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The Fundamental Group of S1-manifolds

Leonor Godinho and M. E. Sousa-Dias

Abstract. We address the problem of computing the fundamental group of a symplectic S1-manifold

for non-Hamiltonian actions on compact manifolds, and for Hamiltonian actions on non-compact

manifolds with a proper moment map. We generalize known results for compact manifolds equipped

with a Hamiltonian S1-action. Several examples are presented to illustrate our main results.

1 Introduction

In this paper we address the problem of computing the fundamental group of a sym-
plectic S1-manifold. For a compact manifold equipped with a Hamiltonian circle
action, a result in [Li] states that this group is equal to the fundamental group of
any of its reduced spaces (as topological spaces) and to the fundamental group of its
minimum and maximum level sets. We will consider non-Hamiltonian actions on
compact manifolds (Theorem 2.1) and Hamiltonian actions on non-compact mani-
folds with a proper moment map (Theorem 3.1).

When the action is non-Hamiltonian, one can consider a generalized moment

map1 introduced by McDuff in [MD1] as follows. First, the symplectic form is de-
formed to a rational invariant symplectic form making the non-zero class [ι(ξM)ω]
rational, where ξM denotes the vector field generating the action; then, for a multiple
of this symplectic form, there is a map φ : M → S1 such that

ι(ξM)ω = φ∗(dθ),

called generalized moment map (or circle-valued moment map). This map has many
of the properties of an ordinary moment map and can even be used to reduce M.
In particular, choosing an invariant pair of a Riemannian metric g and a compatible
almost complex structure J on M and identifying S1 with R/Z in the usual way, one
may define the gradient of φ with respect to g and see that it is equal to JξM . Its
flow has all the nice properties of the gradient flow of an ordinary moment map. In
particular, its critical set is a disjoint union of symplectic submanifolds of M (each of
codimension at least 4 since φ has no local maxima or minima).

Using the gradient flow of φ, we prove in Theorem 2.1 that, if M is a connected
compact symplectic manifold equipped with a non-Hamiltonian circle action and P
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The Fundamental Group of S1-manifolds 1083

is a connected component of an arbitrary level set of the generalized moment map φ,
then, as fundamental groups of topological spaces, π1(M) is a semidirect product

π1(M) = π1(P) ⋊ Z,

when the action has no critical points, or

π1(M) = π1(Mred) ⋊ Z,

where Mred := P/S1 is a connected component of the symplectic quotient φ−1(a0)/S1

with a0 = φ(P).
Note that the proof for the Hamiltonian case presented in [Li] relies heavily, at

each step, on the existence of a minimum and so it cannot be adapted to the non-
Hamiltonian case. Nevertheless, since we have a generalized moment map, we can
still use (circle-valued) Morse–Bott theory to prove the above result.

When the action is Hamiltonian but M is not compact one can again use Morse-
Bott theory, provided that the moment map is proper (i.e., the inverse image of a
compact set is compact). In this case, we obtain that, if (M, ω) is a connected sym-
plectic manifold (not necessarily compact) with proper moment map φ : M → R,
and P is an arbitrary (compact) level set of φ then, as fundamental groups of topo-
logical spaces, π1(M) is either, π1(M) = π1(P), when the action has no critical points,
or π1(M) = π1(Mred), where Mred is the symplectic quotient at any value of φ. More-
over, if φ has a minimum (or a maximum), we recover the referred result for the
compact case in [Li]:

π1(M) = π1(Mred) = π1(Fmin) (or equal to π1(Fmax)),

where Fmin and Fmax are the sets of minimal and maximal points respectively.
Although properness of the moment map is a strong condition that is not veri-

fied in many problems in classical mechanics with a global S1-action, our results may
still be relevant when, for instance, one can perform a preliminary reduction or sym-
plectic cutting (see [L]) making the induced S1-moment map proper. Let us remark,
however, that the requirement of a proper moment map is essential to our results as
can be seen in Examples 4.6 and 4.7. Indeed, even the statement in Proposition 2.4
that all reduced spaces have the same fundamental group may fail to hold when the
moment map is not proper.

Finally, in Section 4, we present several other examples illustrating our results.

2 Non-Hamiltonian Circle Actions

In this section we prove our result for non-Hamiltonian actions on compact mani-
folds.

Theorem 2.1 Let M be a connected, compact, symplectic manifold equipped with a

non-Hamiltonian circle action and φ : M → S1 be the corresponding generalized mo-

ment map. Let P be a connected component of an arbitrary level set of φ. Then, as funda-

mental groups of topological spaces, π1(M) is a semidirect product π1(M) = π1(P) ⋊ Z
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when the action has no critical points, or π1(M) = π1(Mred) ⋊ Z, where Mred := P/S1

is a connected component of the (arbitrary) symplectic quotient φ−1(a0)/S1, for a0 =

φ(P).

Throughout, we shall choose an S1-invariant compatible pair, ( J, g), of an almost
complex structure and a Riemannian metric, and we identify S1 with R/Z in the usual
way to define the gradient of φ with respect to g. This gradient is equal to JξM , where
ξM is the vector field generating the action.

In order to prove Theorem 2.1, we will need a series of preliminary results. The
first one is proved in [O], but we include a sketch of its proof for the sake of comple-
tion.

Lemma 2.2 (Ono [O]) Let M be a symplectic, compact, connected manifold equipped

with a non-Hamiltonian circle action, and let φ : M → S1 be the corresponding gen-

eralized moment map. Then, given any point y0 ∈ M, there exists a homologically

non-trivial loop γ : S1 → M passing through y0.

Proof Since the generalized moment map is locally a function, one can define its
Hessian at critical points, their indices, and the gradient flow of φ. Moreover, since
the action is non-Hamiltonian, the critical points cannot have index 0 or 2n, where
2n is the dimension of M. Let us consider the quotient space X = M/∼, where x ∼ y

if and only if x and y are in the same connected component of a level set of φ. As the
indices of the critical points of φ are even, X has no branch point. Moreover, X has no
boundary and is homeomorphic to a circle (see [O] for details). Therefore, one can
deform the trajectory of the gradient flow of φ passing through y0 to a homologically
non-trivial loop γ : S1 → M through y0.

Lemma 2.3 Let M be a compact symplectic manifold equipped with a non-Hamil-

tonian circle action and φ : M → S1 be its generalized moment map. Then, for any

regular value a0 and a point y0 ∈ φ−1(a0), the inclusion j : φ−1(a0) → M induces the

following exact sequence of fundamental groups

π1(φ−1(a0), y0)
j∗
→ π1(M, y0)

φ∗

→ π1(S1, a0).

Proof Clearly, im( j∗) ⊂ ker(φ∗), so we just need to show that ker(φ∗) ⊂ im( j∗).
Let [γ] ∈ ker(φ∗). Then, identifying S1 with R/Z, we may assume without loss of
generality that there are regular values of φ, say a and b, with 0 ≤ a ≤ a0 ≤ b < 1,
for which γ is homotopic to a loop contained in

M[a,b] := {x ∈ M : a ≤ φ(x) ≤ b}.

Let M[a,b]
y0

be the connected component of M[a,b] containing y0.

If there are no critical points in M[a,b]
y0

, then

π1

(

M[a,b], y0

)

= π1(φ−1(a0), y0)

(see [Mi]), and so [γ] ∈ im( j∗).
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If there is just one critical value c in (a, b), let us assume for simplicity that there
is just one component F of the critical set inside M[a,b]

y0
, where φ assumes the value c

(if there is more than one component, we argue similarly for each one2). The normal
bundle of F has a complex structure induced by the almost complex structure J and
splits as a sum ν− ⊕ ν+, where ν− is tangent to the incoming flow lines of JξM (that
is, tangent to the stable manifold). Let D−

F be the negative disk bundle of ν− and
S(D−

F ) its sphere bundle. By Morse–Bott theory (see [B]), we have

M[a,b]
y0

= M[a,ã]
y0

∪S(D−

F ) D−

F

for any regular value ã in (a, c). Hence, by the Van-Kampen theorem, π1(M[a,b]
y0

) is

the free product with amalgamation3

(2.1) π1

(

M[a,b]
y0

)

= π1

(

M[a,ã]
y0

)

∗π1(S(D−

F )) π1(D−

F ) = π1(φ−1(ã), ỹ)∗π1(S(D−

F )) π1(F),

where ỹ is a point in the appropriate component of φ−1(ã).
If index(F) > 2, then π1(S(D−

F )) is isomorphic to π1(F), and so, since we also have
π1(D−

F ) = π1(F), we get

π1

(

M[a,b]
y0

)

= π1(φ−1(ã), ỹ).

If index(F) = 2, we consider the principal circle bundle S1 ĩ
→֒ S(D−

F )
p̃S
→ F and its

homotopy exact sequence

· · · → π1(S1)
ĩ∗→ π1(S(D−

F ))
( p̃S)∗
→ π1(F) → {1}.

Note that S(D−

F ) can be identified with the restriction of the circle bundle φ−1(ã) →
Mã to F, where Mã is the reduced space φ−1(ã)/S1 (there is an embedding of F in

Mã as it is shown in [Li]), and so we also have an inclusion S(D−

F )
κ
→֒ φ−1(ã). In the

amalgamation (2.1), the elements of

( p̃S)∗(π1(S(D−

F ))) = π1(F)

(the map ( p̃S)∗ is surjective) are identified with the corresponding elements in

κ∗(π1(S(D−

F ))) ⊂ π1(φ−1(ã), ỹ),

implying that π1

(

M[a,b]
y0

)

can be identified with the quotient π1(φ−1(ã), ỹ)/N, where
N is the normal subgroup generated by all the elements of κ∗(ker (( p̃S)∗)).

2 Alternatively, by a slight perturbation of the restriction of φ to M[a,b], we could assume that no two
critical components assume the same critical value and proceed as in the case where there is more than
one critical value in (a, b) that is described at the end of the proof.

3The term amalgamation in G1∗A G2 is usually used for the quotient group of the free product of G1 by
G2 obtained by identifying the two subgroups that correspond to A under two monomorphisms A → Gi

(see, for example [CGKZ]). Here we slightly abuse this notation since we do not require these maps to be
one-to-one.
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Repeating this argument using −φ instead of φ (corresponding to reversing the
direction of the circle action), we can substitute ã by any value â ∈ (c, b] in the above
argument. However, the relevant critical points will no longer be the index-2 critical
points but the ones with index equal to 2n − 2, where 2n is the dimension of M.

If [a, b] has more than one critical value or if there is more than one component of
the critical set assuming the value c, let n1 be the number of index-2 components of
the critical set inside M[a,b]

y0
assuming values in (a0, b]. Similarly, let n2 be the number

of index-(2n − 2) components of the critical set inside M[a,b]
y0

assuming values in
[a, a0). By induction on n1 and n2 and by using the Van-Kampen Theorem as in
(2.1), possibly more than once each time we cross one of the corresponding critical
levels (using φ or −φ accordingly), we see that π1(M[a,b]

y0
, y0) can be obtained from

π1(φ−1(a0), y0) by taking a sequence of n1 + n2 quotients as explained above, and the
result follows.

Indeed, if a < c1 < · · · < cm < b are the critical values of φ in (a, b), we
first prove by induction that, for a0 ∈ (a, c1), the fundamental group of M[a,b]

y0
can be

obtained from π1(φ−1(a0), y0) by a sequence of n1 quotients as above, where n1 is the
number of index-2 critical components of φ inside M[a,b]

y0
. Similarly, if a0 ∈ (cm, b),

we prove by induction that the fundamental group of M[a,b]
y0

can be obtained from
π1(φ−1(a0), y0) by a sequence of n2 quotients as above, where n2 is now the number
of index-(2n − 2) critical components of φ inside M[a,b]

y0
. Finally, if we consider any

other regular value a0 ∈ (c1, cm), the Van-Kampen theorem yields

π1

(

M[a,b]
y0

)

= π1

(

M[a,a0]
y0

)

∗π1(φ−1(a0),y0) π1

(

M[a0,b]
y0

)

.

Here we know that π1(M[a0,b]
y0

) can be obtained from π1(φ−1(a0), y0) by a sequence
of n1 quotients, where n1 is the number of index-2 critical components of φ inside
M[a0,b]

y0
and π1(M[a,a0]

y0
) is obtained from π1(φ−1(a0), y0) by a sequence of n2 quo-

tients, where n2 is the number of index-(2n − 2) critical components of φ inside
M[a,a0]

y0
. Then, since the map

π1(φ−1(a0), y0) → π1

(

M[a0,b]
y0

)

induced by the composition of the n1 quotient maps is surjective, we conclude that
π1(M[a,b]

y0
) can be obtained from π1(φ−1(a0), y0) by taking a sequence of n1 + n2

quotients.

Note that the level sets of the generalized moment map φ may not be connected
leading to non-connected reduced spaces (see Example 4.1). Nevertheless, we will
show that all their connected components have the same fundamental group. We
first consider the equivalence relation ∼ defined in the proof of Lemma 2.2 and take
M/∼∼= S1. The map φ descends to the quotient M/∼ (since y ∼ x implies φ(x) =

φ(y)) giving us a finite covering of S1, φ̃ : M/∼∼= S1 → S1 (i.e., φ̃(z) = zk for z ∈ S1

and some k ∈ Z). Hence, we have the following decomposition of φ

(2.2) M
φc

//

φ
77

M/∼∼= S1
φ̃

// S1,
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where the map φc : M → S1 is surjective and has connected level sets. Moreover,
considering the gradient flow of φc with respect to the metric g, it is easy to check
that it has the same critical set as φ, as well as all the nice properties of its gradient
flow. In particular, the indices of the critical submanifolds are all even. Moreover,
the k connected components of the reduced space Ma := φ−1(a)/S1 are the reduced
spaces

Mc
a j

:= (φc)−1(a j)/S1

of φc, where the a j ’s ( j = 1, . . . , k) are such that φ̃(a j) = a, that is, Ma is the disjoint
union

Ma =

k
⊔

j=1

(φc)−1(a j)/S1.

Proposition 2.4 Let M be a manifold satisfying the hypotheses of Lemma 2.2. Then,

the fundamental group of all connected components of all reduced spaces Ma :=
φ−1(a)/S1 is always the same, even for critical values of the generalized moment map.

Proof Let us consider the map φc : M → S1 defined above. If the action has no
fixed points, then all “reduced spaces” (φc)−1(a)/S1 are diffeomorphic and we are
done. If that is not the case, let us again identify S1 with R/Z and assume that 0 is
a regular value of φc (if not, we just break up the circle at another point). Let c1 be
the smallest critical value of φc in [0, 1], and let us again assume that there is only
one connected component F of the critical set assuming this value (see Footnote 2).
Let D−

F be the negative disk bundle of ν− and S(D−

F ) its sphere bundle. Then, by
Morse–Bott theory, (φc)−1(c1) has the same homotopy type as (φc)−1(a) ∪S(D−

F ) D−

F ,

where a is any regular value in [0, c1). This implies that Mc
c1

:= (φc)−1(c1)/S1 has the
same homotopy type as

(

(φc)−1(a)/S1
)

∪S(D−

F )/S1

(

D−

F /S1
)

= Mc
a ∪S(D−

F )/S1

(

D−

F /S1
)

,

and so π1(Mc
c1

) is the free product with amalgamation

π1(Mc
c1

) = π1(Mc
a) ∗π1(S(D−

F )/S1) π1(D−

F /S1).

However, the local normal form for φ (and consequently for φc) on a neighborhood
of F is the same as the local normal form of a neighborhood of a critical set of an
ordinary moment map, implying that S(D−

F )/S1 is a weighted projectivized bundle
over F and so, since we also have that D−

F is homotopy equivalent to F, we conclude
that

π1(S(D−

F )/S1) = π1(D−

F /S1),

and so π1(Mc
c1

) = π1(Mc
a). Using −φ instead of φ (corresponding to reversing the

direction of the circle action) we obtain that π1(Mc
c1

) = π1(Mc
b) for b ∈ (c1, c2),

where c2 is a critical value of φc (if it exists), and the interval (c1, c2) contains only
regular values. Repeating this for every critical component of φc, we conclude that
all connected components of all reduced spaces (even critical ones) have the same
fundamental group.
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Note that an alternative proof of this proposition could be done using the fact
that, for circle actions, when passing a critical value of the moment map, the reduced
spaces change by a weighted blow-down followed by a weighted blow-up (see [G,BP])
and so, by [MD2], their fundamental group does not change.

Lemma 2.5 Let M be a manifold satisfying the hypotheses of Lemma 2.2 and equipped

with a circle action with a non-empty fixed point set. Let a0 ∈ S1 be a regular value of

the generalized moment map φ, and consider the principal circle bundle

S1 i
→֒ φ−1(a0)

p
→ Ma0

,

where Ma0
:= φ−1(a0)/S1 is the reduced space at a0. Then, for y0 ∈ φ−1(a0), the kernel

of the map p∗ : π1(φ−1(a0), y0) → π1(Ma0
, p(y0)) is equal to the kernel of the map

j∗ : π1(φ−1(a0), y0) → π1(M, y0),

defined in Lemma 2.3.

Proof Clearly ker (p∗) ⊂ ker ( j∗). Indeed, if [γ] ∈ ker (p∗), then the gradient flow
of φ gives us a homotopy between γ and a constant path contained in some critical
level set and so [γ] = 1 in π1(M).

Let us now see that ker ( j∗) ⊂ ker (p∗). Take [γ] ∈ ker ( j∗). Then, γ is homotopic
to a nullhomotopic loop in M[a,b]

y0
for some regular values a, b with 0 ≤ a ≤ a0 ≤

b < 1. Indeed, if that were not the case, there would exist a homotopy

H : [0, 1] × [0, 1] → M

between γ and the constant path based at y0 for which φ restricted to D := im(H)
would be surjective. Hence, there would exist a loop α : S1 → D in D such that
(φ ◦ α)(S1) = S1 and then, since π1(D) = {1}, we would have [α] = 1 in π1(D)
while φ∗[α] = [φ ◦ α] 6= 1, which is impossible.

If the critical points in M[a,b]
y0

have index greater than 2 and smaller than 2n − 2
(where 2n is the dimension of M), or if there are no critical points at all in this set,
then, as we saw in the proof of Lemma 2.3,

π1

(

M[a,b]
y0

, y0

)

= π1(φ−1(a0), y0),

implying that γ is nullhomotopic in φ−1(a0), and so p∗([γ]) = 1.
If there are components of the critical set inside M[a,b]

y0
with index equal to 2 or

equal to 2n − 2, then, again as in the proof of Lemma 2.3, π1(M[a,b]
y0

, y0) can be
obtained from π1(φ−1(a0), y0) by taking a sequence of quotients. Indeed, for each
index-2 component F with φ(F) = ci > a0, we consider the maps

κi : S(D−

F ) → φ−1(a0), pSi
: S(D−

F ) → F and p : φ−1(a0) → Ma0

defined as in the proof of Lemma 2.3, then we take a sequence of quotients of
π1(φ−1(a0), y0) by Ni , the normal subgroups generated by all the elements of

(κi)∗(ker (pSi
)∗).
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We repeat this procedure for each index-(2n − 2) component F with φ(F) < a0, this
time using −φ instead of φ. We conclude that, if [γ] = 1 in π1(M[a,b]

y0
, y0

)

, then
[γ] ∈ Ni for one of the groups Ni considered above. However,

(κi)∗(ker (pSi
)∗) ⊂ ker (p∗)

and so, since ker (p∗) is normal, we conclude that [γ] ∈ Ni ⊂ ker (p∗) and the result
follows.

With these results, we can now prove Theorem 2.1.

Proof of Theorem 2.1 First, let us assume that the action has no fixed points, that
is, the generalized moment map φ has no critical points. In this case, since M is
connected, all the level sets of φ are equivariantly diffeomorphic, since we can use the
flow of JξM to identify the level sets. Moreover, since we are assuming that there are
no fixed points, the map φc defined in (2.2) is a fibration with connected fiber

P := (φc)−1(a)

(a fixed level set of φc) that is a connected component of the level set φ−1(ak) for
some k ∈ Z. Hence, the long exact homotopy sequence for P → M → S1 gives us
that the sequence

{1} → π1(P)
j∗
→ π1(M)

(φc)∗
→ π1(S1) → {1}

is exact, implying that j∗ is injective. Moreover, the homologically non-trivial
loop γ : S1 → M given by Lemma 2.2 is a section of the above fibration, and so
φc
∗
◦ γ∗ = id. Hence, π1(M) is a semidirect product π1(M) = G1 ⋊ G2, where G1 is

the kernel of φc
∗

and G2 := im(γ∗). Moreover, we have

G1 = im( j∗) ∼= π1((φc)−1(a))/ ker ( j∗) = π1((φc)−1(a))

(since j∗ is injective), and so, as (φc)∗ maps G2 isomorphically onto π1(S1) = Z, the
result follows.

If the action has fixed points, they cannot be local maxima nor minima. Taking a
fixed point F, we consider the homologically non-trivial loop γ : S1 → M through F

given by Lemma 2.2. By Lemmas 2.3 and 2.5, we have the following exact sequence,
where a is a regular value of φc:

π1(S1)
i∗

// π1

((

φc
)−1

(a)
)

j∗
// π1(M)

(φ)c
∗

// π1(S1)

γ∗

jj

with (φ)c
∗
◦γ∗ = id. Hence, taking G1 := ker ((φc)∗) and G2 := im(γ∗), we have that

π1(M) is a semidirect product of G1 and G2. Moreover, considering the map

p : (φc)−1(a) → (φc)−1(a)/S1
=: Mc

a,
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we have, by Lemma 2.5, that ker ( j∗) = ker (p∗), and so

G1 = im( j∗) = π1((φc)−1(a))/ ker (p∗) = π1(Mc
a),

where the “reduced space” Mc
a is a connected component of the reduced space

φ−1(ak)/S1 of φ. On the other hand, φc
∗

maps G2 isomorphically onto π1(S1) = Z.
Hence, π1(M) contains two subgroups G1 and G2 such that G1 is normal and iso-
morphic to π1(Mc

a) and G2 is isomorphic to Z. Moreover, each element of π1(M) is
uniquely represented as the product of an element of G1 by an element of G2. Indeed,
π1(M) is a semidirect product of π1(Mc

a) by Z and then, by Proposition 2.4, the result
follows.

Remark 2.6 To be able to completely determine the semidirect product above, one
must know how the elements of Z act by conjugation on the fundamental group of
a connected component P of a level set of the moment map (when the action has no
fixed points) or on the fundamental group of a connected component of a reduced
space, Mred = P/S1. Indeed, one needs to establish the homomorphism

Ψ : Z → Aut(π1(P)) or Ψ : Z → Aut(π1(Mred))

given by Ψ( j)(g) = jg j−1, where j ∈ Z (since Z is cyclic, it suffices to know the image
of the generator). This will of course depend on the manifold M. Nevertheless, this
action of Z is independent of the choice of the level set P.

3 Non-Compact Manifolds

In this section, we consider Hamiltonian circle actions with a proper moment map
on non-compact manifolds M. The proof that the fundamental group of M is equal
to the fundamental group of its reduced spaces does not follow from the proof for
the compact case presented in [Li] since, in this case, we do not necessarily have a
maximum or a minimum.

Just as in the compact case, the image of the proper moment map is an interval
I ⊂ R but now not necessarily compact. However, the level sets of φ are still con-
nected [LMTW]. Moreover, note that the indices of the critical submanifolds are all
even. In particular, there are no critical submanifolds of index 1 or 2n − 1. As noted
by Atiyah in [A], this implies that the number of connected components of the level
sets of φ can only change when passing a local maximum or a minimum. Since the
level sets of φ are connected in this case, it follows that φ has at most a unique local
maximal manifold and a unique local minimal manifold. The values of φ at these
critical manifolds (if they exist) cannot be points in the interior of I, and so they are
in fact global extrema. Our result is then the following.

Theorem 3.1 Let S1 act on a connected symplectic manifold (M, ω) (not necessarily

compact) with proper moment map φ : M → R, and let P be an arbitrary (compact)

level set of φ. Then, as fundamental groups of topological spaces, the fundamental group

of M is either π1(M) = π1(P), when the action has no critical points, or π1(M) =

π1(Mred), where Mred is the symplectic quotient at any value of φ.
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Moreover, if φ has a minimum (or a maximum), then

π1(M) = π1(Mred) = π1(Fmin)(or = π1(Fmax)),

where Fmin and Fmax are the sets of minimal and maximal points respectively.

Proof Recall that, as in the compact case, the image of the moment map φ is an
interval I ⊂ R (not necessarily compact) and that the level sets of φ are still connected
[LMTW]. If φ has no critical points, then, as in classical Morse–Bott theory, M is
diffeomorphic to φ−1(a) × I for any value a of φ, and so

π1(M) = π1(φ−1(a)).

If the action has fixed points, then, considering a regular value of φ, say a0, we can
adapt the proof of Lemma 2.3 to show that the sequence

π1(φ−1(a0))
j∗
→֒ π1(M)

φ∗

→ {1}

is exact (i.e., j∗ is surjective). Indeed, if [γ] ∈ π1(M), then γ is homotopic to some
loop contained in a compact set (φ is proper)

M[a,b] := {x ∈ M : a ≤ φ(x) ≤ b}

for some values a, b ∈ R with a ≤ b.
The proof of Proposition 2.4 can also be adapted to show that all reduced spaces

(even critical ones) have the same fundamental group. Similarly, we can use the proof
of Lemma 2.5 to show that the kernel of the map

p∗ : π1(φ−1(a0)) → π1(Ma0
)

is equal to the kernel of the map

j∗ : π1(φ−1(a0)) → π1(M),

induced respectively by the quotient and the inclusion maps (here Ma0
denotes the

reduced space φ−1(a0)/S1). Consequently, since j∗ and p∗ are surjective,

π1(Ma0
) = π1(φ−1(a0))/ ker (p∗) = π1(φ−1(a0))/ ker ( j∗) = π1(M).

Hence, to finish our proof, we just need to show that, when φ has either a minimum
at Fmin or a maximum at Fmax, we have

π1(Ma0
) = π1(Fmin) or π1(Ma0

) = π1(Fmax).

Let us consider the case where φ has a minimum (the other case is similar). Here
we can use the following argument used in [Li] for the compact case. Let m be the
minimum value of φ and consider an interval (m, b) formed by regular values of φ.
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For a ∈ (m, b), we have that φ−1(a) is a sphere bundle over Fmin by the equivariant
symplectic embedding theorem. Let S2l+1 be its fiber, where

dim(Fmin) = 2(n − l − 1).

Then the reduced space Ma is diffeomorphic to an orbibundle over Fmin with fiber a
weighted projective space CPl

w := S2l+1/S1, and we have the exact sequence

π1(CPl
w) → π1(Ma) → π1(Fmin) → {1}.

Since CPl
w is simply connected (cf. Remark 3.2), we have

π1(Fmin) = π1(Ma)

and the result follows.

Remark 3.2 We have used the fact that the fundamental group of a weighted pro-
jective space (as a topological space) is trivial. Indeed, weighted projective spaces
CPl

w are compact symplectic toric orbifolds [LT] and can be given the structure of
an algebraic toric variety with fan equal to the fan defined by the moment map im-
age which is a simple, rational, nonsmooth polytope in (R

l)∗ (see [Au] for details).
This fan, which is spanned by the faces of the dual polytope, is complete meaning
that the union of all its cones is the whole space R

l. Then we know by [F] that the
fundamental group of the associated toric variety (the weighted projective space) is
trivial.

Alternatively, we can see CPl
w as a quotient of S2l+1 ⊂ C

l+1 by a diagonal circle
action, acting with different weights on each factor. The corresponding quotient
map S2l+1 → CPl

w induces a surjection in π1 since the fibers are connected, and so we
conclude that weighted projective spaces are simply connected.

4 Examples

4.1 Non-Hamiltonian Actions on Compact Manifolds

Example 4.1 Let us begin with a very simple example of a non-Hamiltonian circle
action with an empty fixed point set. Let M be the 2-torus T

2
= S1 × S1 (and so

π1(M) = Z
2) with symplectic form σ = dθ1 ∧ dθ2, and consider the S1-action given

by
eiβ · (eiθ1 , eiθ2 ) = (ei(2β+θ1), eiθ2 ).

The generalized moment map φ : M → S1 is just φ(eiθ1 , eiθ2 ) = e2iθ2 . All the level
sets of φ are equal to two disjoint copies of S1. We can decompose φ = φ̃ ◦ φc in the
following way:

M
φc

→ S1 φ̃
→ S1

(eiθ1 , eiθ2 ) 7→ eiθ2 7→ e2iθ2 ,

where the level sets of φc are the connected components of the level sets of φ (they are
all equal to S1), and we get the result in Theorem 2.1. That is, π1(T

2) is a semidirect
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product of π1((φc)−1(a), y0) by Z. Indeed, for a point y0 ∈ M and a = φc(y0), the
two subgroups of π1(M, y0) isomorphic to π1((φc)−1(a), y0) = Z and to π1(S1) = Z

are both normal, implying that their semidirect product is just the regular direct
product of the two groups.

Example 4.2 Let us consider the example of a 6-manifold M with a free symplec-
tic circle action with contractible orbits constructed in [K]. Here, we take Y , the
smooth, oriented, simply-connected 4-manifold underlying a K3 surface (see, for
example, [BHPV]), and consider the mapping torus4 X of an orientation-preserving
diffeomorphism Φ : Y → Y obtained as follows. First, knowing that the intersection
form of Y is Q = 3H ⊕ 2E8, where H =

(

0 1
1 0

)

is the so-called (rank-2) hyperbolic
plane quadratic form and E8 is the unique unimodular even and positive definite
quadratic form of rank 8 (see [BHPV] for details), we consider an automorphism f

of H ⊕ H, such that f (x) = x + c and f (c) = c, where x and c are two non-zero
primitive classes in H2(Y, Z). Then, we extend f to all of Q, preserving the orienta-
tion of a maximal positive-definite subspace and find, by a result of Matumoto [M],
an orientation-preserving diffeomorphism Φ : Y → Y with Φ

∗
= f .

Finally, from X, we obtain M as the total space of the circle bundle π : M → X

with Euler class c (since Φ
∗c = c, we can choose a lift to a cohomology class on the

mapping torus which we also denote by c). Since this bundle has contractible fibers,
its homotopy long exact sequence gives us that π1(M) = π1(X). Moreover, since X

is a mapping torus and Y is simply connected (implying that Φ∗ : π1(Y ) → π1(Y ) is
trivially an isomorphism), we have that π1(X), a semidirect product π1(Y ) ⋊ Z (see
[R]), is equal to Z.

Let us now obtain the same result using Theorem 2.1. Let ω be the S1-invariant
symplectic form in M (we omit its construction for simplicity, but the details can be
found in [K]) and let ξM be the vector field generating the action. Since the closed
1-form ι(ξM)ω vanishes on the tangents to the S1-action, it can be written as π∗α
where α is a closed 1-form on the quotient X. Moreover, it is shown in [FGM] that
there is a map ν : X → S1 for which α = ν∗(dθ). Hence ι(ξM)ω = π∗ν∗(dθ), and so
φ := ν ◦ π is the generalized moment map for this action. However, X is a mapping
torus implying that there is a natural map νc from X to S1 with (connected) level sets
equal to Y and, as is shown in [FGM], ν = ν̃ ◦ νc, where the map ν̃ : S1 → S1 is a
finite covering of the circle. Hence, the connected components of the level sets of ν
are equal to Y and so, denoting by P a connected component of an arbitrary level set
of φ, we get π1(P) = π1(Y ) = {1} since both the orbits of the circle action and Y are
contractible. Therefore, Theorem 2.1 also gives

π1(M, y0) = π1(P, y0) ⋊ Z = Z,

where y0 ∈ P.

Example 4.3 The only known example of a manifold M equipped with a non-
Hamiltonian circle action with fixed points was constructed by McDuff in [MD1].

4The mapping torus of a map h : Y → Y is the identification space T(h) = Y × [0, 1]/{(x, 0) =

(h(x), 1)) | x ∈ Y} (see [R]).
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Theorem 2.1 will allow us to compute its fundamental group. This 6-dimensional
manifold, M, is obtained by first considering a special manifold with boundary, X,
equipped with a Hamiltonian circle action with moment map ν : X → [0, 7], having
two boundary components (lying over the endpoints 0 and 7), and then gluing them
together.

This manifold X, which has 4 critical levels at s = 1, 2, 5, and 6 with zero sets
of codimension 4, is constructed as follows (for simplicity we will not keep track of
symplectic forms). Considering coordinates θ1, . . . , θ4 on T4 and, letting σi j be the
form dθi ∧ dθ j , we construct five regular pieces ν−1(I), where

• ν−1(I) = T4 × S1 × I, for I = (0, 1) and I = (6, 7),
• ν−1(I) = PI × I, with PI a principal circle bundle over T4 of Chern class cI , where

(i) cI := −[σ42] for I = (1, 2);
(ii) cI := −[σ31 + σ42] for I = (2, 5);
(iii) cI := −[σ31] for I = (5, 6).

Then, we construct four additional pieces Qλ (λ = 1, 2, 5, 6), lying over the intervals
[λ − ε, λ + ε], which are then glued to the already defined parts. The singularity as s

increases through 1 is diffeomorphic to the singularity as s decreases through 6, and
similarly for 2 and 5, so X will be completely determined with the description of Q1

and Q2.

The piece Q1 is of the form T2 ×Y , where Y is a 4-manifold obtained from S2 ×S2

with symplectic form 2ρ⊕ρ (where ρ is a symplectic form on S2 with total area 1) and
equipped with the standard diagonal circle action in the following way. Considering
the moment map for this action H = 2µ1 + µ2, where µi is the moment map for
the i-th factor with respect to ρ (note that µi(S2) = [0, 1]), we take V := H−1([2 −
ε, 2 + ε]), which fibers over S2. Then we cut the inverse image of a disc avoiding the
unique critical value of this projection (which is an S1-invariant set diffeomorphic
to D2 × S1 × [−ε, ε]) and glue back a copy of (T2 − Int(D2)) × S1 × [−ε, ε] (see
Figure 1).

The piece Q2 is of the form S ×S1 Y where S is the total space of the circle bundle
S1 →֒ S → T2 with Euler characteristic −1, so that Q2 fibers over T2 with fiber Y .

H(M)

0

1

2

3

Figure 1: Obtaining Y from S2 × S2 in Example 4.3.
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The manifold M is then obtained from X by gluing ν−1(0) to ν−1(7) by the dif-
feomorphism of T4 that interchanges θ1 with θ3 and θ2 with θ4.

Any reduced space Ma at a regular value a of the generalized moment map is dif-
feomorphic to T4, implying that π1(Ma) = Z

4, and so, by Proposition 2.4, π1(Mc) =

Z
4 for every reduced space at a critical value c. We conclude from Theorem 2.1 that

π1(M) = Z
4

⋊ Z.

The action of Z on Z
4 is determined by the diffeomorphism of T4 used to glue the

boundary components of X.

4.2 Hamiltonian Actions on Noncompact Manifolds

The first two examples below satisfy the hypotheses of Theorem 3.1. In Example 4.4,
the proper moment map has no minima or maxima while, in Example 4.5, such
types of critical points do exist. The last two examples (4.6 and 4.7) illustrate that the
properness of the moment map is essential to our results on the fundamental group.
In particular, in Example 4.6, there are no critical points and

π1(M) 6= π1(φ−1(a))

for some values a of the moment map φ, and, in Example 4.7, there is a critical point
(a minimum) and π1(Mred) is not always the same for all values of the moment map.

Example 4.4 We can construct a non-compact symplectic manifold X with a
Hamiltonian S1-action with no minima or maxima from Example 4.3 in the follow-
ing way. Taking the manifold X from McDuff ’s example, we attach two pieces to its
boundary of the form T4 × S1 × I, where I = (−∞, 0] and [7,∞), extending its
symplectic form and moment map ν in the natural way. The resulting moment map
is proper and has no minimum or maximum. Then, since the fundamental group of
its reduced spaces is Z

4, so is π1(X).

Example 4.5 Consider M = S2 × R
2 with symplectic form ω = ρ0 ⊕ ω0 (where

ρ0 and ω0 are the standard symplectic forms on S2 and on R
2), and the following S1-

action: take the S1-action on S2 by rotations about the vertical z-axis and the standard
S1-action on R

2 by rotations around the origin. The moment map on M is just the
sum of the height function z with the map

ν(u, v) =
u2 + v2

2
.

Physically, we have a classical spin and a harmonic oscillator ν.
This moment map φ = ν + z is proper, has a minimum at S × {0} and a critical

point of index 2 at N×{0}, where S and N are respectively the south and north poles
of the sphere. This circle action extends to a Hamiltonian T

2
= S1 × S1 torus action,

where the action of the second circle on the sphere is by clockwise rotations and on R
2

is the standard one. The moment map for this extended T
2-action is (ν+z, ν−z), and
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its image is pictured in Figure 2. All regular reduced spaces of φ are homeomorphic
to S2 and so,

π1(M) = π1(Mred) = π1(Fmin) = {1}.

φ(M)

−1

0

1

Figure 2: Moment map image for the T
2-action on S2 × R

2.

Example 4.6 Let us now give an example that shows that the requirement for
properness of the moment map is essential to our results. Let us consider

M = S2 × C \ {0}

with the same symplectic form and the same circle action as in Example 4.5. The im-
age of the moment map φ = ν + z is now the interval (−1,∞). This map has no crit-
ical points on M and is no longer proper (note for instance that the level sets φ−1(a)
for values a ∈ (−1, 1) are not compact). We can easily check that Theorem 3.1 is
no longer valid. In fact, the fundamental group of the manifold, π1(M) = Z, is no
longer the fundamental group of the level sets of φ. Indeed, considering, for instance,
a value a ∈ (−1, 1), the level sets φ−1(a) are diffeomorphic to S3 \ {pt}. Note also
that the level sets of this moment map are no longer all diffeomorphic (as they would
be for a proper moment map with no critical points) since, for a ∈ (1,∞), they are
diffeomorphic to S2 × S1.

Example 4.7 We end this section with an example of a non-compact Hamiltonian
S1-space with a non-proper moment map with a critical point for which the conclu-
sion on the fundamental groups in Theorem 3.1 fails to hold. Let us consider

M =
(

S2 \ N
)

×
(

S2 \ N
)

with symplectic form 2ρ ⊕ ρ, where ρ is a symplectic form on S2 with total area
1 and N is the north pole, equipped with the standard diagonal circle action (see
Figure 3). This action is Hamiltonian and its moment map φ has a unique critical
value at 0 corresponding to the fixed point (S, S), where S is the south pole of the
sphere (see Example 4.3 for the moment map expression and compare Figures 1 and
3). We can see that the reduced spaces have different fundamental groups. Indeed, for
a ∈ (0, 1), the reduced spaces Ma = φ−1(a)/S1 are spheres while, for a ∈ (2, 3), they
are spheres minus two points. That is, π1(Ma) = {1} for a ∈ (0, 1), and π1(Ma) = Z

for a ∈ (2, 3).
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φ(M)

0

1

2

3

(S, S)

Figure 3: Moment map image for an extended T2-action on (S2 \ {N}) × (S2 \ {N}).
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Mathematics, 92, Birkhäuser, Boston, MA, 1990.

[CGKZ] D. J. Collins, R. I. Grigorchuk, P. F. Kurchanov, and H. Zieschang, Combinatorial group
theory and applications to geometry. Reprint of the original English edition from the series
Encyclopaedia of mathematical sciences, 58, Springer-Verlag, Berlin, 1998.

[F] W. Fulton, Introduction to toric varieties. Annals of Mathematics Studies, 131, Princeton
University Press, Princeton, NJ, 1993.

[FGM] M. Fernández, A. Gray, and J. W. Morgan, Compact symplectic manifolds with free circle
actions and Massey products. Michigan Math. J. 38(1991), no. 2, 271–283.
doi:10.1307/mmj/1029004333

[G] L. Godinho, Blowing up symplectic orbifolds. Ann. Global Anal. Geom. 20(2001), no. 2,
117–162. doi:10.1023/A:1011628628835

[L] E. Lerman, Symplectic cuts. Math. Res. Lett. 2(1995), no. 3, 247–258.
[LT] E. Lerman and S. Tolman, Hamiltonian torus actions on symplectic orbifolds and toric

varieties. Trans. Amer. Math. Soc. 349(1997), no. 10, 4201–4230.
doi:10.1090/S0002-9947-97-01821-7

[LMTW] E. Lerman, E. Meinrenken, S. Tolman, and C. Woodward, Nonabelian convexity by
symplectic cuts. Topology 37(1998), no. 2, 245–259. doi:10.1016/S0040-9383(97)00030-X

[Li] H. Li, π1 of Hamiltonian S1 manifolds. Proc. Amer. Math. Soc. 131(2003), no. 11,
3579–3582. doi:10.1090/S0002-9939-03-06881-3

[K] D. Kotschick, Free circle actions with contractible orbits on symplectic manifolds. Math. Z.
252(2006), no. 1, 19–25. doi:10.1007/s00209-005-0841-6

[M] T. Matumoto, On diffeomorphisms of a K3 surface. In: Algebraic and topological theories
(Kinosaki, 1984), Kinokuniya, Tokyo, 1986, pp. 616–621.

https://doi.org/10.4153/CJM-2010-053-3 Published online by Cambridge University Press

http://dx.doi.org/10.1112/blms/14.1.1
http://dx.doi.org/10.2307/1969631
http://dx.doi.org/10.1307/mmj/1029004333
http://dx.doi.org/10.1023/A:1011628628835
http://dx.doi.org/10.1090/S0002-9947-97-01821-7
http://dx.doi.org/10.1016/S0040-9383(97)00030-X
http://dx.doi.org/10.1090/S0002-9939-03-06881-3
http://dx.doi.org/10.1007/s00209-005-0841-6
https://doi.org/10.4153/CJM-2010-053-3


1098 L. Godinho and M. E. Sousa-Dias

[MD1] D. McDuff, The moment map for circle actions on symplectic manifolds. J. Geom. Phys.
5(1998), no 2, 149–160. doi:10.1016/0393-0440(88)90001-0

[MD2] , Examples of simply-connected symplectic non-Kählerian manifolds. J. Differential
Geom. 20(1984), no. 1, 267–277.

[Mi] J. Milnor, Morse theory. Annals of Mathematics Studies, 51, Princeton University Press,
Princeton, NJ, 1963.

[O] K. Ono, Obstruction to circle group actions preserving symplectic structure. Hokkaido Math.
J. 21(1992), no. 1, 99–102.

[OR] J. P. Ortega and T. S. Ratiu, Momentum maps and Hamiltonian reduction. Progress in
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