On rings with trivial torsion parts

L. Bican, P. Jambor, T. Kepka, P. Němec

Abstract

In this paper, we exhibit the necessary and sufficient conditions for a ring R to have only the trivial torsion parts with respect to any (hereditary) radical on the category of left R-modules.

0. Introduction

Let R be a ring with identity and r be a (hereditary) radical on the category $R^{\bmod }$ of the left R-modules, that is, r is an idempotent subfunctor of identity such that $r(M / r(M))=0$ for every $M \in{ }_{R} \bmod$ (in addition, r is left exact). In investigations of radical structure on modules, we often need the condition $r(R)=0$. So it is natural and of interest to study rings having this property for all non-trivial radicals. We shall say that R is a left R-ring (T-ring) if $r(R)=0$ for every non-trivial (hereditary) radical r on $R^{\text {mod }}$.

In this paper, we exhibit the necessary and sufficient conditions for a ring to be either an R-ring or a T-ring, supplied with interesting counterexamples. The main result of Section 2 is: R is an R-ring (T-ring) iff R_{n} is an R-ring (T-ring) for every $n \geq 1$. Section 3 applies the ideas of Gardner's work [7] to an extent of a structural investigation of T and R-rings with non-zero socles. Throughout this paper, unless otherwise specified, R stands for a ring with identity and either T or R-rings are considered as the left T or R-rings. Let us recall ([4]) that the existence of a radical r on $R^{\text {mod }}$ is equivalent to the existence of a torsion theory (M, L) where

$$
M=\left\{\left.M \in \frac{\operatorname{Rod}}{\bmod } \right\rvert\, r(M)=M\right\}=L^{+}=\left\{M \in R_{R}^{\bmod } \mid \operatorname{hom}_{R}(M, L)=0, \forall L \in L\right\}
$$

and

$$
L=\left\{M \in R_{R^{\bmod }} \mid r(M)=0\right\}=M^{*}=\left\{L \in R_{\left.R^{\bmod } \mid \operatorname{hom}_{R}(M, L)=0, \forall M \in M\right\} ~}\right.
$$

In particular ([9]), in the case of a hereditary radical it is equivalent to the existence of a radical filter $E \subseteq Z(R)$, where $Z(R)$ is the set of left ideals of R; that is,
(i) if $I \in E$ then $(I: a)=\{x \in R \mid x a \in I\} \in E$ for every $a \in R$;
(ii) $I \in Z(R), J \in E$, and $(I: a) \in E$ for every $a \in J$ imply that $I \in E$.

It is essential to know that if E is a radical filter then the corresponding radical r is defined by $r(M)=\{m \in M \mid(0: m) \in E\}$ for every $M \in{ }_{R}$ mod and $I \in E$ iff $r(R / I)=R / I$ ([9]). It is easy to see that our definition of a radical filter is equivalent to that of [9]. Note that if r is a radical on $R^{\text {mod }}$ then $r(R)$ is a two-sided ideal since r is a subfunctor of identity and the right multiplication on R is a left R-homomorphism. It should be remarked that, obviously, simple rings are R-rings and integral domains are T-rings.

We shall frequently use the following notation:
$M \subseteq R$ is right T-nilpotent if $\forall\left(a_{1}, a_{2}, \ldots \in M\right) \quad \exists(n \geq 1)$
such that $a_{n} a_{n-1} \cdots a_{1}=0$;
R is a commutative primary ring if the prime radical is a prime ideal;
$I \in Z(R)$ is an essential ideal if $I \neq 0$ and $I \cap J \neq 0$ for every $J \in Z(R), J \neq 0$;

$$
\begin{array}{r}
R_{R}=\left\{M \in R_{R}^{\bmod } \mid r(M)=0 \text { or } r(M)=M \text { for every radical } r\right. \\
\text { on } \left.R^{\bmod }\right\},
\end{array}
$$

$$
\begin{aligned}
T_{R}=\left\{M \in R^{\bmod } \mid r(M)=0 \text { or } r(M)=M\right. & \text { for every hereditary } \\
& \text { radical } \left.r \text { on } R^{\bmod }\right\} ;
\end{aligned}
$$

$C(R)$ - the center of R;
$\hat{M} \quad$ - the injective hull of $M \in R^{\bmod ;}$
$R(+)$ - the underlying abelian group of R;
$J(R)$ - Jacobson radical of R;
$R^{n} \quad$ - direct product of n copies of R;
$R_{n} \quad$ - the full ring of matrices of degree n over R.
The scalar matrix corresponding to an element $x \in R$ is the diagonal matrix with all the elements on the diagonal equal to x.

For simplicity, by $M \in T_{R}$ or T_{R}^{h} or F_{R} or F_{R}^{h} we mean that M is a torsion class, hereditary torsion class, torsion-free class and hereditary torsion-free class respectively.

1. On T and R-rings

THEOREM 1.1. Let R be a ring and $M \subseteq R$ be a subset. Then

$$
E_{M}=\left\{I \in \mathcal{L}(R) \mid \forall\left(a_{1}, a_{2}, \ldots \in M\right) \forall(s \in R) \exists(n \geq 1)\left(a_{n} a_{n-1} \ldots a_{1} s \in I\right)\right\}
$$ is a radical filter and

(i) if M is a left ideal then E_{M} is contained in the least radical filter containing M,
(ii) if M is a two-sided ideal then E_{M} is the least radical filter containing M,
(iii) $E_{M}=Z(R)$ iff M is right $T-n i$ lpotent.

Proof. Let $I \in E_{M}, t \in R$ and suppose that $a_{1}, a_{2}, \ldots \in M$ and $s \in R$. Then there is $n \geq 1$ such that $a_{n} a_{n-1} \ldots a_{1} s t \in I$, that is, $a_{n} a_{n-1} \cdots a_{1} s \in(I: t)$ and consequently $(I: t) \in E_{M}$. If K is a left ideal such that for every $k \in I,(K: k) \in E_{M}$, then there is
$n \geq 1$ such that $a_{n} a_{n-1} \cdots a_{1} s=u \in I$ and $(K: u) \in E_{M}$. Hence, there is $m \geq 1$ such that $a_{n+m} \cdots a_{n+1} a_{n} \ldots a_{1} s \in K$.
(i) Let $K \in E_{M} \backslash C$ where C is the least radical filter containing M. By the definition of radical filter there is $a_{1} \in M$ such that $\left(K: a_{1}\right) k \mathcal{C}$ and consequently there is a sequence $a_{1}, a_{2}, \ldots \in M$ such that $\left.\left(\left(\ldots\left(k: a_{1}\right): a_{2}\right): \ldots\right): a_{n}\right)=\left(K: a_{n} a_{n-1} \ldots a_{1}\right) \& c$ for every $n \geq 1$, which yields a contradiction with the definition of E_{M}.
(ii) If M is a two-sided ideal then obviously $M \in E_{M}$.
(iii) It is easy to show that $E_{M}=Z(R)$ iff $0 \in E_{M}$.

COROLLARY 1.2. If R is a commutative ring, I is an ideal in R and $E_{I}^{\prime}=\{K \in Z(R) \mid K \subseteq I$ and I / K is T-nilpotent in $R / K\}$, then $E_{I}=\left\{J \in Z(R) \mid \exists\left(K \in E_{I}^{\prime}\right)(K \subseteq J)\right\}$ is the least radical filter containing I.

THEOREM 1.3. Let R be a ring. If ($0: a$) is right T-nilpotent for every $a \in R$, $a \neq 0$ then R is a T-ring. Conversely, if R is a T-ring then ($0: R a$) is right T-nilpotent for every $a \in R, a \neq 0$.

Proof. The sufficient condition follows right from Theorem 1.1. For the necessary condition, since $(0: R a)$ is a two-sided ideal, $E_{(0: R a)}$ is the least radical filter containing ($0: R a$) by Theorem 1.1 ($i i$). If $a \neq 0$ then $(0: R a) \subseteq(0: a) \in E_{(0: R a)}=Z(R)$, since R is a T-ring; and Theorem 1.1 (i ii $)$ finishes the proof.

COROLLARY 1.4. Let R be a commutative ring. Then R is a T-ring iff ($0: a$) is T-nilpotent for every $a \in R, \quad a \neq 0$.

COROLLARY 1.5. Every commutative T-ming is primary.
PROPOSITION 1.6. Let R be a T-ring and $e \in R$ be a central idempotent. Then $e=0$ or $e=1$.

Proof. Put $K=e R$. Then $K^{2}=K$ and K is a two-sided ideal. If ($0: e$) $=0$ then, obviously, $e=1$. Suppose that $a \in(0: e)$,
$a \neq 0$. Then $K \subseteq(0: a) \in E$ where $E=\{I \in \mathcal{Z}(R) \mid K \subseteq I\}$ is a radical filter containing K (it needs just a tedious checking of the radical filter's properties). Since R is a T-ring, $0 \in E$ and consequently $K=0$.

REMARK 1.7. (i) By Proposition 1.6, no direct product of 2 rings is a T-ring and consequently T-rings are not closed under quotient rings (for example, consider the ring of integers).
(ii) By Corollary 1.4, the commutative T-rings are closed under the subrings containing the identity. On the other hand, generally it is not so in the non-commutative case. For, consider the full matrix ring of degree $n>l$ over a field. It is an R-ring which contains an idempotent e different from zero and identity and the subring generated by e and l is not a T-ring.

PROPOSITION 1.8. Let R be a T-ming, $0 \neq a \in C(R)$ and ($0: a) \neq 0$. Then
(i) if $0 \neq M \in{ }_{R} \bmod$ then there is $m \in M, m \neq 0$, such that $a \in(0: m)$,
(ii) (0:a) is an essential left ideal of R,
(iii) (0:a) is right T-nilpotent,
(iv) a is nilpotent.

Proof. (i) Consider $M_{a}=\left\{M \in{ }_{R} \bmod \mid m \in M, m \neq 0 \Rightarrow a m \neq 0\right\}$. Then $M_{a} \in F_{R}^{h}$. For, it is sufficient to show that M_{a} is closed under the injective hulls. Let $M \in M_{a}$. Since $a \in C(R), D=\{m \in \hat{M} \mid a m=0\}$ is a submodule of \hat{M} and $D \cap M=0$. Hence $D=0$. Now, by the hypothesis $R \notin M_{a}$ and since R is a T-ring, $M_{a}=0$.

The rest is an easy consequence of (i) and Theorem 1.3.
COROLLARY 1.9. Let R be a T-ming. Then $R(+)$ is either torsionfree or a p-group, for some prime p.

PROPOSITION 1.10. Let R be a ring. Then the following are equivalent:
(i) R is an R-ring;
(ii) if $A, B \in \mathcal{R}^{\bmod }$ and $\operatorname{hom}_{R}(A, B)=0$, then either $B=0$ or $\operatorname{hom}_{R}(A, R)=0 ;$
(iii) for every non-zero left ideal I and every non-zero $M \in R_{R}^{\bmod }, \operatorname{hom}_{R}(I, M) \neq 0 ;$
(iv) for every non-trivial left ideal $I, \operatorname{hom}_{R}(I, R / I) \neq 0$,
(v) for every non-trivial two-sided ideal I, $\operatorname{hom}_{R}(I, R / I) \neq 0$.

Proof. (i) \Rightarrow (ii) \Rightarrow (iiii) \Rightarrow (iv) \Rightarrow (v) is obvious.
$(v) \Rightarrow(i)$. If r is a radical on $R^{\bmod }$ then $r(R)$ is a two-sided ideal and $\operatorname{hom}_{R}(r(R), R / r(R))=0$. Hence $r(R)=0$ or $r(R)=R$.

PROPOSITION 1.11. Let R be a ring. Then
(i) if R is an R-ring then for every non-zero left ideal I and every simple module M there is a left ideal K such that $K \subseteq I$ and $I / K \cong M$,
(ii) if for every non-trivial two-sided ideal I, I is projective and there is a left ideal S such that $I \subseteq S$ and $\operatorname{hom}_{R}(I, R / S) \neq 0$, then R is an R-ring.

Proof. (i) It follows straight from Proposition 1.10 (iii).
(ii) We shall prove condition l.10 (v). Let I be a non-trivial two-sided ideal. Then we have the exact sequence

$$
\operatorname{hom}_{R}(I, R / I) \rightarrow \operatorname{hom}_{R}(I, R / S) \rightarrow \operatorname{ext}_{R}(I, S / I)=0
$$

Since $\operatorname{hom}_{R}(I, R / S) \neq 0, \operatorname{hom}_{R}(I, R / I) \neq 0$.
PROPOSITION 1.12. Let R be an R-ming and I a left ideal such that $I R \neq R$. Then for every left ideal $K, I K=K \Rightarrow K=0$.

Proof. Put $A_{I}=\left\{M \in R_{R} \bmod \mid I M=M\right\}$. It is easy work to show that $A_{I} \in \mathrm{~T}_{R}$. Let K be a non-zero left ideal and suppose that $K \in A_{I}$.

Then $R \in A_{I}$ as well, since R is an R-ring, and it yields a contradiction.

PROPOSITION 1.13. Let R be a ring such that for every non-trivial two-sided ideal $I, I^{2} \neq I$. If M is a projective module and $r(M)=M$, for some non-trivial radical r, then $M=0$.

Proof. Let $M \neq 0$ be projective and $r(M)=M$ for some non-trivial radical r. Consider the least torsion class M containing M. Since M is projective, the corresponding torsion-free class M^{*} is a hereditary torsion class which is closed under the direct products, which implies that the corresponding radical filter E is closed under intersections, and consequently $\bigcap_{I \in E} I=K$ is an idempotent two-sided ideal. Hence $K=0$ or $K=R$, a contradiction.

COROLLARY 1.14. Let R be a ring. If every non-trivial two-sided ideal is projective and not idempotent then R is an R-ring.

EXAMPLE 1.15. Let G be a subgroup of the additive group of real numbers.such that there exists a sequence $\left\{a_{i}\right\}_{i=1} \subset G \cap(0,1)$ satisfying $\sum_{i=1}^{\infty} a_{i}<1$. Consider the vector space V over a field F having the basis $A=G \cap(0,1)$. We shall define a binary operation * on $A \cup\{\overline{0}\}$, where $\overline{0}$ is the zero element of V, by the following manner: if $a, b, a+b \in A$ then $a * b=a+b, a * b=\overline{0}$ otherwise. We can easily extend the operation * onto the whole V and we get an F-algebra. The following statements are valid:
(i) ($\overline{0}: a$) is nilpotent for every $a \in V, a \neq 0$;
(ii) V is a commatative primary ring;
(iii) V is a T-ring;
(iv) the prime radical P of V is not T-nilpotent and $P^{2}=P$;
(v) V is not an R-ring (see Proposition 1.12).

Moreover, it is possible to choose A being countable. This example is based on the ideas of [8].

EXAMPLE 1.16. Consider $S=Z \times Q$, where Z is the additive group of integers and Q the additive group of rational numbers. Define the following binary operation on S :

$$
\left(z_{1}, q_{1}\right) *\left(z_{2}, q_{2}\right)=\left(z_{1} z_{2}, z_{1} q_{2}+z_{2} q_{1}\right)
$$

Then S becomes a commutative primary ring with prime radical nilpotent of degree 2 . Hence S is a T-ring which is not an R-ring (see Proposition 1.11). This example is based on the ideas of [5].

2. Full matrix rings over T and R-rings

DEFINITION 2.1. Let R be a ring, $M \in \frac{\bmod }{R^{m}}$ and N be a submodule in M. We shall say that N satisfies the condition (T) in M if $0 \neq N \neq M$ and there exist $x \in N, y \in M \backslash W$ such that $(0: x) \subseteq(N: y)$.

PROPOSITION 2.2. Let R be a ring, $M \in{ }_{R} \bmod$ and N be a submodule in M. Then the following are equivalent:
(i) there is a hereditary radical r on $R^{\bmod }$ such that

$$
r(M)=N ;
$$

(ii) N does not satisfy (T) in M.

Proof. (i) \Rightarrow (ii). Suppose that $0 \neq N \neq M$ and N satisfies
in M, that is, there is $x \in N$ and $y \in M \backslash N$ such that
$(0: x) \subseteq(N: y)$. The map $f: R x \rightarrow M / N, a x \mapsto a y+N$ is a well-defined homomorphism and it yields a contradiction, since $r(R x)=R x$ and $r(M / N)=0$.
$(i i) \Rightarrow(i)$. Without loss of generality we can assume that
$0 \neq N \neq M$. Consider the least hereditary torsion class M containing N and r be the corresponding hereditary radical. Obviously $N \subseteq r(M)$. If $N \neq r(M)$ then there is a submodule $K \subseteq N$ and a non-zero homomorphism $f: K \rightarrow r(M) / N$. Hence there are $k \in K$ and $y \in r(M) W$ such that $f(k)=y+N$ and consequently $(0: k) \subseteq(N: y)$, a contradiction.

COROLLARY 2.3. Let R be a ring and $M \in \bmod$. Then the following are equivalent:

$$
\text { (i) } M \in T_{R} \text {; }
$$

(ii) every non-trivial submodule of M satisfies (T).

THEOREM 2.4. Let R be a ring. Then the following are equivalent:
(i) R is a T-ring;
(ii) every non-trivial left ideal satisfies (T) in R;
(iii) every non-trivial two-sided ideal satisfies (T) in R.

Proof. (i) \Rightarrow (ii) by Corollary 2.3.
(ii) \Rightarrow (iii) obvious.
(iii) \Rightarrow (i) by Proposition 2.2, considering the fact that any torsion part of R is a two-sided ideal.

THEOREM 2.5. Let R be a ring. Then
(i) if R is a T-ring, then for every $n \geq 1$, the full matrix ring R_{n} is a T-ring,
(ii) if there is $n \geq 1$ such that R_{n} is a T-ring then R is a T-ring.

Proof. (i) Let K be a non-trivial two-sided ideal in R_{n}. It is easy to see that there is a non-trivial two-sided ideal I in R such that $K=I_{n}$, that is, K is a full matrix ring (possibly without identity) over I. According to Theorem 2.4 (iii), there are $x \in I$ and $y \in R \backslash I$ such that $(0: x) \subseteq(I: y)$. If $X, Y \in R_{n}$ are the corresponding scalar matrices then obviously $X \in K, Y \in R_{n} \backslash K$ and $(0: X) \subseteq(K: Y)$. Now it suffices to use Theorem 2.4 (iiii).
(ii) Let R_{n} be a T-ring, for some $n \geq 1$. There is a bijection f between left ideals of R_{n} and R-submodules of R^{n} given by $I \mapsto f(I), f(I)$ is a submodule in R^{n} consisting of all the rows of matrices from I. If M is a non-trivial submodule of R^{n} then there are matrices A, B such that $A \in f^{-1}(M), B \in R_{n} \backslash f^{-1}(M)$ and $(0: A) \subseteq\left(f^{-1}(M): B\right) \quad$ (see Theorem $\left.2.4(i i)\right)$. Since $B \in R_{n} \backslash f^{-1}(M)$,
there is $1 \leq i \leq n$ such that the i-th row of B does not lie in M. Put $C \in R_{n}$ as follows: $C=\left(c_{k l}\right), c_{i i}=1$ and $c_{k l}=0$ otherwise. Since $(0: A) \subseteq\left(f^{-1}(M): B\right)$, we get

$$
(0: C A)=((0: A): C) \subseteq\left(\left(f^{-1}(M): B\right): C\right)=\left(f^{-1}(M): C B\right) .
$$

Let x be the i-th row of $C A$ and y be the i-th row of $C B$. Obviously $x \in M$ and $y \in R^{n} \backslash M$. Consider $a \in(0: x)$ and denote by D the corresponding scalar matrix. Then $D C A=0$, hence $D C B \in f^{-1}(M)$ and consequently ay $\in M$. Now, by Corollary 2.3, $R^{n} \in T_{R}$ and since T_{R} is closed under submodules, $R \in T_{R}$.

PROPOSITION 2.6. Let R be a ring and N be a submodule of an R-module M. Then the following are equivalent:
(i) there is a radical r on $R^{\text {mod }}$ such that $r(M)=N$;
(ii) $\operatorname{hom}_{R}(N, M / N)=0$.

Proof. (i) \Rightarrow ($i i$) is obvious.
(ii) \Rightarrow (i). Let A be the least torsion-free class containing M / N and r be the corresponding radical. Obviously $N \subseteq r(M)$. On the other hand, $\operatorname{hom}_{R}(r(M) / N, M / N)=0$ implies that $r(M) \subseteq N$.

COROLLARY 2.7. Let M be an R-module. Then the following are equivalert:
(i) $M \in R_{R}$,
(ii) if N is a non-tmivial submodule of M then $\operatorname{hom}_{R}(N, M / N) \neq 0$.

THEOREM 2.8. Let R be a ring. Then
(i) if R is an R-ming then for every $n \geq 1$, the full matrix ring R_{n} is an R-ring,
(ii) if there is $n \geq 1$ such that R_{n} is an R-ming then R is an R-ring.

Proof. (i) Let K be a two-sidedideal in R_{n}. Then there is a two-sided ideal $I \subseteq R$ such that $K=I_{n}$, that is, K is the full matrix ring (possibly without identity) over I and if $S=R / I$ then $R_{n} / K \leqq S_{n}$ as R_{n}-modules. Suppose that $0 \neq K \neq R_{n}$, then $0 \neq I \neq R$ and there is a non-zero $f \in \operatorname{hom}_{R}(I, R / I)$. Hence we can make f into $\bar{f} \in \operatorname{hom}_{R_{n}}\left(K, R_{n} / K\right)$ by $\bar{f}\left(\left(a_{i j}\right)\right)=\left(f\left(a_{i j}\right)\right)$ and $\bar{f} \neq 0$, so that, with respect to Proposition $1.10(v), R_{n}$ is an R-ring.
(ii) Let M be a non-trivial R-submodule of R^{n} and I be the corresponding left ideal in R_{n}. By Proposition 1.10 (iv), there is a non-zero $f \in \operatorname{hom}_{R_{n}}\left(I, R_{n} / I\right)$ and consequently there is $A=\left(\alpha_{i j}\right) \in I$ such that $f\left(\left(a_{i j}\right)\right)=\left(b_{i j}\right)+I \neq I$. Without loss of generality we can assume that the first row of $\left(b_{i j}\right)$ does not lie in M. Hence we can make f into non-zero $\bar{f} \in \operatorname{hom}_{R}\left(M, R^{n} / M\right)$ by $\bar{f}(m)=\left(c_{1 j}\right)+M \cdot$, where

$$
f\left(\left(\begin{array}{ccc}
m_{1}, & \ldots, & m_{n} \\
0, & \cdots, & 0 \\
& \ldots & \\
0, & \ldots, & 0
\end{array}\right)\right)=\left(c_{i j}\right)+I
$$

and an application of Corollary 2.7 shows that $R^{n} \in R_{R}$.
PROPOSITION 2.9. Let R be such a T-ring that every two-sided ideal I is in the form $I=a R=R a$, for some $a \in R$. Then R is an R-ring.

Proof. Suppose that I is a non-trivial two-sided ideal. Then by Theorem 2.4 ($i i i$) there is $x \in I$ and $y \in R \backslash I$ such that $(0: x) \subseteq(I: y)$ and since $I=a R, x=a b$ for some $b \in R$. Hence $(0 ; a) \subseteq(0: x)$ and there is a non-zero $f \in \operatorname{hom}_{R}(I, R / I)$ such that $f(d a)=d y+I$; that is, by Proposition $1.10(v)$, the proof is finished.

REMARK 2.10. The authors do not know whether, in general, the polynomial rings over T-rings are T-rings. However, the following is
true.
PROPOSITION 2.11. Let R be a commutative T-ring with nilpotent prime radical $P(R)$. Then $R[x]$ is a T-ring.

Proof. Denote by n the degree of nilpotency of $P(R)$. Let $g \in R[x]$ with $(0: g) \neq 0$ and $h \in(0: g)$. It is well known that the coefficients of h are zero divisors in R (see, for example, [1], Chapter 1, exercise 2), and therefore they lie in $P(R)$. Now it is easy to see that ($0: g$) is nilpotent of degree n and Theorem 1.3 finishes the proof.
3. On T and R-rings with non-zero socles

THEOREM 3.1. The following conditions for a ring R are equivalent:
(i) R is a left T-ring with non-zero left socle;
(ii) all simple left R-modules are isomorphic and all nonzero left R-modules have non-zero socles;
(iii) $R^{\text {mod }}$ has only two hereditary torsion theories;
(iv) R is isomorphic to a full matrix ring over a local ring having left socle sequence;
(v) $J(R)$ is right T-nilpotent and $R / J(R)$ is a simple semisimple artinian ring.

Proof. (i) \Rightarrow (ii) Let I be a minimal left ideal in R. By (i), R lies in the least torsion class containing I. Therefore $\operatorname{hom}_{R}(I, M) \neq 0$ for every non-zero left R-module M and (ii) easily follows.
(ii) \Rightarrow (iii). See [1], Proposition 2.
(iii) \Rightarrow (i). Obvious.
(iii) $\Leftrightarrow(i v)$. See [6], Theorem 1.
(iii) $\Leftrightarrow(v)$. See [1], Theorems 4 and 6.

THEOREM 3.2. Let R be a ring. Then the following are equivalent: (i) R is a left R-ring with non-zero left socle and $J(R)$ is left T-nilpotent;
(i') R is a right R-ring with non-zero right socle and $J(R)$ is right T-nilpotent;
(ii) $R^{\bmod }$ has only two torsion theories;
(ii') $\bmod _{R}$ has only two torsion theories;
(iii) $J(R)$ is left and right T-nilpotent and $R / J(R)$ is a simple semisimple artinian ming;
(iv) R is left and right perfect and has only one simple module up to isomorphism;
(v) R is isomorphic to a full matrix ring over a left and right perfect local ring.

Proof. It clearly suffices to prove the equivalence of the left-hand forms, since condition (iii) is self-dual.
$(i) \Leftrightarrow(i i)$. It follows from Theorem 3.1 (v) and [7], Theorem 3.
(ii) \Leftrightarrow (iii). See [7], Theorems 3 and 6.
(iii) \Leftrightarrow (iv). See [2], Theorem P, (1) \Leftrightarrow (2).
(iii) $\Leftrightarrow(v)$. See [3], the main theorem, (IA) \Leftrightarrow (IF).

REMARK 3.3. These conditions are equivalent to many others; see, for example, [3], [6].

COROLLARY 3.4. Let R be a commutative ring with non-zero socle. Then R is a T-ring iff it is an R-ring.

PROPOSITION 3.5. Let R be a T-ring with non-zero socle. Then the following are equivalent:
(i) R is an R-ring;
(ii) all submodules of projective modules contain maximal submodules;
(iii) all left ideals contain maximal submodules.

Proof. $(i) \Rightarrow$ ($i i$). Let A be the least torsion-free class containing all simple R-modules. Obviously $R \in A$ and hence every submodule of a projective module has a simple epimorphic image. Thus it contains a maximal submodule.
(ii) \Rightarrow (i ii) is trivial.
(iii) \Rightarrow (i). By Theorem 3.1 (ii), every non-zero left R-module has a simple submodule unique up to isomorphism, so that ($i i i$) gives $\operatorname{hom}_{R}(I, M) \neq 0$ for every non-zero left ideal I and every non-zero left R-module M. Now it suffices to use Proposition 1.10 ($i i i$).

4. Weakly dense submodules

Let R be a ring and $M \in{ }_{R}$ mod. Then $E(M)$ will be the set consisting of the zero submodule and of all essential submodules of M. Further we shall denote by M_{M} the least hereditary torsion class containing M and by r_{M} the corresponding radical.

DEFINITION 4.1. Let R be a ring and $M \in{ }_{R}$ mod . A submodule $N \subseteq M$ is called weakly dense in M if there are $K \in E(M)$ and $m \in M \backslash K$ such that for every $n \in M$ and $a \in R \backslash(K: m),(N: n) \nsubseteq(K: a m)$.

PROPOSITION 4.2. Let $M \in R^{\bmod }$ and $N \subseteq M$ be a submodule. Then N is weakly dense in M iff there are $K \in E(M)$ and $m \in M \backslash K$ such that $\operatorname{hom}_{R}(B / N, R(m+K))=0$ for every submodule $B, N \subseteq B \subseteq M$.

Proof. (i) Let N be weakly dense in M and K, m be as in Definition 4.1. Let $f: B / N \rightarrow R(m+K)$ be a non-zero homomorphism. There is $b \in B$ such that $f(b+N)=a m+K \neq K$. Hence $a \in R \backslash(K: m)$ and $(N: b) \subseteq(k: a m)$, a contradiction.
(ii) If N is not weakly dense in M then for every $K \in E(M)$ and $m \in M \backslash K$ there are $n \in M, a \in R \backslash(K: m)$ such that $(N: n) \subseteq(K: a m)$. Hence $f:(N+R n) / N \rightarrow R(m+K)$ given by $x n+N \mapsto x a m+K$, is a non-zero homomorphism.

PROPOSITION 4.3. Let $M \in{ }_{R} \bmod$ and $N \subseteq M$ be a submodule. If N is not weakly dense in M then $M \in M_{M / N}$.

Proof. Let $m \in M$ be a non-zero element. As N is not weakly dense in M, there is $B, N \subseteq B \subseteq M$, such that $\operatorname{hom}_{R}(B / N, R m) \neq 0$. Hence $r_{M / N}(R m) \neq 0$, so that $R m \cap r_{M / N}(M) \neq 0$. Therefore $K=r_{M / N}(M) \in E(M)$.

Now, from Proposition 4.2 , we have $K=M$.
DEFINITION 4.4. Let $M \in R^{m o d}$ and $N \subseteq M$ be a submodule. Then N is called dense in M if $r_{M / N}(M)=0$, that is, if $\operatorname{hom}_{R}(B / N, M)=0$ for all $B, N \subseteq B \subseteq M$.

PROPOSITION 4.5. Let $M \in{ }_{K} \bmod$ and $N \subseteq M$ be a submodule. Then N is dense in M iff $(N: n) \nsubseteq(0: m)$ for all $m, n \in M, m \neq 0$.

Proof. This is an immediate consequence of Definition 4.4.
PROPOSITION 4.6. Let $M \in R^{\bmod }$. If $M \in T_{R}$ then every weakly dense submodule in M is dense in M.

Proof. It follows from Proposition 4.3 and Definition 4.4.
THEOREM 4.7. Let R be a ring. Then the following are equivalent:
(i) R is a T-ring;
(ii) every weakly dense left ideal of R is dense in R.

Proof. (i) \Rightarrow (ii). See Proposition 4.6.
$(i i) \Rightarrow$ (i). Let r be a hereditary radical and E the corresponding radical filter. If E contains only dense left ideals then $r(R)=0$. Let $I \in E, I$ be not dense in R. Then I is not weakly dense in R and hence $r_{R / I}(R)=R$ by Proposition 4.3. However $r(R / I)=R / I$ and therefore $\quad r_{R / I}(M) \subseteq r(M)$ for every $M \in \bmod ^{\bmod }$. Thus $r(R)=R$.

References

[1] M.F. Atiyah, I.G. Macdonald, Introduction to commutative algebra (Addison-Wesley, Reading, Massachussetts; London; Don Mills, Ontario; 1969).
[2] Hyman Bass, "Finitistic dimension and a homological generalization of semi-primary rings", Trans. Amer. Math. Soc. 95 (1960), 466-488.
[3] Richard Courter, "Finite direct sums of complete matrix rings over perfect completely primary rings", Canad. J. Math. 21 (1969), 430-446.
[4] Spencer E. Dickson, "A torsion theory for abelian categories", Trans. Amer. Math. Soc. 121 (1966), 223-235.
[5] Vlastimil Dlab, "Distinguished sets of ideals of a ring", CzechosZovak Math. J. 18 (93) (1968), 560-567.
[6] Vlastimil Dlab, "On a class of perfect rings", Canad. J. Math. 22 (1970), 822-826.
[7] B.J. Gardner, "Rings whose modules form few torsion classes", Bull. Austral. Math. Soc. 4 (1971), 355-359.
[8] Michal Jaegermann and Jan Krempa, "Rings in which ideals are annihilators", Fuond. Math. 76 (1972), 95-107.
[9] А.П. Ріишнна, Л.А. Скорняков, [А.P. Miకina, L.A. Skornjakov], Абелевы группы н мддули [Abelian groups and modules] (Izdat. "Nauka", Moscow, 1969).

Matematicko-fyzikální fakulta,
Karlova universita,
Sokolovská,
Praha,
Czechoslovakia.

