w3} be the three, not necessarily distinct, points in the fundamental

domain F where (x+
103(z)−x+

103(w)) vanishes. One of the points wj is equal to w. The form

f103,wj (z) vanishes at z = wj to order 52 ·ord(wj), j = 1,2,3.

From §4.2, we have that

β103 =
3

52π

(
53

104
log103+2−2log(4π)−24ζ ′(−1)

)
and P103(z) = log

(
|η(z)η(103z)|2 · Im(z)

)
. Let us now apply Corollary 2 with g(z) = x+

103(z),

in which case c(g) =−15/13. In doing so, we get that

〈x+
103, log(‖f103,w‖)〉=−208π2

3∑
j=1

(
∂

∂s
(
√
3F−3(wj , s)+F−1(wj , s))

∣∣∣
s=1

)

+120π
3∑

j=1

(
log

(
|η(wj)η(103wj)|2 · Im(wj)

))
−360π

(
53

104
log103−2log(4π)−24ζ ′(−1)

)
.

Similarly, we can take g(z) = y+103(z), in which case c(g) =−57/13 and we get that

〈y+103, log(‖f103,w‖)〉=−208π2
3∑

j=1

(
∂

∂s
(2F−4(wj , s)+3

√
2F−2(wj , s)+3F−1(wj , s))

∣∣∣
s=1

)

+456π
3∑

j=1

(
log

(
|η(wj)η(103wj)|2 · Im(wj)

))
−1368π

(
53

104
log103−2log(4π)−24ζ ′(−1)

)
.

6.5 An alternative formulation

In the above discussion, we have written the constant β and the Kronecker limit function

P separately. However, it should be pointed out that in all instances the appearance of

these terms are in the combination β volhyp(M)−P (z). From (28), we can write

β volhyp(M)−P (z) =
1

volhyp(M)
CTs=1Epar

∞ (z,s),
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where CTs=1 denotes the constant term in the Laurent expansion at s = 1. It may be

possible that such notational change can provide additional insight concerning the formulas

presented above.

§A. Appendix: Special functions

For the sake of clarity, we define the special functions used throughout the paper and

list some of their properties, such as asymptotic expansions, bounds, special values, and

various relations.

A.1 The Bessel functions: Definitions and special values

The Bessel functions are solutions to a certain second-order differential equations. For a

complex parameter ν, the J -Bessel function of order ν is given by the absolutely convergent

power series

Jν(z) =

∞∑
k=0

(−1)k

k!Γ(k+1+ν)

(z
2

)ν+2k

. (A.1)

The variable z is complex valued and lies in the cut complex plane C \ (−∞,0]. Also, Γ

denotes the classical gamma function. The I -Bessel function is given for the same range of

variables ν and z by the absolutely convergent power series

Iν(z) =
∞∑
k=0

1

k!Γ(k+1+ν)

(z
2

)ν+2k

. (A.2)

For ν ∈ C\Z and z ∈ C\ (−∞,0], the K -Bessel function is defined as

Kν(z) =
π

2sin(πν)
(I−ν(z)− Iν(z)) , (A.3)

while Y -Bessel is defined by

Yν(z) =
1

sin(πν)
(cos(πν)Jν(z)−J−ν(z)) . (A.4)

To define Kn(z) and Yn(z), for n ∈ Z, one simply takes the limit as ν → n in (A.3) and

(A.4).

For ν = 1/2, the I -Bessel and K -Bessel functions reduce to hyperbolic and exponential

function, respectively; from page 204 of [11], we quote the identities that

I1/2(z) =

√
2

πz
sinhz and K1/2(z) =

√
π

2z
e−z, (A.5)

for z ∈ C \ (−∞,0], where the square root is defined using the principal branch of the

logarithm.

The I -Bessel and K -Bessel functions also satisfy recursion formulas. Quoting from [8],

equations 8.486.1 and 8.486.10, we have that

z(Iν−1(z)− Iν+1(z)) = 2νIν(z) and z(Kν−1(z)−Kν+1(z)) =−2νKν(z). (A.6)
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A.2 Exponential integral

The exponential integral function is defined for a negative real number x as

Ei(x) =

x∫
−∞

et

t
dt= li(ex)

(see [8, (8.211)]). For our purposes, we will use the following two representations of Ei(x)

which we quote from [8], formulas 8.212.2 and 8.212.3. First, for x > 0, we have that

Ei(±x) = e±x

⎛⎝±1

x
+

∞∫
0

e−t

(±x− t)2

⎞⎠ . (A.7)

Second, x > 0, we have the series expansion

Ei(x) = γ+logx+
∞∑
k=1

xk

k ·k!

stated in [8], formula 8.214.2, where γ denotes the Euler constant. The series expansion

yields the coarse bound that Ei(x)� ex as x→∞. A bound for Ei(−x) as x→∞ can be

obtained from the equation

Ei(−x) =−e−x

∞∫
1

1

x+log t

dt

t2
forx > 0,

which we quote from [8], formula 8.212.10. From this expression, we get that

|Ei(−x)| ≤ e−x

∞∫
1

1

x

dt

t2
=

e−x

x
forx > 0.

In summary, we have the following bounds for Ei(±x), as x→∞:

|Ei(−x)| � e−x

x
and Ei(x)� ex. (A.8)

A.3 Asymptotic behavior

We quote from [11], formulas (B.35) and (B.36), the asymptotic behavior of Bessel

functions in the real positive variable y and for a fixed order ν. Namely, for y > 1+ |ν|2, we
have the following estimates:

Jν(y) =

√
2

πy

(
cos

(
y− π

2
ν− π

4

)
+O

(
1+ |ν|2

y

))
, (A.9)

Yν(y) =

√
2

πy

(
sin

(
y− π

2
ν− π

4

)
+O

(
1+ |ν|2

y

))
, (A.10)

Iν(y) =

√
1

2πy
ey
(
1+O

(
1+ |ν|2

y

))
, (A.11)
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and

Kν(y) =

√
π

2y
e−y

(
1+O

(
1+ |ν|2

y

))
. (A.12)

For each of the stated bounds, the implied constant is absolute.

A.4 Bessel functions: Derivatives with respect to order and to argument

In this section, we quote results from [8] related to special values of derivatives of I -Bessel

and K -Bessel functions with respect both to order and argument.

A.4.1. Derivatives with respect to the order

First, we quote formulas 8.486(1).20 and 8.486(1).21 for the derivative with respect to

the order ν at ν =±1/2:

∂

∂ν
Iν(x)

∣∣∣∣
ν=±1/2

=
1√
2πx

(
exEi(−2x)∓e−xEi(2x)

)
forx > 0 (A.13)

and

∂

∂ν
Kν(x)

∣∣∣∣
ν=±1/2

=∓
√

π

2x
exEi(−2x) forx > 0. (A.14)

Combining (A.13) and (A.14) with the bound (A.8) shows that for x→∞, we have that∣∣∣∣∣ ∂

∂ν
Iν(x)

∣∣∣∣
ν=±1/2

∣∣∣∣∣� ex√
2πx

and

∣∣∣∣∣ ∂

∂ν
Kν(x)

∣∣∣∣
ν=±1/2

∣∣∣∣∣�
√

π

2x

e−x

x
. (A.15)

Second, we quote formulas 8.486(1).8 and 8.486(1).6 with n = 1 for the derivative with

respect to the order ν at ν = 1:

∂

∂ν
Iν(x)

∣∣∣∣
ν=1

=K1(x)−
1

x
I0(x) forx > 0 (A.16)

and

∂

∂ν
Jν(x)

∣∣∣∣
ν=1

=
π

2
Y1(x)+

1

x
J0(x) forx > 0. (A.17)

By combining the bounds (A.9)–(A.12), we immediately deduce the following bounds as

x→∞: ∣∣∣∣ ∂

∂ν
Iν(x)

∣∣∣∣
ν=1

∣∣∣∣� ex

x
√
2πx

and

∣∣∣∣ ∂

∂ν
Jν(x)

∣∣∣∣
ν=1

∣∣∣∣�√
π

2x
. (A.18)

A.4.2. Derivatives with respect to the argument

We will quote formulas 8.486.2 and 8.486.11 of [8] expressing derivative of the I -Bessel

and K -Bessel functions with respect to the argument in terms of a linear combination of

the I -Bessel and K -Bessel functions with shifted orders:

d

dz
Iν(z) =

1

2
(Iν−1(z)+ Iν+1(z)) (A.19)

and

d

dz
Kν(z) =−1

2
(Kν−1(z)+Kν+1(z)) . (A.20)
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[13] J. Jorgenson, L. Smajlović, and H. Then, Kronecker’s limit formula, holomorphic modular functions

and q-expansions on certain arithmetic groups, Exp. Math. 25 (2016), 295–319.
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