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Abstract 

This paper presents models that identify two “cultures” of computational design practice. By reviewing the 

established culture of computational optimization efforts and contrasting it with the emerging work integrating 

human-factors into these optimizations, this paper argues that there are sets of key assumptions, outputs and 

tools that can be synthesized for a generalizable understanding of computational design. Furthermore, this 

synthesis facilitates the identification of key tools suited to computational design efforts seeking to integrate 

the complex data associated with human-factors. 
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1. Introduction 
While recent advances in computational design methods have yielded many interesting results, particularly 

in the field of architectural design, there remains significant limitations in terms of generalizable methods for 

specific human-centred design tasks (Cagan et al., 2005). Considering the two main subgroups of 

computational design - optimisation and generative methods - both have distinct operational outputs and 

applications and, as we will argue, are associated with distinct “cultures” and modes of working. Though 

there is significant overlap between these methods in the main, there is a lack of coherent understanding of 

how they can be synergised for a more focused adoption within design practice. 

A major gap lies in trying to bridge the rift between human-factors - detailed extensively by studies in human-

centred design (Giacomin, 2015), design semantics and design emotion (Demirbilek & Sener, 2010), and the 

fundamentals of optimisation and efficiency within the technical world of engineering mechanics. 

Computational methods have been used for some time with successful results within architectural design 

(see Caetano et al., 2020 for an overview) though there is less obvious output within industrial design possibly 

for reasons related to localised complexity and specific use-case requirements such as ergonomics. 

This paper will seek to explore this issue in greater depth by examining the different cultures within the 

field of computational design and how they can be reformulated for a general human-centred design 

framework that can be useful for designers or researchers. Firstly, some background around the topic 

will be provided to deliver a foundation for the discussion and introduce the core concepts relating to 

computational design. Secondly, we will consider how the different forms of computational design can 

be distinguished; what the overlaps and distinctions are between the various methods along with 

exploring their applications. Thirdly, bringing these themes together, the discussion will shift to address 

how the distinctions between the computational methods introduces space in which generalizable 

methodological models can be developed in which computational methods can be formulated around 

“macro level” or “micro level” approaches that address distinct design concerns. The differentials 

between these models are examined next, whereby the key assumptions, outputs and tools that define 
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the approaches are made plain by making reference to the on-going PRIME-VR2 research project 

utilising these computational design methods for the development of bespoke therapy devices. Lastly, 

recommendations for the most effective human-centred computational design tools are explored with 

direct reference to available software tools. 

2. Distinguishing forms of computational design 

2.1. Overview and history 

While “computational design” is a broad term it can be more strictly defined in relation to other terms: 

parametric design, generative design and algorithmic design. While there is some fluidity between these 

terms “computational design” can be treated as an umbrella term encompassing this range of methods. 

Here we will provide an overview of the different form of computational design taking optimization 

processes as our starting point. 

Optimization has become one of the most widely used tools for engineers undertaking static or 

mechanical design work, allowing them to explore complex material and force loading relationships. 

Furthermore, the advent of advanced visual programming languages such as Rhino-Grasshopper and 

much better accessibility to additive manufacturing technologies has beckoned a new era of design 

optimization. Designers such as Neri Oxman, and the late Zaha Hadid have applied computational 

optimization methods within their respective industrial design and architectural projects (see Oxman, 

2010; 2012 for instance) stimulating its overall uptake. 

Computational design essentially begins with optimization operations i.e., how should material be laid-

out within a given space envelope? Bendsøe and Kikuchi’s (1988) describe three categories of structural 

optimization a) sizing optimization where the basic design in terms of connectivity of elements b) shape 

optimization, where the optimization is engineered around a fixed topology - in the 2D case this means 

that a set of 2D areas or domains has fixed topology but changeable boundaries within the plane and c) 

topological optimization where only the domain loads and displacement constraints are specified and 

material may be freely assigned to each location in the design domain (2D or 3D), (see Figure 1). 

 
Figure 1. a) Sizing optimization b) Shape optimization c) Topological optimization. From Bensoe 

and Sigmund (2004) 

Sigmund and Maute’s (2013) summaries are instructive for defining the varieties of spatial optimization 

tools and approaches, these are described in Table 1 below. Each method approaches the optimization in 

different ways though all are built around similar mathematical frameworks. Hybrid methods are 

becoming more widely applied such as the combination of level set and shape derivatives which can 

deliver more dynamic results. Many of these methods are utilised within the methods of generative design 

of which there is a significant overlap with optimization. Generative design applies these methods, but 

instead the optimization strategies are set up around novel constraints with the use of more complex form-

finding algorithms. In essence, there is significant overlap between generative design and traditionally 

understood optimization strategies. The critical difference is that the optimizations strategies of a 

generative approach will usually explore a range of outcomes, with a less rigid solution space employing 

additional algorithmic power from shape grammar theory, neural network theory or metaheuristic genetic 

algorithms which mimic the processes of natural selection. The optimization tools that were principally 
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developed in order to explore distributions of material framed strictly within the context of engineering 

efficacy, spawned (somewhat unintentionally) a set of more broad-brush design tools that could be used 

to generate elaborate geometric designs such as the bridge formations shown in Figure 1. 

Table 1. methods used for optimization and generative design  

Density based methods: the process involves splitting a structure down into microscale voids and optimising 

material distribution (density) based on given design constraints. The method is highly developed and notable 

variants include the Simplified Isotropic Material with Penalization (SIMP) and Rational Approximation of 

Material Properties (RAMP) approaches (Bendsøe and Sigmund 1999) 

Evolutionary approaches: finite element analysis is utilised to train optimization software in an 

evolutionary fashion to follow particular material distribution paths (Mattheck and Burkhardt 1990) 

Topological derivative methods: applications of functional shape derivatives with respect to microscale 

changes in shape topology, such as adding small defects such as seeding points or infinitesimal holes 

(Sokolowski and Zochowski 1997) 

Level set methods: the structure under optimization is implicitly represented by a moving boundary 

embedded in a scalar function (known as the “level set” function) of a higher dimensionality. The method is 

flexible in handling complex topological change (Wang et al. 2003) 

Phase field methods: method developed as a way to represent the surface dynamics of phase transition 

phenomena such as solid-liquid transitions. By utilising the approach, perimeter control can be implemented 

enabling optimization (Bourdin and Chambolle 2003) 

2.2. Applications and culture 

Emerging work is using generative design methods for creative pursuits such as flexible wearable 

products and sculpture. While this is still a developing area of practice and, there are a number of 

interesting examples to which we can refer. Prominent designer and researcher Neri Oxman (2010; 

2012) for instance has developed a set of tools utilising “digital morphogenesis” methods. These 

methods utilise a biological approach to form-finding, integrating biological processes of growth into 

algorithmic generation tools. Her prototype chaise lounge “Beast” (Figure 2a) is locally modulated for 

both structural support and corporeal aid through the adaption of material density, stiffness, and 

flexibility. It is also worth noting the overall aesthetic that is generated by generative design efforts; as 

well as the increased functional articulation, the aesthetic created by the fusion of organic and biological 

forms with modern production processes is notably striking (see Figure 2b, organic sculpture by Neri 

Oxman). This has been discussed directly in an article by Rain Noe (2019), writing for Core77 and has 

cited the creation of computationally optimized car tyres as a notable output of the culture. 

 
Figure 2. “Beast” chaise lounge by Neri Oxman (a), generated organic sculpture by Neri Oxman 

(b) images from Wikimedia Commons 

Other prominent areas of research are the production of prosthetics whereby generative methods have 

been employed to explore more interesting aesthetics that allow a user to feel more comfortable while 

retaining full functionality of the prosthetic. In this sense, computation is being utilised for another core 

human-factors dimension, that of aesthetic experience, product identity and design emotion (following 

Desmet & Hekkert, 2007). Some researchers have used generative design methods to develop more 

reliable prosthetics designs for amputees (Sansoni et al., 2015). This is still an experimental area of 

a) b) 

https://doi.org/10.1017/pds.2022.65 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.65


 
636 DESIGN SUPPORT TOOLS AND METHODS 

medicine, and it is not yet hugely widespread, but research work in this area has expanded recently. 

Some interesting examples have included work from Rajput et al., (2021) who’s approach aimed to 

create an optimised design for a lower-leg prosthetic utilising form finding optimization algorithms. The 

work resulted in an alternative design for a foot and calf prosthetic which has an integrated compliant 

mechanism to create the required localised flexibility. Similar principles have been explored by a range 

of researchers. Writing in a volume of Advanced Structured Materials, Hermida-Ochoa et al., (2021) 

have presented a strategy for creating personalised prosthetic components through anatomical scanning 

that are subsequently fabricated using 3D printing. Additionally, Beltrán-Fernández et al., (2021) 

utilised mechanical analysis to optimise the design of an orthosis for clubfoot. The analysis was able to 

identify key areas of stress and strain in the design and hence optimize the material distribution during 

the 3D printing fabrication process. A strategy similar to this is employed by Li and Tanaka (2018) who 

use Rhino-Grasshopper programming to produce bespoke orthotics designed to immobilise fractures in 

hands. The paper illustrates a proof-of-concept for using a Voronoi optimization approach for the 

creation of bespoke structures attuned around user anatomy. 

We can see that the different research efforts have utilised a different array of computational tools with 

many relying on more traditionally understood optimization methods as opposed to methods that 

incorporate other human-factors. While this is perhaps indicative of the particular methodological 

constraints that computational tools present, it is a clear knowledge gap in which more study and analysis 

could prove valuable for research and practical innovation. 

The key factor missing in these discussions is how this could be translated into a generalizable model 

for human-factors led computational design. While the overarching goals of the various projects are 

different, they are all interested in the interfacing between form and human ergonomics with the caveat 

that advanced additive manufacturing methods facilitate the production of their complex and ornate 

parts. Though they also use different methods to produce the products, there are clear areas in which an 

overarching approach can be defined. 

The key question is how the panoply of computational design methods can be reined-in to focus their 

output on questions of human-factors in design. We have seen how optimization tools can be incredibly 

powerful in determining a broad sweep of functional design solutions usually with respect to material 

distribution. Additionally, we have also explored examples that use form building algorithms to create 

art in the form of sculpture through generative design methods. The intersection of these distinct cultures 

has been explored in emerging areas of research that seek to focus on factors such as ergonomics or the 

creation of distinct aesthetics. Conceptually, this is an evolution from the default culture of material-

space optimizations and opens new space in which creative design work can operate. This sets the scene 

for the next section which will continue to evolve these ideas and establish a framework for human-

centred computational design. 

3. Towards a framework for human-centred computational design 
When developing a variant framework to the computational design methods we have been examining, 

it is important to consider how such a process may differ to those more traditionally understood design 

methodologies and philosophies. Many well-known and widely used methodologies such as the British 

Design Council's “double diamond”, Ulrich and Eppinger’s methods (1994) or Pugh’s earlier matrices-

based methods (1990) all have a variety of benefits and draw backs for different design contexts. The 

double diamond for instance is high-level and generic providing the design team lots of freedoms within 

the approach. By contrast, Pugh’s methodology is much more prescriptive and focuses the design work 

by applying sets of constraints around various elements such as materials and costs. 

Computational design methods use the powers of algorithmic or mathematical logic to explore “design 

space”. While this space is intentionally configured through the definition of constraints, many aspects 

of designer agency are removed in favour of a computational method that systematically interrogates 

the possible geometric formations that fit to the predefined constraints (Bensoe and Sigmund, 2004). In 

this respect, the process is fundamentally different to the default hylomorphic framing of form-

emergence (see Ainsworth, 2016 for a summary). When trying then to define how to understand the 

overall processes of computational design for practical usage it is useful to subdivide the activities. By 

drawing an equivalence to the broad design space constraints set out during the first stages of an 
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optimization; we can term this the “macro” level of the process where the broad architecture of the 

design is set out. Following this, a “micro” level of the process somewhat equivalent to design detailing 

whereby the geometry is optimized around a set of ad hoc constraints (e.g., ergonomic requirements) is 

carried out. This macro-micro bilateral can function as a useful equivalence for the “two cultures” 

observation discussed earlier - where traditional optimization methods are more interested in the output 

at the macro-scale i.e., large structural changes that could say, save large amounts of material, where 

more modern methods integrating human-factors may require detailing at the micro-scale where the 

nuances of ergonomics and aesthetic experiences are established. A macro level approach may be best 

suited to the design issue at hand and this work is not explicitly arguing for always using micro level 

generative approaches for solving human-factors problems. We are however arguing that micro level 

analysis may need to be initiated for complex human factors design problems to be fully solved as they 

will often lie beyond the bounds of the more linear problems of material distribution. 

Shown below in Figure 3 is the methodological model that has been developed in which we will explore 

further and use as the foundation for exploring the differentials between the macro and micro levels of 

computational design thinking. This is the high-level version of the model but it will be used as a starting 

point for establishing our synthesis between the technical outputs of computational design and the human-

factors outputs which we have examined in the previous sections. Narratively, the model follows the rough 

structure of a traditionally understood design methodology, starting with specification and ideation and 

ending in a product realisation allowing the reader to grasp the critical points in which computational methods 

are typically applied. Shown is how computational design thinking intersects with the traditional format for 

design work. The critical differences are seen as the solutions are being developed and the distinction between 

the macro solutions and the micro solutions which include a looping structure that integrates knowledge 

acquired from human-factors analysis and testing that is then fed back into the computational coding 

definitions. As a general rule, a micro level approach will always include a macro level phase before full 

realisation, but a macro level analysis may not always lead to a micro level output. 

 
Figure 3. Generative design methodology incorporating macro and micro algorithmic stages 

We can start with a more detailed overview of the methodology where the underlying concepts can be 

described in relation to computational design thinking: 

1. Specification/ideation stage: The core requirements for the product are set out within the 

specifications which run in conjunction to initial ideation. This is perhaps the most well-aligned 

element to the traditional design methodologies. 

2. Conceptualisation stage: The pre-computational phase in which the functionality of the 

concepts is explored in the abstract and the design space constraints are more properly 

established. 

3. Embodiment stage: Computation stage in which the abstract understanding of form and 

functionality explored in the first two stages become refined and are built into an algorithmic 
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definition. The algorithmic definition has a macro stage optimising the larger structural form 

features and a micro stage generating the detailed form features and in-built functionality. 

4. Realisation stage: Finalisation of design after computational design explorations. The design 

depending on the macro or micro strategy taken will be fully optimised around the specified 

constrains and any inputted data. 

As shown the macro and micro computational activities can be more effectively deployed at certain 

design stages and may be deployed iteratively with the aim of achieving a unique design solution. The 

methods articulate with other practical design activities such as prototyping but the key computational 

activity is the coding of algorithms that facilitate the generation of the design solutions. Next, we can 

explore how the differentials and synergies between the macro and micro level strategies can be 

established in more detail. 

3.1. Establishing a synthesis 

While this paper has sought to argue that there are two distinct “cultures” of computational design effort, 

establishing a synthesis between these cultures is vital for understanding how computational approaches 

can be better presented as part of a more generalizable framework for human-centred design based 

innovation and indeed advancing efforts in traditional topology optimization practices. 

To think further about the differentiations and possible synergies between a macro level approach with a 

more nuanced micro level approach, areas of the model shown in Figure 3 before can be explored in greater 

detail. To do this, some of the overarching process narrative has been removed and the critical steps leading 

to design solutions have been focused on. Critically, three important elements will be focused on that allow 

for the tracking of the utility of each approach for each context; assumptions, outputs and tools. These three 

elements facilitate both an analysis of function in terms of what the approaches are good for and what tools 

can be wielded to get particular outcomes, and furthermore cultural concerns around the assumptions 

required to initiate the computational design process itself - what the designer or engineer imagines the 

product creation process and the end product to be. Starting with macro level computational approaches, 

Figure 4 presents and analysis in terms of assumptions, outputs and tools. 

  
Figure 4. Analysis of macro level computational design methods in terms of assumptions 

outputs and tools 
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This diagram illustrates how the macro level approaches are linear in their methodological process. Once 

the design constraints have been adequately defined, the algorithmic optimization packages available in 

the commercially available software listed within the available tools section can be applied. The critical 

assumptions for these kinds of approaches partition the design solution from direct human interaction 

at a subjective psycho-social level and instead focus on material optimization (e.g. space or density 

distributions) as the critical output. Many of the packages cited as key tools allow the user to define 

forces acting within the space envelope and define material specifications allowing the structure to be 

optimized with respect to a definite field of forces. This can now be compared to the micro level 

approaches which operationalise a range of different factors and allow for the creation of explicitly 

human-centred products. 

Figure 5 maps the methodological model for micro level computation efforts. As shown, the process is 

much less linear and involves looped exchanges of bespoke data that has been established from empirical 

human factors analysis - this could be emotional responses to certain form elements (see Bar & Neta, 

2006) or ergonomics and usability data derived from physical testing or data capture such as 3D 

scanning or motion capturing (Paoli et al, 2020 reviewed several relevant technologies). Crucially, this 

block of bespoke data fundamentally changes the “culture” of the operation as the critical assumption is 

that subjective psycho-social factors will play a role in how the end product will interact with the human 

world; the design outcome is not partitioned from direct human influence. The key outputs in this regard 

are bespoke forms that might be tailored around a specific features like anthropometric measurements 

or predictable emotive responses such as the negative associations most humans place on observed 

angularity (Bertamini et al., 2016). Notably, the tools cited here are more distinct, making reference to 

several Grasshopper plug-ins which facilitate these kinds of unique design explorations. The flexibility 

of Grasshopper makes it an excellent candidate tool for designers wanting to explore the integration of 

human-factors data into a computational design exploration. 

 
Figure 5. Analysis of micro level computational design methods in terms of assumptions outputs 

and tools 

https://doi.org/10.1017/pds.2022.65 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2022.65


 
640 DESIGN SUPPORT TOOLS AND METHODS 

So how can this be used by design practitioners? The models we have set out in this paper are not directly 

prescriptive but does invite further expansion by allowing for the meaningful distillation of the synergies 

and differences between the two “cultures” of computational design. These can now be outlined but 

drawing comparisons between the models presented at Figures 4 and 5. 

1) Key assumption synergies: the creation of a “unique” form for the design solution. For the macro 

level this is a by-product of the specific material and weight constraints, the micro level may be 

specifically guided by the articulations between materials, functionalities and human interaction 

concerns. 2) Key output synergies: material savings and functionality optimization with a given space 

envelope. Both macro level and micro level approaches are engaged with the problem of material-space 

arrangements and how best to optimize with respect to particular constraints to achieve the desired 

functionality. While different assumptions are at play in the processes in general, these particular outputs 

align closely. 3) Rhino-Grasshopper visual programming language. The programming language 

facilitates a wide-array of analysis and design generation tools and allows for both macro and micro 

level computation efforts. In terms of human-centred design and human factors analytics, Grasshopper 

is an excellent tool and has been explored within many contexts to create interesting design generation 

workflows that integrate human-factors data (Abualigah & Diabat, 2020). Furthermore, for a human-

factors and computation integration focus, Grasshopper presents a very promising architecture in which 

to define a generalizable framework for approaching these design problems. 

We can explore PRIME-VR2's research into bespoke therapy devices (see https://prime-vr2.eu/) to 

illustrate how the macro and micro level can be used to explore and generate different design outcomes. 

Firstly, Figure 6 illustrates how a macro level analysis can inform the design of componentry for the 

“spine” component of the bespoke device. Using Abaqus FEA, the spine can be analysed with respect 

to likely motions and input forces allowing for the optimization of the overall structure for most effective 

mechanical performance. 

 
Figure 6. Macro level analysis for optimization of spine component 

Micro level strategies integrating ergonomic data and human needs intelligence has also been used for 

PRIME-VR2. Shown below (Figure 7) is an excerpt from the Grasshopper algorithmic build that 

generates the wrist strap component that conforms around the user's wrist. The key distinction here is 

that the form is generated around a discrete set of constraints that are not limited to force inputs and 

material distribution as in Figure 7. Intelligence around ergonomics, device functionality and aesthetics 

has also been introduced to achieve the results. 

 
Figure 7. Micro level methods for generation of wrist strap component  
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4. Conclusions 
This paper has been theoretical in nature and has proposed a set of arguments that differentiate two 

“cultures” of computational design efforts. One culture - the “macro”- focuses on technical engineering 

problems of material and space optimization where a definite outcome is desirable based on a set of 

defined constraints. By contrast, the “micro” culture focuses on the integration of complex human 

interaction problems and may also explore the subjective realms of psychological experience as an input 

to the algorithmic solvers. 

These arguments were developed by reviewing a number of examples within the research literature and 

also by looking at prominent examples within design practice that have integrated complex human-

factors data like anthropometrics for innovative generative solutions. A number of models were 

presented that set out this differentiation and identified the macro cultures with a more linear approach 

that is less iterative in algorithmic solving due to the design space being smaller. The micro level culture 

that is required for human-centred computational design presents different challenges and will often 

utilise completely bespoke data and physical testing to build in the design constraints and improve the 

solutions iteratively. The intrinsic complexity and subjectivity of human-factors data means that the 

process is somewhat less linear than the traditional material distribution problems. 

By comparing these models and exploring a set of practical examples from the PRIME-VR2 research 

project, several synergies between the approaches were identified where alignments between key 

assumptions, outputs and tools were clear. Notably, Rhino-Grasshopper was identified as a critical tool 

for a human-centred design focus due to its flexibility in the integration of many kinds of data types. 

This synthesis furthermore allows for a better theoretical understanding of the different computational 

design cultures and may be applied by researchers and practitioners to more effectively steer their 

thinking on computational design problems. 
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