BULL. AUSTRAL. MATH. SOC. VOL. 9 (1973), 275-290.

On rings with trivial torsion parts

L. Bican, P. Jambor, T. Kepka, P. Němec

In this paper, we exhibit the necessary and sufficient conditions for a ring R to have only the trivial torsion parts with respect to any (hereditary) radical on the category of left R-modules.

0. Introduction

Let R be a ring with identity and r be a (hereditary) radical on the category R^{mod} of the left R-modules, that is, r is an idempotent subfunctor of identity such that r(M/r(M)) = 0 for every $M \in R^{mod}$ (in addition, r is left exact). In investigations of radical structure on modules, we often need the condition r(R) = 0. So it is natural and of interest to study rings having this property for all non-trivial radicals. We shall say that R is a left R-ring (T-ring) if r(R) = 0 for every non-trivial (hereditary) radical r on R^{mod} .

In this paper, we exhibit the necessary and sufficient conditions for a ring to be either an *R*-ring or a *T*-ring, supplied with interesting counterexamples. The main result of Section 2 is: *R* is an *R*-ring (*T*-ring) iff R_n is an *R*-ring (*T*-ring) for every $n \ge 1$. Section 3 applies the ideas of Gardner's work [7] to an extent of a structural investigation of *T* and *R*-rings with non-zero socles. Throughout this paper, unless otherwise specified, *R* stands for a ring with identity and either *T* or *R*-rings are considered as the left *T* or *R*-rings. Let us recall ([4]) that the existence of a radical *r* on R^{mod} is equivalent to the existence of a torsion theory (*M*, *L*) where

Received 8 May 1973.

$$M = \{M \in \operatorname{Rmod} | r(M) = M\} = L^* = \{M \in \operatorname{Rmod} | \operatorname{hom}_R(M, L) = 0, \forall L \in L\}$$

and

$$L = \{M \in \operatorname{mod} | r(M) = 0\} = M^* = \{L \in \operatorname{mod} | \operatorname{hom}_R(M, L) = 0, \forall M \in M\}$$

In particular ([9]), in the case of a hereditary radical it is equivalent to the existence of a radical filter $E \subseteq l(R)$, where l(R) is the set of left ideals of R; that is,

- (i) if $I \in E$ then $(I : a) = \{x \in R \mid xa \in I\} \in E$ for every $a \in R$;
- (ii) $I \in l(R)$, $J \in E$, and $(I : a) \in E$ for every $a \in J$ imply that $I \in E$.

It is essential to know that if E is a radical filter then the corresponding radical r is defined by $r(M) = \{m \in M \mid (0 : m) \in E\}$ for every $M \in_R \mod$ and $I \in E$ iff r(R/I) = R/I ([9]). It is easy to see that our definition of a radical filter is equivalent to that of [9]. Note that if r is a radical on $_R \mod$ then r(R) is a two-sided ideal since r is a subfunctor of identity and the right multiplication on R is a left R-homomorphism. It should be remarked that, obviously, simple rings are R-rings and integral domains are T-rings.

We shall frequently use the following notation:

 $M \subseteq R$ is right T-nilpotent if $\forall (a_1, a_2, \ldots \in M) \exists (n \ge 1)$ such that $a_n a_{n-1} \cdots a_1 = 0$;

R is a commutative primary ring if the prime radical is a prime ideal;

 $I \in \mathcal{I}(R)$ is an essential ideal if $I \neq 0$ and $I \cap J \neq 0$ for every $J \in \mathcal{I}(R)$, $J \neq 0$; $R_p = \{M \in p \mod | r(M) = 0 \text{ or } r(M) = M \text{ for every radical } r$

on pmod },

 $T_{R} = \{M \in_{R} \text{mod } | r(M) = 0 \text{ or } r(M) = M \text{ for every hereditary} \\ \text{radical } r \text{ on }_{R} \text{mod} \};$ C(R) - the center of R; $\hat{M} - \text{the injective hull of } M \in_{R} \text{mod};$ R(+) - the underlying abelian group of R; J(R) - Jacobson radical of R; $R^{n} - \text{direct product of } n \text{ copies of } R;$ $R_{n} - \text{the full ring of matrices of degree } n \text{ over } R.$

The scalar matrix corresponding to an element $x \in R$ is the diagonal matrix with all the elements on the diagonal equal to x.

For simplicity, by $M \in T_R$ or T_R^h or F_R or F_R^h we mean that M is a torsion class, hereditary torsion class, torsion-free class and hereditary torsion-free class respectively.

1. On T and R-rings

THEOREM 1.1. Let R be a ring and $M \subseteq R$ be a subset. Then $E_{M} = \{I \in l(R) \mid \forall (a_{1}, a_{2}, \ldots \in M) \forall (s \in R) \exists (n \geq 1) (a_{n}a_{n-1} \ldots a_{1}s \in I) \}$ is a radical filter and

- (i) if M is a left ideal then E_M is contained in the least radical filter containing M ,
- (ii) if M is a two-sided ideal then E_M is the least radical filter containing M,
- (iii) $E_M = l(R)$ iff M is right T-nilpotent.

Proof. Let $I \in E_M$, $t \in R$ and suppose that $a_1, a_2, \ldots \in M$ and $s \in R$. Then there is $n \ge 1$ such that $a_n a_{n-1} \cdots a_1 s t \in I$, that is, $a_n a_{n-1} \cdots a_1 s \in (I : t)$ and consequently $(I : t) \in E_M$. If K is a left ideal such that for every $k \in I$, $(K : k) \in E_M$, then there is $n \ge 1$ such that $a_n a_{n-1} \dots a_1 s = u \in I$ and $(K : u) \in E_M$. Hence, there is $m \ge 1$ such that $a_{n+m} \dots a_{n+1} a_n \dots a_1 s \in K$.

(*i*) Let $K \in E_M \setminus C$ where C is the least radical filter containing M. By the definition of radical filter there is $a_1 \in M$ such that $(K : a_1) \notin C$ and consequently there is a sequence $a_1, a_2, \ldots \in M$ such that $((\ldots (\{K : a_1\}) : a_2\} : \ldots) : a_n) = (K : a_n a_{n-1} \ldots a_1) \notin C$ for every $n \ge 1$, which yields a contradiction with the definition of E_M .

(ii) If M is a two-sided ideal then obviously $M \in E_M$.

(iii) It is easy to show that $E_M = l(R)$ iff $0 \in E_M$.

COROLLARY 1.2. If R is a commutative ring, I is an ideal in R and $E'_I = \{K \in l(R) \mid K \subseteq I \text{ and } I/K \text{ is T-nilpotent in } R/K\}$, then $E_I = \{J \in l(R) \mid \exists (K \in E'_I)(K \subseteq J)\}$ is the least radical filter containing I.

THEOREM 1.3. Let R be a ring. If (0:a) is right T-nilpotent for every $a \in R$, $a \neq 0$ then R is a T-ring. Conversely, if R is a T-ring then (0:Ra) is right T-nilpotent for every $a \in R$, $a \neq 0$.

Proof. The sufficient condition follows right from Theorem 1.1. For the necessary condition, since (0 : Ra) is a two-sided ideal, $E_{(0:Ra)}$ is the least radical filter containing (0 : Ra) by Theorem 1.1 (*ii*). If $a \neq 0$ then $(0 : Ra) \subseteq (0 : a) \in E_{(0:Ra)} = l(R)$, since R is a T-ring; and Theorem 1.1 (*iii*) finishes the proof.

COROLLARY 1.4. Let R be a commutative ring. Then R is a T-ring iff (0:a) is T-nilpotent for every $a \in R$, $a \neq 0$.

COROLLARY 1.5. Every commutative T-ring is primary.

PROPOSITION 1.6. Let R be a T-ring and $e \in R$ be a central idempotent. Then e = 0 or e = 1.

Proof. Put K = eR. Then $K^2 = K$ and K is a two-sided ideal. If (0:e) = 0 then, obviously, e = 1. Suppose that $a \in (0:e)$,

 $a \neq 0$. Then $K \subseteq (0 : a) \in E$ where $E = \{I \in l(R) \mid K \subseteq I\}$ is a radical filter containing K (it needs just a tedious checking of the radical filter's properties). Since R is a T-ring, $0 \in E$ and consequently K = 0.

REMARK 1.7. (i) By Proposition 1.6, no direct product of 2 rings is a T-ring and consequently T-rings are not closed under quotient rings (for example, consider the ring of integers).

(ii) By Corollary 1.4, the commutative T-rings are closed under the subrings containing the identity. On the other hand, generally it is not so in the non-commutative case. For, consider the full matrix ring of degree n > 1 over a field. It is an R-ring which contains an idempotent e different from zero and identity and the subring generated by e and 1 is not a T-ring.

PROPOSITION 1.8. Let R be a T-ring, $0 \neq a \in C(R)$ and $(0:a) \neq 0$. Then

- (i) if $0 \neq M \in \mathbb{R}^{mod}$ then there is $m \in M$, $m \neq 0$, such that $a \in (0 : m)$,
- (ii) (0:a) is an essential left ideal of R,
- (iii) (0:a) is right T-nilpotent,
- (iv) a is nilpotent.

Proof. (i) Consider $M_a = \{M \in {}_R \mod | m \in M, m \neq 0 \Rightarrow am \neq 0\}$. Then $M_a \in \mathbf{F}_R^h$. For, it is sufficient to show that M_a is closed under the injective hulls. Let $M \in M_a$. Since $a \in C(R)$, $D = \{m \in \hat{M} \mid am = 0\}$ is a submodule of \hat{M} and $D \cap M = 0$. Hence D = 0. Now, by the hypothesis $R \notin M_a$ and since R is a T-ring, $M_a = 0$.

The rest is an easy consequence of (i) and Theorem 1.3.

COROLLARY 1.9. Let R be a T-ring. Then R(+) is either torsion-free or a p-group, for some prime p.

PROPOSITION 1.10. Let R be a ring. Then the following are equivalent:

- (i) R is an R-ring;
- (ii) if $A, B \in \mathbb{R}^{\text{mod}}$ and $\hom_R(A, B) = 0$, then either B = 0or $\hom_R(A, R) = 0$;
- (iii) for every non-zero left ideal I and every non-zero $M \in {}_{B}$ mod , hom_B(I, M) $\neq 0$;
- (iv) for every non-trivial left ideal I, $hom_p(I, R/I) \neq 0$,
 - (v) for every non-trivial two-sided ideal I, $hom_R(I, R/I) \neq 0.$

Proof. (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) is obvious.

 $(v) \Rightarrow (i)$. If r is a radical on R^{mod} then r(R) is a two-sided ideal and $\hom_{P}(r(R), R/r(R)) \approx 0$. Hence r(R) = 0 or r(R) = R.

PROPOSITION 1.11. Let R be a ring. Then

- (i) if R is an R-ring then for every non-zero left ideal I and every simple module M there is a left ideal K such that $K \subseteq I$ and $I/K \cong M$,
- (ii) if for every non-trivial two-sided ideal I, I is projective and there is a left ideal S such that $I \subseteq S$ and $\hom_R(I, R/S) \neq 0$, then R is an R-ring.

Proof. (i) It follows straight from Proposition 1.10 (iii).

(ii) We shall prove condition 1.10 (v). Let I be a non-trivial two-sided ideal. Then we have the exact sequence

$$\hom_{\mathcal{D}}(I, R/I) \to \hom_{\mathcal{D}}(I, R/S) \to \operatorname{ext}_{\mathcal{D}}(I, S/I) = 0$$

Since $\hom_R(I, R/S) \neq 0$, $\hom_R(I, R/I) \neq 0$.

PROPOSITION 1.12. Let R be an R-ring and I a left ideal such that $IR \neq R$. Then for every left ideal K, $IK = K \Rightarrow K = 0$.

Proof. Put $A_I = \{M \in R^{mod} \mid IM = M\}$. It is easy work to show that $A_I \in T_R$. Let K be a non-zero left ideal and suppose that $K \in A_I$.

Then $R \in A_I$ as well, since R is an R-ring, and it yields a contradiction.

PROPOSITION 1.13. Let R be a ring such that for every non-trivial two-sided ideal I, $I^2 \neq I$. If M is a projective module and r(M) = M, for some non-trivial radical r, then M = 0.

Proof. Let $M \neq 0$ be projective and r(M) = M for some non-trivial radical r. Consider the least torsion class M containing M. Since M is projective, the corresponding torsion-free class M^* is a hereditary torsion class which is closed under the direct products, which implies that the corresponding radical filter E is closed under intersections, and consequently $\bigcap I = K$ is an idempotent two-sided ideal. Hence K = 0 $I \in E$ or K = R, a contradiction.

COROLLARY 1.14. Let R be a ring. If every non-trivial two-sided ideal is projective and not idempotent then R is an R-ring.

EXAMPLE 1.15. Let G be a subgroup of the additive group of real numbers.such that there exists a sequence $\{a_i\}_{i=1} \subset G \cap (0, 1)$ satisfying $\sum_{i=1}^{\infty} a_i < 1$. Consider the vector space V over a field F having the basis $A = G \cap (0, 1)$. We shall define a binary operation * on $A \cup \{\overline{0}\}$, where $\overline{0}$ is the zero element of V, by the following manner: if $a, b, a+b \in A$ then a * b = a + b, $a * b = \overline{0}$ otherwise. We can easily extend the operation * onto the whole V and we get an F-algebra. The following statements are valid:

- (i) $(\overline{0} : a)$ is nilpotent for every $a \in V$, $a \neq 0$;
- (ii) V is a commutative primary ring;
- (iii) V is a T-ring;

(iv) the prime radical P of V is not T-nilpotent and $P^2 = P$; (v) V is not an R-ring (see Proposition 1.12).

Moreover, it is possible to choose A being countable. This example is based on the ideas of [8].

EXAMPLE 1.16. Consider $S = Z \times Q$, where Z is the additive group of integers and Q the additive group of rational numbers. Define the following binary operation on S:

$$(z_1, q_1) * (z_2, q_2) = (z_1 z_2, z_1 q_2 + z_2 q_1)$$

Then S becomes a commutative primary ring with prime radical nilpotent of degree 2. Hence S is a T-ring which is not an R-ring (see Proposition 1.11). This example is based on the ideas of [5].

2. Full matrix rings over T and R-rings

DEFINITION 2.1. Let R be a ring, $M \in_{R} \mod and N$ be a submodule in M. We shall say that N satisfies the condition (T) in M if $0 \neq N \neq M$ and there exist $x \in N$, $y \in M \setminus N$ such that $(0 : x) \subseteq (N : y)$.

PROPOSITION 2.2. Let R be a ring, $M \in \mathbb{R}^{mod}$ and N be a submodule in M. Then the following are equivalent:

(i) there is a hereditary radical r on R^{mod} such that r(M) = N;

(ii) N does not satisfy (T) in M.

Proof. $(i) \Rightarrow (ii)$. Suppose that $0 \neq N \neq M$ and N satisfies (T)in M, that is, there is $x \in N$ and $y \in M \setminus N$ such that $(0 : x) \subseteq (N : y)$. The map $f : Rx \Rightarrow M/N$, $ax \mapsto ay+N$ is a well-defined homomorphism and it yields a contradiction, since r(Rx) = Rx and r(M/N) = 0.

 $(ii) \Rightarrow (i)$. Without loss of generality we can assume that $0 \neq N \neq M$. Consider the least hereditary torsion class M containing Nand r be the corresponding hereditary radical. Obviously $N \subseteq r(M)$. If $N \neq r(M)$ then there is a submodule $K \subseteq N$ and a non-zero homomorphism $f: K \neq r(M)/N$. Hence there are $k \in K$ and $y \in r(M) \setminus V$ such that f(k) = y + N and consequently $(0:k) \subseteq (N:y)$, a contradiction.

COROLLARY 2.3. Let R be a ring and $M \in \mathbb{R}^{mod}$. Then the following are equivalent:

(i) $M \in T_R$;

https://doi.org/10.1017/S0004972700043173 Published online by Cambridge University Press

(ii) every non-trivial submodule of M satisfies (T) .

THEOREM 2.4. Let R be a ring. Then the following are equivalent:

(i) R is a T-ring;

- (ii) every non-trivial left ideal satisfies (T) in R;
- (iii) every non-trivial two-sided ideal satisfies (T) in R.

Proof. (i) \Rightarrow (ii) by Corollary 2.3.

 $(ii) \Rightarrow (iii)$ obvious.

 $(iii) \Rightarrow (i)$ by Proposition 2.2, considering the fact that any torsion part of R is a two-sided ideal.

THEOREM 2.5. Let R be a ring. Then

- (i) if R is a T-ring, then for every $n \ge 1$, the full matrix ring R_n is a T-ring,
- (ii) if there is $n \ge 1$ such that R_n is a T-ring then R is a T-ring.

Proof. (i) Let K be a non-trivial two-sided ideal in R_n . It is easy to see that there is a non-trivial two-sided ideal I in R such that $K = I_n$, that is, K is a full matrix ring (possibly without identity) over I. According to Theorem 2.4 (*iii*), there are $x \in I$ and $y \in R \setminus I$ such that $(0 : x) \subseteq (I : y)$. If X, $Y \in R_n$ are the corresponding scalar matrices then obviously $X \in K$, $Y \in R_n \setminus K$ and $(0 : X) \subseteq (K : Y)$. Now it suffices to use Theorem 2.4 (*iii*).

(*ii*) Let R_n be a *T*-ring, for some $n \ge 1$. There is a bijection f between left ideals of R_n and *R*-submodules of R^n given by $I \mapsto f(I)$, f(I) is a submodule in R^n consisting of all the rows of matrices from I. If M is a non-trivial submodule of R^n then there are matrices A, B such that $A \in f^{-1}(M)$, $B \in R_n \setminus f^{-1}(M)$ and $(0:A) \subseteq (f^{-1}(M):B)$ (see Theorem 2.4 (*ii*)). Since $B \in R_n \setminus f^{-1}(M)$, there is $1 \le i \le n$ such that the *i*-th row of *B* does not lie in *M*. Put $C \in \mathbb{R}_n$ as follows: $C = (c_{kl})$, $c_{ii} = 1$ and $c_{kl} = 0$ otherwise. Since $(0:A) \subseteq (f^{-1}(M):B)$, we get

 $(0 : CA) = \{(0 : A) : C\} \subseteq \{(f^{-1}(M) : B\} : C\} = \{f^{-1}(M) : CB\}.$ Let x be the *i*-th row of CA and y be the *i*-th row of CB. Obviously $x \in M$ and $y \in R^n \setminus M$. Consider $a \in (0 : x)$ and denote by D the corresponding scalar matrix. Then DCA = 0, hence $DCB \in f^{-1}(M)$ and consequently $ay \in M$. Now, by Corollary 2.3, $R^n \in T_R$ and since T_R is closed under submodules, $R \in T_R$.

PROPOSITION 2.6. Let R be a ring and N be a submodule of an R-module M. Then the following are equivalent:

- (i) there is a radical r on pmod such that r(M) = N;
- (ii) $\hom_p(N, M/N) = 0$.

Proof. (i) \Rightarrow (ii) is obvious.

 $(ii) \Rightarrow (i)$. Let A be the least torsion-free class containing M/Nand r be the corresponding radical. Obviously $N \subseteq r(M)$. On the other hand, $\hom_{p}(r(M)/N, M/N) = 0$ implies that $r(M) \subseteq N$.

COROLLARY 2.7. Let M be an R-module. Then the following are equivalent:

(ii) if N is a non-trivial submodule of M then $\hom_{\mathcal{P}}(N, M/N) \neq 0.$

THEOREM 2.8. Let R be a ring. Then

- (i) if R is an R-ring then for every $n \ge 1$, the full matrix ring R_n is an R-ring,
- (ii) if there is $n \ge 1$ such that R_n is an R-ring then R is an R-ring.

⁽i) $M \in R_R$,

Proof. (i) Let K be a two-sided ideal in R_n . Then there is a two-sided ideal $I \subseteq R$ such that $K = I_n$, that is, K is the full matrix ring (possibly without identity) over I and if S = R/I then $R_n/K \cong S_n$ as R_n -modules. Suppose that $0 \neq K \neq R_n$, then $0 \neq I \neq R$ and there is a non-zero $f \in \hom_R(I, R/I)$. Hence we can make f into $\overline{f} \in \hom_{R_n}(K, R_n/K)$ by $\overline{f}((a_{ij})) = (f(a_{ij}))$ and $\overline{f} \neq 0$, so that, with respect to Proposition 1.10 (v), R_n is an R-ring.

(*ii*) Let *M* be a non-trivial *R*-submodule of \overline{R}^n and *I* be the corresponding left ideal in R_n . By Proposition 1.10 (*iv*), there is a non-zero $f \in \hom_{R_n}(I, R_n/I)$ and consequently there is $A = (a_{ij}) \in I$, such that $f((a_{ij})) = (b_{ij}) + I \neq I$. Without loss of generality we can assume that the first row of (b_{ij}) does not lie in *M*. Hence we can make f into non-zero $\overline{f} \in \hom_R(M, \overline{R}^n/M)$ by $\overline{f}(m) = (c_{lj}) + M$, where

$$f\left(\begin{pmatrix} m_{1}, \dots, m_{n} \\ 0, \dots, 0 \\ \dots \\ 0, \dots, 0 \end{pmatrix}\right) = (c_{ij}) + I ,$$

and an application of Corollary 2.7 shows that $R^n \in R_p$.

PROPOSITION 2.9. Let R be such a T-ring that every two-sided ideal I is in the form I = aR = Ra, for some $a \in R$. Then R is an R-ring.

Proof. Suppose that I is a non-trivial two-sided ideal. Then by Theorem 2.4 (*iii*) there is $x \in I$ and $y \in R \setminus I$ such that $(0:x) \subseteq (I:y)$ and since I = aR, x = ab for some $b \in R$. Hence $(0:a) \subseteq (0:x)$ and there is a non-zero $f \in \hom_R(I, R/I)$ such that f(da) = dy + I; that is, by Proposition 1.10 (v), the proof is finished.

REMARK 2.10. The authors do not know whether, in general, the polynomial rings over T-rings are T-rings. However, the following is

true.

PROPOSITION 2.11. Let R be a commutative T-ring with nilpotent prime radical P(R). Then R[x] is a T-ring.

Proof. Denote by n the degree of nilpotency of P(R). Let $g \in R[x]$ with $(0:g) \neq 0$ and $h \in (0:g)$. It is well known that the coefficients of h are zero divisors in R (see, for example, [1], Chapter 1, exercise 2), and therefore they lie in P(R). Now it is easy to see that (0:g) is nilpotent of degree n and Theorem 1.3 finishes the proof.

3. On T and R-rings with non-zero socles

THEOREM 3.1. The following conditions for a ring R are equivalent:

- (i) R is a left T-ring with non-zero left socle;
- (ii) all simple left R-modules are isomorphic and all nonzero left R-modules have non-zero socles;
- (iii) mod has only two hereditary torsion theories;
 - (iv) R is isomorphic to a full matrix ring over a local ring having left socle sequence;
 - (v) J(R) is right T-nilpotent and R/J(R) is a simple semisimple artinian ring.

Proof. $(i) \Rightarrow (ii)$ Let I be a minimal left ideal in R. By (i), R lies in the least torsion class containing I. Therefore $\hom_R(I, M) \neq 0$ for every non-zero left R-module M and (ii) easily follows.

(ii) ⇒ (iii). See [7], Proposition 2.
(iii) ⇒ (i). Obvious.
(iii) ⇔ (iv). See [6], Theorem 1.
(iii) ⇔ (v). See [7], Theorems 4 and 6.
THEOREM 3.2. Let R be a ring. Then the following are equivalent:
(i) R is a left R-ring with non-zero left socle and J(R) is left T-nilpotent;

- (i') R is a right R-ring with non-zero right socle and J(R) is right T-nilpotent;
- (ii) mod has only two torsion theories;
- (ii') mod_{R} has only two torsion theories;
- (iii) J(R) is left and right T-nilpotent and R/J(R) is a simple semisimple artinian ring;
- (iv) R is left and right perfect and has only one simple module up to isomorphism;
- (v) R is isomorphic to a full matrix ring over a left and right perfect local ring.

Proof. It clearly suffices to prove the equivalence of the left-hand forms, since condition (*iii*) is self-dual.

 $(i) \Leftrightarrow (ii)$. It follows from Theorem 3.1 (v) and [7], Theorem 3.

(ii) ↔ (iii). See [7], Theorems 3 and 6.

 $(iii) \Leftrightarrow (iv)$. See [2], Theorem P, (1) \Leftrightarrow (2).

 $(iii) \Leftrightarrow (v)$. See [3], the main theorem, (1A) \Leftrightarrow (1F).

REMARK 3.3. These conditions are equivalent to many others; see, for example, [3], [6].

COROLLARY 3.4. Let R be a commutative ring with non-zero socle. Then R is a T-ring iff it is an R-ring.

PROPOSITION 3.5. Let R be a T-ring with non-zero socle. Then the following are equivalent:

- (i) R is an R-ring;
- (ii) all submodules of projective modules contain maximal submodules;

(iii) all left ideals contain maximal submodules.

Proof. $(i) \Rightarrow (ii)$. Let A be the least torsion-free class containing all simple *R*-modules. Obviously $R \in A$ and hence every submodule of a projective module has a simple epimorphic image. Thus it contains a maximal submodule. $(ii) \Rightarrow (iii)$ is trivial.

 $(iii) \Rightarrow (i)$. By Theorem 3.1 (ii), every non-zero left *R*-module has a simple submodule unique up to isomorphism, so that (iii) gives $\hom_R(I, M) \neq 0$ for every non-zero left ideal *I* and every non-zero left *R*-module *M*. Now it suffices to use Proposition 1.10 (iii).

4. Weakly dense submodules

Let R be a ring and $M \in_R \mod A$. Then $\mathcal{E}(M)$ will be the set consisting of the zero submodule and of all essential submodules of M. Further we shall denote by M_M the least hereditary torsion class containing M and by r_M the corresponding radical.

DEFINITION 4.1. Let *R* be a ring and $M \in_R \text{mod}$. A submodule $N \subseteq M$ is called weakly dense in *M* if there are $K \in E(M)$ and $m \in M \setminus K$ such that for every $n \in M$ and $a \in R \setminus (K : m)$, $(N : n) \notin (K : am)$.

PROPOSITION 4.2. Let $M \in_R \mod and N \subseteq M$ be a submodule. Then N is weakly dense in M iff there are $K \in E(M)$ and $m \in M \setminus K$ such that $\hom_{D}(B/N, R(m+K)) = 0$ for every submodule B, $N \subseteq B \subseteq M$.

Proof. (i) Let N be weakly dense in M and K, m be as in Definition 4.1. Let $f: B/N \rightarrow R(m+K)$ be a non-zero homomorphism. There is $b \in B$ such that $f(b+N) = am + K \neq K$. Hence $a \in R \setminus (K : m)$ and $(N : b) \subseteq (K : am)$, a contradiction.

(ii) If N is not weakly dense in M then for every $K \in E(M)$ and $m \in M \setminus K$ there are $n \in M$, $a \in R \setminus (K : m)$ such that $(N : n) \subseteq (K : am)$. Hence $f : (N+Rn)/N \rightarrow R(m+K)$ given by $xn + N \mapsto xam + K$, is a non-zero homomorphism.

PROPOSITION 4.3. Let $M \in \mathbb{R}^{mod}$ and $N \subseteq M$ be a submodule. If N is not weakly dense in M then $M \in M_{M/N}$.

Proof. Let $m \in M$ be a non-zero element. As N is not weakly dense in M, there is B, $N \subseteq B \subseteq M$, such that $\hom_R(B/N, Rm) \neq 0$. Hence $r_{M/N}(Rm) \neq 0$, so that $Rm \cap r_{M/N}(M) \neq 0$. Therefore $K = r_{M/N}(M) \in E(M)$.

Now, from Proposition 4.2, we have K = M.

DEFINITION 4.4. Let $M \in_R \mod$ and $N \subseteq M$ be a submodule. Then N is called dense in M if $r_{M/N}(M) = 0$, that is, if $\hom_R(B/N, M) \approx 0$ for all B, $N \subseteq B \subseteq M$.

PROPOSITION 4.5. Let $M \in \mathbb{R}^{\text{mod}}$ and $N \subseteq M$ be a submodule. Then N is dense in M iff $(N:n) \notin (0:m)$ for all $m, n \in M$, $m \neq 0$.

Proof. This is an immediate consequence of Definition 4.4.

PROPOSITION 4.6. Let $M \in \mathbb{R}^{mod}$. If $M \in T_R$ then every weakly dense submodule in M is dense in M.

Proof. It follows from Proposition 4.3 and Definition 4.4.

THEOREM 4.7. Let R be a ring. Then the following are equivalent: (i) R is a T-ring;

(ii) every weakly dense left ideal of R is dense in R.

Proof. (i) = (ii). See Proposition 4.6.

 $(ii) \Rightarrow (i)$. Let r be a hereditary radical and E the corresponding radical filter. If E contains only dense left ideals then r(R) = 0. Let $I \in E$, I be not dense in R. Then I is not weakly dense in R and hence $r_{R/I}(R) = R$ by Proposition 4.3. However r(R/I) = R/I and therefore $r_{R/I}(M) \subseteq r(M)$ for every $M \in R$ and r(R) = R.

References

- M.F. Atiyah, I.G. Macdonald, Introduction to commutative algebra (Addison-Wesley, Reading, Massachussetts; London; Don Mills, Ontario; 1969).
- [2] Hyman Bass, "Finitistic dimension and a homological generalization of semi-primary rings", Trans. Amer. Math. Soc. 95 (1960), 466-488.
- [3] Richard Courter, "Finite direct sums of complete matrix rings over perfect completely primary rings", Canad. J. Math. 21 (1969), 430-446.

- [4] Spencer E. Dickson, "A torsion theory for abelian categories", Trans. Amer. Math. Soc. 121 (1966), 223-235.
- [5] Vlastimil Dlab, "Distinguished sets of ideals of a ring", Czechoslovak Math. J. 18 (93) (1968), 560-567.
- [6] Vlastimil Dlab, "On a class of perfect rings", Canad. J. Math. 22 (1970), 822-826.
- [7] B.J. Gardner, "Rings whose modules form few torsion classes", Bull. Austral. Math. Soc. 4 (1971), 355-359.
- [8] Michal Jaegermann and Jan Krempa, "Rings in which ideals are annihilators", Fund. Math. 76 (1972), 95-107.
- [9] А.П. Гишина, Л.А. Скорняков, [А.Р. Mišina, L.A. Skornjakov], Абелевы группы и модули [Abelian groups and modules] (Izdat. "Nauka", Moscow, 1969).

Matematicko-fyzikální fakulta, Karlova universita, Sokolovská, Praha, Czechoslovakia.