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Summary

A mathematical theory is developed which enables the wind-tunnel correc-
tions to the lift and moment forces acting on an aerofoil in subsonic two-
dimensional flow to be calculated. The usual "averaged" boundary condi-
tion for slotted walls is assumed and the corrections obtained by successive
approximation from the open-jet tunnel.

1. Introduction

Woods [11] has recently revived the problem of determining the blockage
interference at an aerofoil symmetrically placed between the slotted walls
of a wind-tunnel. Discussions due to Baldwin, Turner and Knechtel [1],
Maeder and Wood [5] and others are also available. The results obtained
show that the blockage interference may be made to vanish for a particular
slot configuration. However, it is still to be expected that the wall inter-
ference effects on the lift and moment forces may exist and these should be
evaluated if the wind-tunnel measurements are to be corrected in order to
predict free air conditions.

These corrections will be considered in this paper. Apparently, little
theoretical work has been done on these corrections. The only discussion
available to the writer is that of Maeder and Wood [5] who determine the
angle of incidence correction in terms of the lift coefficient. However, their
work does not attempt the problem of determining the lift and moment
corrections as defined in § 5.

Consider the subsonic flow of an inviscid fluid past a thin aerofoil placed
at a small incidence a midway between the slotted walls (Figure 1). The
incidence is measured relative to the direction of the undisturbed stream,
which is assumed parallel to the walls. At the slotted walls, the actual
boundary condition pertaining is replaced by an "averaged" boundary
condition (see, for example, [11])
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where <f> is the (perturbation) potential of the flow in the tunnel; x is the
direction of the walls; n is the outward normal to the walls and A is a con-
stant related to the slot geometry. The special cases of A being zero and
tending to infinity correspond to the open jet and the solid wall tunnel
respectively.

The changes in the aerofoil's lift and moment coefficients, due to the
imposition on the boundaries of the stream of the condition expressed in
equation (1), are considered. A method of calculation based on a known
solution of Laplace's equation in a given region and the successive approxi-
mations solution to a Fredholm type integral equation, is outlined. This
method allows the calculation of the coefficients for given values of three
variables. These variables are the incidence a; the ratio cj2flh where c is the
aerofoil chord, 2h is the tunnel height and {$ is related to the Mach number
of the flow (see § 2); and the ratio Ajh.

2. The boundary value problem

Let (q, 8) be the polar components of the velocity vector of the stream
flow. At infinity upstream (i.e. x = — oo) we assume this velocity has
components (C7, 0).

C

D
Fig. 1

Consider the complex function / defined by

(2) f = Q + iB,

where

(3) /f
(4) /J» = 1 - M2

and M is the Mach number of the flow at infinity upstream. For thin aero-
foils at small incidences, the ratio {U—q)jU is a small first-order quantity
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everywhere except in the neighbourhoods of the two stagnation points of
the aerofoil. Therefore, throughout the strip — oo £2 a: s£ oo, — h^y^h
with the exception of the stagnation points,

and / is an analytic function of Z, where

(6) Z = x + tfy

(see, for example, Robinson and Laurmann, [6], p. 333). Further, the
above assumptions allow the imposition of the flow direction at the aerofoil
surface on the interval — c/2 5S x ^ c/2, y = 0. That is.

(7) 0 = 0(a;) -^-<x^^-, y = 0.
2 2

On the tunnel walls, we have, from equation (1),

8Q
Q -\- A — = 0 — oo ^ CK ^ oo, y = h,

dy
(8)

BQ
Q — A — = 0 —oo-£x<oo, y = —h.

dy

The Z-plane can be mapped into a suitable singly-connected region,
namely a rectangle in the £(= y + «?)-plane (see figure 2), by means of a
comormal transformation involving Jacobian elliptic functions. The trans-
formation (Woods [8]) is

where the modulii of the elliptic functions, k and k', are given by

(10) * 5
In the f-plane, the aerofoil surface — c/2 <; x ^ c/2, y = 0 maps into the

line — IK 52 y ^ IK, r\ = 0; the upper and lower walls — oo ^ x ^ co,
y = h and y = — h become 0 ^y < 2K, rj = K' and — 2K JS y ^ 0,
rj =K' respectively. Corresponding points in figures (1) and (2) are marked
accordingly. The numbers K and K' are the real and imaginary quarter
periods of the elliptic functions of modulus k. Because of the conformal
nature of the transformation (9), / will be an analytic function of C within
and on the rectangle —2K£y^2K, 0^.r)<K' except at the points
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Fig. 2

corresponding to singularities in the Z-plane. Such singular points, in the
C-plane, will thus be confined to the line — 2K ̂  y :S 2K, r) = 0.

The form assumed by the boundary conditions (equations (7) and (8))
in the C-plane will now be considered. Equation (7), which states that the
flow direction on the aerofoil surface is a known function, becomes

(11) 0 = $(y) ~-2K^y<>2K, r) = 0.

By differentiation of (9), using the addition properties of the hyperbolic
and elliptic functions,

(12) dZ
n

But, on the tunnel walls £ = y + iK', so that the equations (8) become,
with the aid of (12),

nA 8Q
— = 0
d

0

(13)
y£2K,

— 2K^y^0,

V =

= K'.
TIA dQ

~2h S n y !ty =

Moreover, from figures 1 and 2 it is clear that / must satisfy the relation

(14) lim /(— 2K + e, TJ) == lim }(2K — e, r)) e > 0, 0 ̂  r\ ^ K'., ) / ( 7 )
£-•0 6-.0

Therefore, the boundary value problem is to determine an analytic func-
tion /(£) which satisfies equations (11), (13) and (14).

3. The solution of the boundary value problem

The function /(£) which satisfies equation (14) and the conditions that
(i) 6 is known on — 2K ̂  y <̂  2K, r\ = 0 and
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(ii) Q is known on — 2K ^ y ^ 2K, r\ = K',
is given by [8]

where sn'/sn(w) denotes djdu(logsnu). The following identities [9] are
useful;

(16) — («) = ds 2u + cs 2u

and

(17) (sn M — sn i/)(ds(w — v) + cs (u — v)) = dn w en v + en w dn v.

The equations (13) may be written

ii -\ |sn y\ — = 0 —2K ^ y sS 2if, jy = /£'.

That is, on using the Cauchy-Riemann relations for an analytic function,

nA m - < < K -K'

Therefore, from equations (15), (16) and (18), we find on integrating by
parts

1 r21'

(19) m ' ^ * 8 ,
+ ^ -6(y* + » X ' ) — - [|sny*|(dn(y*-f) + k cn(y* - f ) ) ] U y * .

2« 8y* ]

This last equation gives, providing 6(y + t'JC') is known, the function /(C).
Unfortunately, 6(y -f- iK') is not known explicitly. However, on substitut-
ing f = y -f- iK' in (19), it is possible to obtain a Fredholm type integral
equation for this function, namely,

1 [-2K 1

d(y + iK') = — 0(y*)(dn(y* — y) + kcn{y* — y))
(20) 2wJ -« l

+ —r- 0(y* + iK') —— [|sn y*|(ds(y*— y) + cs(y* — y))]l dy*.
2A gy* J

Thus, equations (20) and (19) may be regarded as successive steps in the
determination of the function / ( ; ) . The first step, then, is the solution of
(20) for given 0(y). This solution may be obtained by the method of succes-
sive approximations. I t can be shown tha t [3] these approximations will
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converge for all values of A jh in the range

3 \i
h ~ ((k2{K2-Ez)~(K-E)

where E is the complete elliptic integral of trie second kind.

4. The flow direction on the aerofoil surface

Ignoring the aerofoil thickness and assuming Joukowski's condition that
the rear stagnation point remains fixed in position at the trailing edge, the
direction of flow on the aerofoil surface is given by [4]

(22) 6(y) = - a + nX6{y)

where a is the angle of incidence of the aerofoil (measured from the negative
a;-axis), A is a number initially unknown and due to the small movement of
the front stagnation point away from its mean position y = 0 and d(y) is
the delta function.

The value of X is fixed by the condition that the incidence of the aerofoil
has no effect on the flow direction at infinity upstream. It is assumed in § 2
that 0 = 0 at a; = — oo. But, in the f-plane, the point x = — oo maps into
the point f = iK'. Therefore,

(23) 6(iK') = 0.

Equation (23) fixes the value of X in terms of a.

5. The lift and moment coefficients

The lift coefficient, CL, and the moment coefficient about the chord
midpoint, CM, are given by [10]

4hk f2*
(24) CL = Q(y) sn y dy
and

(25)
\nc] J _«

dn y — k en y
k'

dy

respectively. The value of Q(y) to be inserted in these expressions is the
right-hand side of (19) with f = y. This function, in turn, depends on the
value 0(y + iK') obtained from equation (20).

The first approximation to 6(y + iK'), O^y + iK') say, is, from (20),

fl,(y + iK') = i - f2 6{y*) (dn(y* - y) + k cn(y* - y))dy.
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Using equation (22) this becomes

(26) e^y + iK') = - — (dn y + k en y) - x.

Substitution of (22) and (26) for d(y) and d(y + iK') respectively in the
right-hand side of (20) gives the second approximation to d(y + iK'),
dz(y + iK') say. This is,

(27) J

l_(\sny*\[ds(y*-y)+cs(y*-y)])dy*.

Substitution of (22) and (27) for 6(y) and 6{y + iK'), respectively, in the
right-hand side of (20) gives the third approximation to 0(y + iK') and
so on.

From equation (19), using (22) and (27), we have to second order in Ajh,

A f ^
+ — (dny*4-£cny*)

4hJ_2K

(28) 8y*

(

—

Using the results obtained in the appendix together with the results that [2]

and
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J sn*ydy = -±i (s(l+k*)j sn*ydy-2J snydyj,

we find, from (24) and (28), after some elementary integration

4hkX
CL =

(29)

Similarly, from (25) and (28), we have

+ 3ft log (1 -ft8) + 4ft* log - — - )
(30) k'

- 2k log k' log - ^ - r (7 - k*) + 3A2 log ft'j J.

Equation (23) gives, using (27) and the result in part (i) of the appendix,

(31) 2« = A

Elimination of X from equations (29), (30) and (31) gives the lift and mo-
ment coefficients experienced by an aerofoil at incidence a in a slotted wind-
tunnel.

6. The wind-tunnel corrections

For practical purposes it is convenient to eliminate k in favour of the ratio
cjdh as this ratio is generally kept as small as possible. To do this we use
the following expansions applicable for small values of k;

(32) log ft'=-i2-^

and

(33) JL £]og

Moreover, for small values of ft, we have [2]
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and

Therefore, from (21), the successive approximations solution will converge
for Ajh ^ 4/jtfc.

Equations (31), (32) and (33) give, to second order in k and A jh,

Also, from (29), (32) and (33) we find

4hkX I k* A

and

From (10) we have, to third order in cjdh,

Therefore, from (34), (35), (36) and (37) we have, in terms of cjdh,

and
nc 1 A\ , /nc\2/_ A /A\*

In an infinite stream h -> oo so that (38) and (39) yield

and
tm

L

the classical results for an infinite (free) stream. Therefore, from (38) and
(39)
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and

respectively. These last two equations give the corrections to be applied
to slotted wind-tunnel measurements of the lift and moment coefficients
in order to predict free air conditions.

In particular, it is known that a value of Ajh = 1.2 is required for zero
blockage in a slotted tunnel (see, for example, [1]). Substituting this value
of Ajh in (40) and (41) we find

(
^ 10\2fih

and

2fih

If we choose, for illustrative purposes, c/2/SA = 1/10 these last two equations
give for the lift and moment corrections

CL = 1.0262 CLm

and
Cj, = 1.0178 C ^ .

Appendix

In the determination of equations (29), (30) and (31) from equations
(24), (25), (27) and (28) we require, amongst others, the following integrals;

Ii(v) — (dn u + k en u) — (|sn w|[dn(w — v) -\-k en {u — v)])du

= (dnu-^-kenu)—• (|sn «|[dn(« —1») — dn(u-\-v)
«/ n OH

:cn(u — v) — kcn{u + v)])du.

That is, on integrating by parts and using the addition theorems for the
elliptic functions,

r o;,2 f2* a ,A , t . d n M d n » + *cnMcnii
i , = 2k2 sn v I sn3w(dn u-\-kcnu) du.

Jo 1— k*sn*u sn2f
' 0

As en u is an odd function about u = K we find
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rK (dn a-j-A2 en v) — h? sn2«(dn v + cn v)

217

7X = 4k* sn v\ sns u
Jo sn2w snai;

du

which, after some algebra, becomes

4 ( , rK en v dn v
si

' 0 Jo
snudu

en v dn i>(cn t; + dn a) fK sn « duCK snudu \
Jo 1 — k2 sn2u sn2vj

Using the results [2]

CK snudu 1

Jo l-a2sn2w ~~ V(l-a2)(*2-a2) ° 8

<•* . 1 . V

and

we find that

en w + dn v k' en n dn »
log-

A'

sn2f ' ° |dn i>—

A useful result may be obtained by letting v = y + iK.'. This is,

f** 8
(dn « + ^ en u) — (|sn «|[cs (u — y) + ds (u — y)]) iw

J_2K OU
2 f /fe'

= (dn y -f k en y) I (1 + A2) log — k — 2k dn y en y log -
« I 1 —« 1

— 2k2 sn2 y log

k'

sn y
en y — dn y

(ii) j^snu(dn {u'-u) + ken (u'-u))du

= t'J_ sn«(cs (t» — M) + d s (v — u))du

where D = u' + iK'. Using equation (17) we write

J_iKsnu(cs(v — u)+ds(v — u))du = sn» j ^ (cs (v — u) + ds {v — u))du

— I (cnndn« + cn«dn D)̂ M.
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Thus, from (16),

sn«(cs(!> —«) + ds(i> —w)Ww = —2|snv logsn +"C n " )
J-2K \ L 2 J _gtf /

= 2?n(sn v — i cnv).
Therefore, on substituting v = u' + *'!£' in this last result, we have

.__,.., ..v^.. 2(1-dn«')sn«(dn(«' — « )+ ft en {u' — u]

(iii) sn w(dn(«' — «) + ft cn(«' — «)) log

= * I sn u(cs(v — u) -\- ds(v — u)) log
J-2K

= /2,say,

where v — u' + iif'. From (17), we have

/2 = * I sn v • J — I (en vdn« + cn«dn») log
\ J -2K

Sn M

dn u — k en u

k'

du

dn«-Acn«
du

where

J -2K

dnu — kcnu

k'

du\

Using (16) we may write

— ) l o g

dn u — k en w

ft'
dn « — ft en u

du.

du

sn u log sn —— du
°l-ft

on integrating by parts. That is,

8J [**
—- = _ k\ snu(cs(v — u)+ ds(v —u))du
OV J-2K

= — 2jrft (en v -\- i sn v)

on using the result in part (ii) above. Consequently,
_ / . dn v — ft en v\

J = 2n I sm-*(ft sn v) +t log — 1

as, when v = 0, J has an odd function for its integrand and vanishes. But,

sin~1o' = — i log (iw + y/l — w2),
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so that, we have

219

J = —2m log
(1 — k) (dn v + ik sn v)

dn v — k en v

Using the results [8] that

f** dnw — kenu
en u log

J-2Kand
rZK
I dn M log

k'

dn « — ^ en u

= - log (!-*•)

= 0

we, then, have

/• =
2n t k'(\ — cnu') k' \

M0g _|_cn M' lOg ^ ' _ l 0 g I .
« sn u \ dn w — cn« 1 — k]
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