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A model for the dissipation rate in linear
unsteady flow through porous media
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We present a model for the volume-averaged dissipation rate in linear unsteady flow
through porous media. The model is derived by blending a new small-time asymptotic
expression for the dissipation rate obtained from boundary layer theory with the known
large-time asymptotic expression obtained from Darcy’s law. The resulting model is a
second-order Volterra functional of the volume-averaged acceleration. We validate the
model with an analytical solution for transient flow through a porous medium composed
of circular tubes and with numerical simulations of transient and oscillatory flow through
a cylinder array and through a hexagonal sphere pack.

Key words: porous media

1. Introduction

The theory of unsteady flow through porous media can be applied to a variety of different
systems. For example, it can be used to describe wave-induced flow through the seabed
(Gu & Wang 1991) or coral reefs (Lowe et al. 2008) or the propagation of acoustic and
seismic waves through the Earth (Biot 1956a,b). Furthermore, Cha et al. (2007) modelled
endovascular coil embolisation, a treatment for aneurysms, as a porous medium interacting
with the blood flow. In engineering applications, unsteady flow through porous media can
be used to describe regenerator-type heat exchangers (Trevizoli, Peixer & Barbosa 2016)
or pulsed flow in chemical reactors (Ni et al. 2003).

Using the volume-averaging framework (Whitaker 1966, 1986) or homogenisation
theory (Ene & Sanchez-Palencia 1975), a macroscopic description of flow through porous
media can be derived from the Navier–Stokes equations. The macroscopic variables are
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the superficial velocity, which is defined as

〈u〉s = 1
V

∫
Vf

u dV, (1.1)

and the intrinsic pressure, which is defined as

〈 p〉i = 1
Vf

∫
Vf

p dV, (1.2)

where Vf is the volume of fluid contained in the representative volume element or unit
cell, which has a combined solid and fluid volume V . The volume averaging gives rise
to effective properties of the porous medium, such as the porosity ε, which is defined
as the ratio Vf /V , and the permeability K, which relates 〈u〉s and ∇〈 p〉i by Darcy’s law
〈u〉s = K/μ ∇〈 p〉i (Darcy 1856).

Accurate models exist for the superficial velocity in linear flow (Johnson, Koplik &
Dashen 1987; Chapman & Higdon 1992; Pride, Morgan & Gangi 1993), which allow the
superficial velocity to be calculated in response to an arbitrary forcing. On the other hand,
there is no comparably general model for the volume-averaged dissipation rate. Knowledge
of the volume-averaged dissipation rate as a functional of the superficial velocity allows
computation of the volume-averaged kinetic energy 〈k〉s =

〈
1
2ρu2

〉
s

using the equation
(Zhu et al. 2014)

d〈k〉s

dt
= −〈u〉s · ∇〈 p〉i − 2μ 〈S : S〉s , (1.3)

where ρ is the density, μ is the dynamic viscosity and S is the strain rate tensor.
The volume-averaged kinetic energy and dissipation rate could be used to model scalar
transport in unsteady flow. For instance, the small-time asymptotic descriptions of
the dispersion coefficient and the temporal velocity autocorrelation function require
knowledge of the volume-averaged kinetic energy and dissipation rate (Brosten 2013,
(6.10) and (6.14)). Also, the continuous time random walk description of dispersion
involves the volume-averaged kinetic energy of the Stokes flow (Cortis et al. 2004, (7)
and (8)).

The volume-averaged dissipation rate in a steady linear flow has been given, for example,
by Murthy & Singh (1997) or Zhu et al. (2014) as

2μ 〈S : S〉s = μ

K
〈u〉2

s , (1.4)

which was derived by equating the dissipation rate to the power input into the flow and
then using Darcy’s law. This expression was confirmed by Paéz-García, Valdés-Parada &
Lasseux (2017), who applied an upscaling procedure to the mechanical energy equation.
On the other hand, no comparable equation has been given for the volume-averaged
dissipation rate in unsteady linear flow. A difficulty in modelling the dissipation rate arises
from its nonlinear dependence on the velocity field. Thus, unlike the superficial velocity,
the dissipation rate therefore cannot be obtained from a superposition of single-frequency
modes (for which the dissipation rate has been computed, for example, by Johnson et al.
(1987)).

In this paper, we present a time domain model for the volume-averaged dissipation rate
in linear unsteady flow. The model is derived by blending the steady-state dissipation rate
(1.4) with the small-time limit of the dissipation rate obtained from boundary layer theory.
The model is validated with an analytical solution of transient flow through a bundle of
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Dissipation rate model for linear unsteady porous media flow

circular tubes and with direct numerical simulations (DNS) of flow through a periodic
cylinder array and a periodic sphere pack.

2. Derivation of the model

2.1. Boundary layer theory
In this section, we derive a new asymptotic expression for the volume-averaged dissipation
rate in linear flow that is valid in the small-time or high-frequency limits. Under these
circumstances, the local acceleration term of the unsteady Stokes equation is dominant
compared with the viscous term and the flow is laminar and has a boundary layer structure
(Schlichting & Gersten 2017, pp. 349–350).

For the sake of this derivation, we assume that the flow is at rest at t = 0 and that the
macroscopic pressure gradient is applied for t ≥ 0. Then, for small times, the flow can be
approximated as a potential core flow and a viscous boundary layer flow (Schlichting &
Gersten 2017, pp. 352–353) and the velocity profile in the boundary layer is locally given
by the solution to Stokes’ first problem (Schlichting & Gersten 2017, pp. 126–128)

u( y, t) =
∫ t

0

∂U
∂τ

∣∣∣∣
y=0

erf
(

y
2
√

ν(t − τ)

)
dτ. (2.1)

Here, ν = μ/ρ is the kinematic viscosity and y is the local wall-normal coordinate. The
velocity of the potential core flow U(x, t) can be obtained from the theory of unsteady
potential flow (Batchelor 2000, pp. 394–409) for a given pore geometry. As will be
discussed below, U(x, t) enters the volume-averaged dissipation rate only through the
two integral quantities α∞ and Λ (2.6), which have been tabulated for simple geometries
(Chapman & Higdon 1992; Lee, Leamy & Nadler 2009). The volume-averaged dissipation
rate is equal to the sum of the dissipation in the boundary layer and the dissipation in the
potential core flow (Johnson et al. 1987),

2μ 〈S : S〉s = μ

V

∫
Afs

∫ ∞

0

(
∂u
∂y

)2

dy dA︸ ︷︷ ︸
boundary layer

+ μ

V

∫
Afs

∇ |U |2 · n dA︸ ︷︷ ︸
potential flow (≈0)

, (2.2)

where Afs denotes the fluid–solid interface. As observed by Johnson et al. (1987),
the boundary layer term increases with frequency whereas the potential flow term is
independent of frequency and can be neglected. In the boundary layer contribution, we
can identify the dissipation integral

D =
∫ ∞

0

(
∂u
∂y

)2

dy =
∫ ∞

0

[∫ t

0

∂U
∂τ

∣∣∣∣
y=0

exp
(

− y2

4ν(t − τ)

)
1√

πν(t − τ)
dτ

]2

dy.

(2.3)

Here, we have departed from Johnson et al. (1987) in pursuing a time-domain approach.
Now, we change the order of spatial and temporal integration. With the integral∫ ∞

0
exp

(
− y2

4ν(t − τ1)

)
exp

(
− y2

4ν(t − τ2)

)
dy =

√
πν(t − τ1)(t − τ2)

(t − τ1) + (t − τ2)
, (2.4)

we can rewrite the dissipation integral as a double convolution,

D =
∫ t

0

∫ t

0

∂U
∂τ1

∣∣∣∣
y=0

∂U
∂τ2

∣∣∣∣
y=0

1√
πν [(t − τ1) + (t − τ2)]

dτ1 dτ2. (2.5)
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The spatial integration has thus changed the square of a one-dimensional convolution
integral into a two-dimensional convolution integral. For the potential flow, there is a
time-independent proportionality between the potential flow velocity at the wall U |y=0
and the superficial velocity 〈U〉s of the potential flow. This relationship is expressed by the
high-frequency limit of the dynamic tortuosity α∞ and the characteristic viscous length Λ

derived by Johnson et al. (1987):

α∞
ε

=
〈
U2〉

s

〈U〉2
s
, (2.6a)

2
Λ

=

1
V

∫
Afs

|U |2 dA〈
U2〉

s

. (2.6b)

Using these expressions, the surface integral over the dissipation integral in (2.2) can
be rewritten in terms of the superficial velocity of the potential flow. Furthermore, the
superficial velocity of the potential flow can be approximated with the actual superficial
velocity provided that the boundary layer is very thin. This gives the final expression for
the volume-averaged dissipation rate in the small-time limit

2μ 〈S : S〉s = 2μα∞
εΛ

∫ t

0

∫ t

0

d〈u〉s

dτ1
· d〈u〉s

dτ2

1√
πν [(t − τ1) + (t − τ2)]

dτ1 dτ2 , (2.7)

which is a key result of this study.

2.2. Blending of steady and boundary layer asymptotics
In this section, we use the expressions for the volume-averaged dissipation rate for small
times (2.7) and for the steady state (1.4) to construct a model for the volume-averaged
dissipation rate that is valid for linear flow.

We begin by rewriting the steady-state dissipation rate (1.4) as a second-order Volterra
integral similar to (2.7):

2μ 〈S : S〉s = μ

K
〈u〉2

s = μ

K

∫ t

0

∫ t

0

d〈u〉s

dτ1
· d〈u〉s

dτ2
dτ1 dτ2. (2.8)

This leads us to consider a general model for the dissipation rate in the linear regime of
the following form:

2μ 〈S : S〉s =
∫ t

0

∫ t

0

d〈u〉s

dτ1
· d〈u〉s

dτ2
g(t − τ1, t − τ2) dτ1 dτ2, (2.9)

where the kernel function g(t1, t2) is assumed to be symmetric, g(t1, t2) = g(t2, t1), and
satisfies the limits

lim
t1→0

lim
t2→0

g(t1, t2) = 2μα∞
εΛ

1√
πν [t1 + t2]

, (2.10a)

lim
t1→∞ lim

t2→∞ g(t1, t2) = μ

K
. (2.10b)

The latter condition can be explained as follows: for a function that varies very slowly,
only a small part of the history will be affected by the small-time limit of g(t1, t2), while
most of the history will be weighted with μ/K, thus approaching the steady-state limit.
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Dissipation rate model for linear unsteady porous media flow

101

100

K
 g

n(
t 1

, 
t 2

)/
μ

10–2 100 102

n = 1

n = 2

n = 3

n = 4

n = ∞

πν (t1 + t2) ε2Λ2/ (4α2
∞K2)

Figure 1. Kernel function gn(t1, t2) for different values of the blending parameter n in logarithmic axes.
The kernel function is universal in the chosen normalisation.

Following Churchill & Usagi (1972), we consider the following family of models:

gn(t1, t2) =
[(μ

K

)n +
(

2μα∞
εΛ

1√
πν [t1 + t2]

)n]1/n

, (2.11)

where n is a real number. In this blending, the transition between the small- and large-time
behaviour occurs when the limiting expressions (2.10) take the same value. The family
parameter n could be determined using additional information about the dissipation rate.
Here, the parameter will be estimated empirically based on analytical solutions and
numerical simulations. Figure 1 shows the kernel function (2.11) for different values of the
parameter n. It can be seen that the width of the transition region between the asymptotes
decreases with increasing values of n.

In the remainder of this paper, the proposed model is validated using analytical and
numerical solutions to the (Navier–)Stokes equations for unsteady flow through porous
media.

3. Analytical validation

In this section, we validate the model for the case of transient flow through a porous
medium consisting of cylindrical tubes of radius R that are inclined by an angle θ with
respect to the pressure gradient. Johnson et al. (1987) reported the exact values for the
permeability, the high-frequency limit of the dynamic tortuosity and the characteristic
viscous length for this case,

K = 1
8 ε R2 cos2 θ, (3.1a)

α∞ = 1
cos2 θ

, (3.1b)

Λ = R. (3.1c)

In the following, we show that the volume-averaged dissipation rate obtained from the
analytical solution agrees with the asymptotic limits (2.7) and (1.4) and we compare our
proposed model (2.11) for the volume-averaged dissipation rate with the exact solution.
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3.1. Exact solution for the dissipation rate
The analytical solution for the streamwise velocity in transient flow through a circular pipe
is given as (Pozrikidis 2017, pp. 509–514)

us(r, t) = 1
4μ

∣∣∇〈 p〉i
∣∣ cos θ

[
R2 − r2 − 8R2

∞∑
k=1

1
α3

k

J0(αkr/R)

J1(αk)
exp

(
−α2

k
νt
R2

)]
, (3.2)

where Jn(z) are the Bessel functions of the first kind and αk denotes the kth zero of the
Bessel function J0. The velocity gradient can be calculated as

∂us

∂r
= 1

4μ

∣∣∇〈 p〉i
∣∣ cos θ

[
−2r + 8R

∞∑
k=1

1
α2

k

J1(αkr/R)

J1(αk)
exp

(
−α2

k
νt
R2

)]
. (3.3)

We can then obtain the superficial volume-averaged dissipation rate by integration as

2μ 〈S : S〉s

= εμ

πR2

∫ R

0

(
∂us

∂r

)2

2πr dr

= 1
8μ

εR2 cos2 θ
∣∣∇〈 p〉i

∣∣2
∫ 1

0

[
−2x + 8

∞∑
k=1

1
α2

k

J1(αkx)
J1(αk)

exp
(
−α2

k
νt
R2

)]2

x dx

= 1
8μ

εR2 cos2 θ
∣∣∇〈 p〉i

∣∣2

[∫ 1

0
4x3 dx

− 32
∞∑

k=1

1
α2

k J1(αk)
exp

(
−α2

k
νt
R2

) ∫ 1

0
x2 J1(αkx) dx

+ 64
∞∑

k=1

∞∑
l=1

1
α2

k J1(αk) α2
l J1(αl)

exp
(
−(α2

k + α2
l )

νt
R2

) ∫ 1

0
x J1(αkx) J1(αlx) dx

]

= 1
8μ

εR2 cos2 θ
∣∣∇〈 p〉i

∣∣2

[
1 − 64

∞∑
k=1

1
α4

k
exp

(
−α2

k
νt
R2

)
+ 32

∞∑
k=1

1
α4

k
exp

(
−2α2

k
νt
R2

)]

= K
μ

∣∣∇〈 p〉i
∣∣2

[
1 − 64

∞∑
k=1

1
α4

k
exp

(
−α2

k
νt
R2

)
+ 32

∞∑
k=1

1
α4

k
exp

(
−2α2

k
νt
R2

)]
. (3.4)

At the starting time t = 0, the dissipation vanishes since the zeros of the Bessel function
J0 satisfy

∞∑
k=1

1
α4

k
= 1

32
. (3.5)

At large times, the exponential terms tend to zero and we arrive at (1.4) using Darcy’s law.

3.2. Small- and large-time asymptotics
In this section, we compare the small- and large-time asymptotics of the volume-averaged
dissipation rate given by (2.7) and (1.4) with the exact dissipation rate. To evaluate
these expressions, we need to determine the superficial velocity and the superficial
acceleration. The superficial velocity can be obtained by averaging the velocity (3.2) over
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100

Circular tubes

Small-time asymp.

Large-time asymp.

Exact solution

10–3

10–6

10–9

10–4 10–2 100 102

2
μ
〈S

 : 
S〉

s/
(K

/
μ
|∇

〈p
〉 i|2

)

8νt/R2 = εvt/(K α∞)

Figure 2. Comparison of the dissipation rate of the analytical solution (3.4) with the small- and large-time
asymptotics (2.7) and (1.4) for a porous medium consisting of circular tubes. The dissipation is normalised
with the steady-state value K/μ|∇〈 p〉i |2.

the cross-section and then projecting it onto the direction of the pressure gradient (which
amounts to a multiplication with cos θ ). Using the permeability (3.1a) we get

〈u〉s = K
μ

∣∣∇〈 p〉i
∣∣ [1 − 32

∞∑
k=1

1
α4

k
exp

(
−α2

k
νt
R2

)]
. (3.6)

By differentiation, the superficial acceleration follows as

d〈u〉s

dt
= ε

ρα∞

∣∣∇〈 p〉i
∣∣ [4

∞∑
k=1

1
α2

k
exp

(
−α2

k
νt
R2

)]
. (3.7)

We then evaluate the small-time asymptotics (2.7) using adaptive quadrature. Figure 2
shows the exact dissipation rate (3.4) and the small- and large-time asymptotics according
to the equations (2.7) and (1.4). It can be seen that the dissipation rate is indeed well
approximated by the boundary layer theory for small times and by the steady-state
behaviour at large times. Note that if the superficial velocity (3.6) is substituted into the
steady-state dissipation (1.4), the first two terms of the exact dissipation rate (3.4) are
exactly recovered.

3.3. Evaluation of model predictions
Having demonstrated the correctness of the asymptotic limits, we can now evaluate
the proposed model for the volume-averaged dissipation rate given by (2.9) and (2.11).
Figure 3 shows the exact solution for the dissipation rate (3.4), the large-time asymptotics
(1.4) and the modelled dissipation rate. For the blending parameter n, we have chosen the
values n = 2 and n = 3 for which the predictions lie closest to the exact solution. It can
be seen that the model accurately predicts the dissipation rate and has the correct limiting
behaviour. The maximum relative error with respect to the instantaneous dissipation rate
is 7 % for n = 2 and 14 % for n = 3.
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100

10–3

10–6

10–3 10–1 101

Exact solution

2
μ
〈S

 : 
S〉

s/
(K

/
μ
|∇

〈p
〉 i|2

)
μ/K 〈u〉2

s

Circular tubes

n = 2

n = 3

8νt/R2 = εvt/(K α∞)

Figure 3. Comparison of the dissipation rate of the analytical solution (3.4), the large-time asymptotics (1.4)
and the model given by (2.9), (2.11) for a porous medium consisting of circular tubes. The dissipation is
normalised with the steady-state value K/μ|∇〈 p〉i |2.

4. Numerical validation

In this section, we further compare the volume-averaged dissipation rate modelled
according to the equations (2.9) and (2.11) with the volume-averaged dissipation rate
obtained from the DNS of flow through a cylinder array and a hexagonal sphere pack.

4.1. Description of the flow solver
The simulations were performed using our in-house code MGLET (Manhart, Tremblay
& Friedrich 2001). The incompressible Navier–Stokes equations are discretised on
a Cartesian grid with a second-order symmetry-preserving finite volume method
(Verstappen & Veldman 2003). A third-order explicit Runge–Kutta method (Williamson
1980) is employed for time integration of the momentum equation and the continuity
equation is enforced using the projection method (Chorin 1968), resulting in a Poisson
equation at each stage.

The no-slip and no-penetration boundary conditions at the fluid–solid interface of the
porous medium are imposed using a second-order accurate ghost-cell immersed boundary
method (Peller et al. 2006; Peller 2010). The conservation of mass in the interface cells is
ensured by a flux correction procedure that is iteratively coupled to the global pressure
correction. The immersed boundary method has been validated for the simulation of
porous media flow in Peller (2010), Sakai & Manhart (2020) and Unglehrt & Manhart
(2022).

4.2. Porous medium geometries
Following Zhu et al. (2014), we consider flow through a periodic array of cylinders and
through a hexagonal close-packed arrangement of spheres. The corresponding simulation
domains are shown in figure 4. These porous media have a considerably different porosity
(ε = 0.56 and 0.26, respectively) and pore space geometry.
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L z =
 1

(a) (b)

L x =
 2 d

L z =
 2
�6

/3
 d

Ly =     d 
4

3 L x =
     d 4

3 Ly = �3 d

Figure 4. Simulation domains for the cylinder array and for the hexagonal sphere pack. Periodic boundary
conditions are applied on all sides of the domain.

Parameter Symbol Cylinder array Hexagonal sphere pack

Porosity ε 1 − (9π/64) = 0.5582 1 − (π/(3
√

2)) = 0.2595
Permeability K 5.768 × 10−3 d2 1.755 × 10−4 d2

High-frequency limit of
the dynamic tortuosity

α∞ 1.461 1.622

Characteristic viscous length Λ 0.438 d 5.904 × 10−2 d

Table 1. Geometric parameters for the cylinder array and the hexagonal close-packed arrangement of equal
spheres.

Case Hg Re Wo Ω/Ω0 d/�x

cyl-step 0.1 5.74 × 10−4 — — 480
cyl-LF 0.1 5.72 × 10−4 2.576 0.1 480
cyl-MF 0.1 3.62 × 10−4 8.146 1.0 480
cyl-HF 0.1 5.08 × 10−5 25.76 10 480

hcp-stepa 6.5 × 101 0.0114 — — 320
hcp-LFb 103 0.171 10 0.107 384
hcp-MFb 104 0.857 31.6 1.07 384
hcp-HFb 105 0.130 100 10.7 384

Table 2. Simulation parameters for flow through a cylinder array and a hexagonal sphere pack.
aFrom Sakai & Manhart (2020), recomputed at a higher resolution in Unglehrt & Manhart (2023).

bFrom Unglehrt & Manhart (2022).

The geometric parameters of these porous media are reported in table 1. The
high-frequency limit of the dynamic tortuosity α∞ and the characteristic viscous length Λ

were determined from the potential flow using a finite element calculation (see Unglehrt
& Manhart (2023) for the hexagonal sphere pack). The permeability values were obtained
from the steady state of the simulations cyl-step and hcp-step (see table 2).

4.3. Simulation set-up
The pore scale flow is described by the incompressible Navier–Stokes equations. However,
a small Reynolds number is chosen such that the nonlinear terms are insignificant.
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No-slip and no-penetration boundary conditions are imposed at the cylinder or spheres
and triple periodic boundary conditions are applied at the domain boundaries.

We consider flow started from rest in response to a constant pressure gradient

∇〈 p〉i(t) = −gx ex for t > 0 (4.1)

and in response to a sinusoidal pressure gradient

∇〈 p〉i(t) = −gx sin(Ωt) ex for t > 0 (4.2)

that are applied as a body force on the fluid. In the latter case, we have chosen three values
of the frequency: Ω/Ω0 = 0.1 (low frequency), Ω/Ω0 = 1 (medium frequency) and
Ω/Ω0 = 10 (high frequency) where Ω0 = ε ν/(α∞ K) is the transition frequency between
the low and the high frequency regime (Pride et al. 1993). Note that the high-frequency
cases represent behaviour that could be found, for example, in wave-induced flow in a coral
reef (d ∼ 2 cm, period ∼4 s, wind velocity ∼5 m s−1, wave height ∼0.6 m, water depth
∼30 m), while the low- and medium-frequency cases would correspond to flow within a
sandy seabed.

The flow cases for the cylinder array were simulated at a grid resolution of 480 cells
per diameter following Zhu & Manhart (2016). The flow cases for the hexagonal sphere
pack were simulated at a resolution of 384 cells per diameter for the oscillatory flow and
at a resolution of 320 cells per diameter for the transient flow. They were validated by a
grid study in Unglehrt & Manhart (2022) and Sakai & Manhart (2020). The important
parameters of the simulations are summarised in table 2.

The time series of the volume-averaged dissipation rate was obtained indirectly from
the time series of the superficial velocity and the volume-averaged kinetic energy using
the kinetic energy equation (1.3),

2μ 〈S : S〉s = −〈u〉s · ∇〈 p〉i − d〈k〉s

dt
. (4.3)

The superficial velocity and the volume-averaged kinetic energy were extracted from the
simulation with a high temporal resolution.

4.4. Results
We first consider the case of transient flow started from rest and driven by a constant
pressure gradient. Figure 5 shows the volume-averaged dissipation rate from the DNS
cyl-step and hcp-step, the large-time asymptotics (1.4) and the model evaluated for the
values n = 2 and n = 3 of the blending parameter. It can be seen that the model correctly
captures the small-time behaviour of the simulations whereas the dissipation rate clearly
cannot be approximated by (1.4) at small times. After the first few time steps, in which
the simulations are not fully accurate due to the extremely thin boundary layers, the model
errors relative to the simulation lie between −18 % and 4 % for the cylinder array and
between −12 % and 8 % for the hexagonal sphere pack. For the cylinder array, the blending
parameter n = 2 gives better results, while for the hexagonal sphere pack the blending
parameter n = 3 gives better results.

We then consider the case of transient flow started from rest that is driven by a sinusoidal
pressure gradient. The low frequency cases (simulations cyl-LF and hcp-LF) are shown
in figure 6. There are almost no differences between the dissipation rate of the DNS,
the large-time asymptotics and the model. For the cylinder, all curves agree with the
dissipation rate of the simulations. For the hexagonal sphere pack, the dissipation is
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Figure 5. Comparison of the dissipation rate from the DNS, the large-time asymptotics (1.4) and the model
given by (2.9), (2.11) for transient flow in response to a constant pressure gradient through the cylinder array
(a) and the hexagonal sphere pack (b). The dissipation is normalised with the steady-state value K/μ|∇〈 p〉i |2.
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Figure 6. Comparison of the dissipation rate from the DNS, the large-time asymptotics (1.4) and the model
given by (2.9), (2.11) for transient flow in response to a sinusoidal pressure gradient with Ω/Ω0 ≈ 0.1 through
the cylinder array (a) and the hexagonal sphere pack (b). The dissipation is normalised with the steady-state
value K/μ|∇〈 p〉i |2.

slightly overestimated by the model for n = 2, while it is slightly underestimated by the
model for n = 3 as well as by the large-time asymptotics.

The medium frequency cases (simulations cyl-MF and hcp-MF) are shown in figure 7.
For the cylinder, again the large-time asymptotics agree very well with the dissipation rate
of the DNS, while the model slightly overestimates the dissipation rate for both n = 2
and n = 3. For the hexagonal sphere pack, the model overestimates the dissipation rate
for n = 2, while it is in close agreement with the simulation for n = 3. The large-time
asymptotics slightly underestimate the dissipation rate.
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Figure 7. Comparison of the dissipation rate from the DNS, the large-time asymptotics (1.4) and the model
given by (2.9), (2.11) for transient flow in response to a sinusoidal pressure gradient with Ω/Ω0 ≈ 1 through
the cylinder array (a) and the hexagonal sphere pack (b). The dissipation is normalised with the steady-state
value K/μ|∇〈 p〉i |2.

The high frequency cases (simulations cyl-HF and hcp-HF) are shown in figure 8. It
can be seen that the large-time asymptotics (1.4) clearly underestimate the dissipation
from the simulations by approximately 30 % and 55 % for the cylinder array and the
hexagonal sphere pack, respectively, while the model (2.9), (2.11) provides significantly
better predictions. In particular, the model reproduces the evolution of the dissipation
rate during the transient oscillation. For the cylinder array, a very good agreement can
be observed for the value n = 2 of the blending parameter with a relative difference of
approximately 3 %; for the sphere pack, an excellent agreement between the dissipation
rate from the simulation and the modelled dissipation rate is found for n = 3 with a relative
difference of approximately 1.5 %. Note that the agreement could be improved by choosing
non-integer values of n. However, based on the results above, we expect that the optimal
value for n will still depend on the geometry.

5. Conclusion

We have proposed a model for the volume-averaged dissipation rate in linear unsteady flow
through a porous medium. The model is derived by blending the steady-state expression
for the volume-averaged dissipation rate (Murthy & Singh 1997; Zhu et al. 2014) with a
small-time asymptotic expression obtained from boundary layer theory for a flow started
at rest. The model was first validated against an analytical solution of the Navier–Stokes
equations for transient flow through a porous medium consisting of circular tubes. The
model was then compared with a DNS dataset comprising transient and oscillatory flow
through a cylinder array and through a hexagonal close-packed arrangement of spheres.
The model showed significantly better predictions at small times or high frequencies than
the large-time asymptotics given by the steady-state expression, while maintaining the
accuracy of the large-time asymptotics at large times or low frequencies. In all cases,
values of the blending parameter n between 2 and 3 gave good results.
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Figure 8. Comparison of the dissipation rate from the DNS, the large-time asymptotics (1.4) and the model
given by (2.9), (2.11) for transient flow in response to a sinusoidal pressure gradient with Ω/Ω0 ≈ 10 through
the cylinder array (a) and the hexagonal sphere pack (b). The dissipation is normalised with the steady-state
value K/μ|∇〈 p〉i |2.

Future work could attempt to generalise the model to nonlinear unsteady flow. For this, it
might be promising to represent the volume-averaged dissipation rate as a Volterra series
in the superficial acceleration. Furthermore, the proposed model could provide a basis
for modelling dispersion and mixing in linear unsteady flow through porous media. For
instance, Brosten et al. (2012) considered the short-time dispersion coefficient defined
as D(t) = E[|R(t) − E[R(t)]|2]/(6t), wherein E[.] is the ensemble average and R(t) is
the fluid particle displacement, and derived the following asymptotic expression for small
times:

D(t) = Do(t) +
〈
(u − 〈u〉i)

2
〉
i
t + κ

18

[ ε

K
〈u〉2

i

]
t3/2 + O(t5/2). (5.1)

Here, Do(t) is the short-time dispersion coefficient without convection and κ is the
molecular diffusion constant. The spatial velocity variance in the second term on the
right-hand side is closely related to the kinetic energy and the term in brackets can be
identified as the steady-state expression (1.4) in intrinsic volume-averaged form. Therefore,
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within a frozen field assumption, our model allows the evaluation of these terms for
unsteady linear flow.
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