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In Rayleigh–Bénard convection, it has been found that the amount of heat passing through
the fluid has a power-law dependence on the imposed temperature difference. Modifying
this dependence, either enhancing or reducing the heat transfer capability of fluids, is
important in many scientific and practical applications. Here, we present a simple means to
control the vertical heat transfer in Rayleigh–Bénard convection by injecting heat through
one lateral side of the fluid domain and extracting the same amount of heat from the
opposite side. This horizontal heat flux regulates the large-scale circulation, and increases
the heat transfer rate in the vertical direction. Our numerical and theoretical studies
demonstrate how a classical Rayleigh–Bénard convection responds to such a perturbation
when the system is near or well above the onset of convection.
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1. Introduction

There are many similarities between thermal, electronic and fluid systems. For example,
Ohm’s law relates a flux of charges to an electrostatic potential difference, while Fourier’s
law of heat conduction |q| ∝ ΔT states that heat flux |q| is proportional to the temperature
difference ΔT . Other physical laws also share similar mathematical forms, such as the
conservation laws (Evans 2010) regarding electrical charge, energy and mass. Drawing
analogies between these different systems has revealed many mechanisms that are known
in one system but less obvious in the other (Schönfeld 1954). Examples include the
fluid ‘transistor’ circuits proposed more than 60 years ago (Pursglove 1960) and a recent
example on the flow rectifier based on Nikola Tesla’s concept of a fluidic diode (Nguyen,
Abouezzi & Ristroph 2021a; Nguyen et al. 2021b).
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Figure 1. At Ra = 108 and Pr = 4.4, flow and thermal structures of (a) a classic RBC and (b) a perturbed
RBC, where a horizontal heat flux is added through sidewall flux conditions. The dimensionless temperature
is θ , and its wall-normal derivative is θn. (c) In classic RBC, the total angular momentum L(t) (blue data)
alternates between positive and negative values due to the reversals of the large-scale circulation. In the
perturbed case (red data), L(t) stays negative and stable as the large-scale circulation is always clockwise
(CW). (d) Defined by the maximum flow velocity Umax (§ 2), the Reynolds number Re = UmaxH/ν of both
the classic and perturbed RBC is similar. (e) The Nusselt number is significantly enhanced by introducing the
horizontal flux. The horizontal flux in (b–e) is Nu⊥ = 128. The time t = t0 of snapshots (a,b) is marked in (c),
and full videos of (a,b) are included in the supplementary movies available at https://doi.org/10.1017/jfm.2022.
1035.

Combining these systems also reveals non-trivial and sometimes surprising dynamics.
For example, allowing mass flow to a thermal system introduces nonlinearity that
Fourier’s law does not capture. It is well known that thermal convection appears
when the temperature gradient exceeds a threshold (Busse 1978; Niemela et al. 2000;
Childress 2009). One canonical example is the Rayleigh–Bénard convection (RBC), whose
configuration is simple: a closed domain of fluid is subject to heating from the bottom and
cooling from the top, while the sidewalls remain adiabatic, as shown in figure 1(a). The
cooled fluid near the top plate is heavier than the heated fluid near the bottom, creating
an instability under gravity. Convection occurs when this system is beyond a threshold or
onset, and the vertical heat flux has been observed to depend on the temperature difference
nonlinearly: |q| ∝ ΔTγ where γ is around 1.3, for a wide range of external and fluid
parameters (Belmonte, Tilgner & Libchaber 1994; Grossmann & Lohse 2000; Ahlers,
Grossmann & Lohse 2009).

There have been numerous attempts to modify the heat transport in RBC and deviate
from the above dependency, as a reduced or enhanced heat transfer rate is sometimes
desired in applications such as effective ventilation or energy preservation. Successful
experimental examples include adding rotation to the RBC (Stevens et al. 2009; Zhong &
Ahlers 2010), where moderate rotation rates enhance the heat flux and high rates reduce
heat flux; changing the surface roughness of the top and bottom plates (Du & Tong 1998),
where corrugated surface patterns result in higher heat transfer. Tilting the convection cell
(Guo et al. 2015; Wang et al. 2018) or inserting insulating partitions into the fluid domain
(Bao et al. 2015) also leads to regulated circulation and higher overall heat transfer rate.
Combined experimental and numerical efforts have also brought insights on heat transport
enhancement through coherent structure manipulation (Chong et al. 2017).

The examples above show the possibility of modifying the heat transfer in RBC,
and many of them involve adding mechanical parts or changing the geometry of the
convection cell. Without moving parts, an active control of RBC through modified
boundary conditions is also possible. Examples include the work of Howle (1997), where
the unstable convective fluid motion is stabilized through an active heat flux imposed
through the boundary conditions, and the study by Zhang et al. (2020), where the
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reversal of large-scale circulation is suppressed by introducing small control regions on
the sidewalls.

In order to externally control and enhance the heat transfer, we impose a horizontal
heat flux q⊥ to the classical RBC as shown in figure 1(b), by setting sidewall temperature
gradients as |∂nT| = q⊥/K, where K is the thermal conductivity. This additional flux,
by heating on one side and cooling on the opposite side, modifies the bulk fluid motion
by inducing buoyancy jets near the sidewalls, resulting in a unidirectional large-scale
circulation as seen in figure 1(b), where the fluid angular momentum L (defined in § 2)
ceases to alternate as shown in figure 1(c). Interestingly, the overall magnitude of flow
angular momentum is reduced while the flow velocity, measured by the Reynolds number
(§ 2), stays nearly unchanged in figure 1(c,d). On the other hand, the vertical heat transfer
rate measured by the Nusselt number (§ 2) in figure 1(e) is greatly increased compared
with the classic case.

To understand these observations, we examine the side-heated and side-cooled RBC
systematically through two-dimensional (2-D) numerical simulations. Considering that
the flow and thermal structures involved are largely 2-D, especially when side heating and
cooling dictate the flows, the heat transfer properties of RBC can be accurately accounted
for by such numerical simulations (Schmalzl, Breuer & Hansen 2002, 2004; Ahlers et al.
2009). In § 2, the mathematical formulation and numerical implementation are introduced.
The main results of our study are presented in § 3, which includes a detailed investigation
of how horizontal heat flux affects the flow and temperature fields (§ 3.1), how bulk
quantities respond to this perturbation (§ 3.2), and how time-dependent perturbation alters
the dynamics of RBC (§ 3.3). Finally, we will discuss some potential applications in § 4,
where a simple mechanism is used to actively control the net circulation of RBC.

2. Numerical set-up

To formulate our problem dimensionlessly, we rescale temperature T by ΔT = Tb − Tt,
where Tb and Tt are the bottom and top temperatures. Therefore the dimensionless
temperature is θ = (T − Tt)/ΔT . We also rescale the coordinates (X, Y) by H (domain
height) to the coordinates (x, y) ∈ (0, 1)× (0, 1) in the fluid domain Ω , as shown in
figure 1(a). The time is rescaled by the thermal diffusion time scale of H2/κ where
κ is the thermal diffusivity of the fluid, so the flow velocity U is rescaled to the
dimensionless velocity u = UH/κ . Two relevant dimensionless numbers are the Rayleigh
number Ra = αgΔTH3/(κν), which measures the relative strength between the thermally
induced buoyancy force and the fluid viscous force, and the Prandtl number Pr = ν/κ ,
the ratio between fluid viscosity and thermal diffusivity. Here ν, α and g are the kinematic
viscosity and thermal expansion coefficient of the fluid, and the acceleration due to gravity,
respectively.

The heat flux passing through the vertical direction can be non-dimensionalized as the
Nusselt number, Nu = q/qc = − ∫ 1

0 ∂yθ(x, 1) dx, which is the ratio between the convective
flux q = −(K/H) ∫ H

0 ∂YT(X,H) dX and the conductive flux qc = KΔT/H. To simplify
our notation, we also define a horizontal Nusselt number as Nu⊥ = q⊥H/(KΔT). The
symbol ⊥ indicates that the horizontal heat flux is perpendicular to the traditionally
vertical heat flux (Nu) in RBC. As Nu⊥ and Nu are both rescaled by the conductive flux qc,
we can define S = Nu⊥/Nu and directly compare the horizontal and vertical heat fluxes.
This makes Nu⊥ a more natural and direct choice of measuring the imposed horizontal
flux, compared with other dimensionless numbers such as the horizontal flux Rayleigh or
Grashof number.
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Another important number is the Reynolds number Re = UmaxH/ν = Pr−1umax,
where the maximum velocity umax = max |u| represents the flow speed scale.
In order to investigate the strength of large-scale circulation, we also define the
dimensionless total angular momentum as the integral L(t) = ∫ 1

0

∫ 1
0 [(x − 0.5)v(x, y, t)−

( y − 0.5)u(x, y, t)] dx dy, so a positive L represents counter-clockwise (CCW) large-scale
circulation.

Overall, the system has three control parameters, or inputs: Ra, Pr and Nu⊥. Outputs
such as Nu, Re and L are functions of these inputs. To further simplify our study, we set
Pr = 4.4 (water at 40 ◦C) for all the simulations, as varying Pr in the range of 1–10 does
not significantly change our results.

Denoting the vorticity as ω = k̂ · ∇ × u (k̂ is the unit vector along z direction) and the
stream function as ψ such that u = ∇⊥ψ = (ψy,−ψx), we can write the Navier–Stokes
equation in the vorticity-stream function format:

∂θ

∂t
+ u · ∇θ = Δθ in Ω, (2.1)

∂ω

∂t
+ u · ∇ω = PrΔω + PrRa

∂θ

∂x
in Ω, (2.2)

−Δψ = ω, u = ∇⊥ψ in Ω, (2.3a,b)

with boundary conditions

⎧⎪⎨
⎪⎩

ψ = ψn = 0 on ∂Ω,
θ = 0 on ∂Ωup( y = 1), θ = 1 on ∂Ωdown( y = 0),
∂θ

∂n
= −Nu⊥ on ∂Ωleft(x = 0),

∂θ

∂n
= Nu⊥ on ∂Ωright(x = 1).

(2.4)

Here n is the outward normal vector, so ∂n = −∂x on Ωleft and ∂n = ∂x on Ωright.
To solve these equations, we employ a pseudo-spectral scheme (Peyret 2002) that uses

the Chebyshev method. Spatial variables are discretized on the Chebyshev nodes, with
operations such as derivatives and integrations performed through corresponding discrete
operators. Moreover, an efficient anti-aliasing filter (Hou & Li 2007) is applied when
evaluating nonlinear advection terms pseudo-spectrally. At each time step, a second-order
implicit-explicit Adam–Bashforth backward-differentiation method solves for the stiff
parabolic equations and the nonlinear equations. Typically, the simulation has N = 200
Chebyshev nodes in each dimension, and the time step is set as Δt = 2 × 10−4Ra−1/2

(considering |u| ∼ Ra1/2, Ahlers et al. 2009) to maintain numerical accuracy and stability.
These parameters are tested to yield spatially and temporally resolved solutions for
(2.1)–(2.3a,b). As the unevenly spaced N Chebyshev points has an O(N−2) density near
the boundary (Trefethen 2000), the small-scale boundary-layer structure can be efficiently
resolved there, allowing us to simulate high-Ra convection with a small number of
Chebyshev nodes.

At each Ra, we first evolve the classic RBC (Nu⊥ = 0) to a dynamical equilibrium state,
which is used as the initial condition for simulations of different Nu⊥. Each simulation
then runs for 4 million time steps, and time-averaged quantities such as Nu and Re are
averaged during the latter 2 million time steps, where the system has equilibrated.
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Figure 2. Flow (arrows) and temperature (colour map) profiles of RBC with an additional horizontal heat
flux. (a–d) Time-averaged flow and temperature fields at Ra = 108 with four different strengths of horizontal
flux. Insets of (d) show the boundary-layer structure for the flow and temperature fields near the top centre
(0.5, 1) and left centre (0, 0.5). Bottom and right boundary layers are symmetric to the top and left boundary
layers with respect to the centre (0.5, 0.5). (e) Horizontal temperature profiles along y = 0.5. ( f ) Vertical
temperature profiles along x = 0.5. (g) The time-averaged left wall temperature θl increases while the right wall
temperature θr decreases symmetrically, about bulk θc, with increasing Nu⊥. (h) At high Nu⊥, the horizontal
temperature change Δθ⊥ = θl − θc = θc − θr takes the 4/5 power law as an asymptote. (i) Time-averaged total
angular momentum |L| decreases with the horizontal flux. (j) The Nusselt enhancement ΔNu = Nu − Nu0
scales linearly with the horizontal flux.

3. Results

3.1. Flow and temperature profiles
The effect of adding a horizontal heat flux to RBC is directly reflected in the temperature
and flow fields. Figure 2(a–d) shows four time-averaged flow and temperature profiles at
different magnitudes of horizontal flux. At a constant Ra = 108, the Nusselt number for the
classical RBC (Nu⊥ = 0) is Nu0 ≈ 25, and the direction of circulation is not deterministic
(figures 1(c) and 2(a)). A clear influence of the horizontal flux is already present at Nu⊥ =
4 (figure 2b), where the direction of circulation becomes deterministically clockwise due
to the buoyancy-driven flows near the vertical walls. For Nu⊥ ≥ 16 (figure 2c,d), the
profiles of temperature and flow fields are dictated by the sidewall heating and cooling and
the corner rolls are eliminated, similar to the profiles in a horizontal convection without
bottom heating or top cooling (Belmonte, Tilgner & Libchaber 1995). As a measure of
relative strength between horizontal and vertical flux, S = Nu⊥/Nu is in the range of 0–1.5
in figure 2.

With increasing Nu⊥, the Reynolds number stays at a similar level despite the increasing
sidewall heating, which only seems to thin the vertical boundary layers near the sidewalls
as shown in figure 2(b–d). Another consequence of this thinning of boundary layers can
be seen in figure 2(i), where the time-averaged total angular momentum |L| decreases with
increasing Nu⊥. This response seems to be counter-intuitive at first, but can be explained
after examining the flow fields. As the magnitude of flow speed stays at a similar level,
a thin boundary layer and a lack of bulk circulation (inset of figure 2d) lead to a reduced
bulk contribution to the total angular momentum |L|.
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The time-averaged temperature distributions along the horizontal centre line y = 0.5 and
the vertical centre line x = 0.5 are shown in figure 2(e, f ). On the horizontal cut y = 0.5,
the temperature stays at θ(x, 0.5) = 0.5 when no horizontal flux is added. As the sidewall
heating–cooling increases, the temperature on the heating wall becomes higher while the
temperature on the cooling wall becomes symmetrically lower. This change of temperature
generates buoyancy jets along the two sidewalls, which can also be seen in figure 2(a–d).
Due to flow advection, a thermal boundary layer develops near the sidewalls as shown in
figure 2(d), similar to the boundary-layer profile near a heated or cooled vertical wall in an
infinite space (Schlichting & Gersten 2016). As the buoyancy jets move upward/downward,
they are diverted to the right/left as they meet the top/bottom wall, resulting in an overall
clockwise circulation. Due to the relatively hot/cold fluid coming from the region near the
left/right wall, the vertical temperature profile θ(0.5, y) in figure 2( f ) has an inversion with
a temperature rise near the top wall and a drop near the bottom. Namely, the bulk fluid
becomes increasingly stratified. As a result, the magnitude of the temperature gradient
near the top and bottom walls is increased, as shown in the inset of figure 2( f ), leading
to a higher vertical heat transfer rate. Even though the same amount of heat flowing into
the left sidewall leaves from the right, this horizontal heat flux does alter the overall flow
structures and affects the boundary layers, causing the strong Nu enhancement shown in
figure 1(e) without significantly changing the flow speed.

Defining θl = θ(0, 0.5), θr = θ(1, 0.5) and θc = θ(0.5, 0.5) to be, respectively, the
temperature of the left wall, right wall and bulk centre, their time-averaged values at
different Nu⊥ are shown in figure 2(g). The temperature rise and drop of the left and
right wall are symmetric with respect to the bulk centre, which has a mean temperature
θc = 0.5. Defining Δθ⊥ = θl − θc = θc − θr to be the temperature change on the sidewall,
it increases with the horizontal flux Nu⊥ as shown in figure 2(h). Asymptotically, the
measured data approaches Δθ⊥ ∝ Nu4/5

⊥ when Nu⊥ is high. This is consistent with the
boundary-layer scaling between the temperature rise ΔT⊥ and the injected heat Q from a
vertical heated wall, ΔT⊥ ∝ Q4/5 (Schlichting & Gersten 2016). In this limit, we also note
that Δθ⊥ can be greater than 1 as shown in figure 2(g), where the horizontal temperature
difference is greater than the vertical one and the horizontal flux becomes the main driver
of thermal convection.

Focusing on the enhancement of Nu, figure 2(j) shows the Nusselt increment ΔNu =
Nu − Nu0 increases monotonically with Nu⊥. Interestingly, the increment ΔNu scales
linearly with Nu⊥. An explanation for this is that the high- and low-temperature jets
generated by the left and right sidewalls must pass by the top and bottom plates, leading
to higher temperature gradients in the boundary layers shown in figure 2( f ). Overall, the
horizontal flux gradually limits the fluid circulation to a thin boundary-layer region near
four boundaries as shown in figure 2(d), and the heat conduction within the boundary layer
strengthens the heat transfer rate (Nu) in the vertical direction. In the following section, we
will systematically review such a Nusselt enhancement at different Ra.

3.2. Bulk heat transfer and flow properties
Without the horizontal flux (Nu⊥ = 0), Nu0 is known to depend on the Rayleigh number
in a nonlinear way: when the Rayleigh number is below a critical number (around 1708,
Koschmieder 1993), the viscous force suppresses fluid motion and the fluid behaves like
a solid, hence Nu0 = 1; increasing the Rayleigh number well beyond critical, a power-law
relation emerges as Nu0 ∝ Ra0.29 despite local deviations. The more detailed dependence
between Nu and Ra is summarized in the theory of Grossmann & Lohse (2000). In our
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Figure 3. Time-averaged bulk quantities, Nu,Re and |L| measured at various Rayleigh number, Ra, and
horizontal heat flux, Nu⊥. (a) The Nusselt number increases with Nu⊥ at a given Ra. The dark blue curve Nu0
corresponds to the classic RBC with adiabatic sidewalls. Inset: relative Nu enhancement f = (Nu/Nu0)− 1
reaches a local maximum near Rac = 2415. Arrows indicate the direction of increasing Ra and Nu⊥, where
Ra ∈ [102, 108] and Nu⊥ ∈ [0, 64]. (b) Horizontal flux leads to non-zero Reynolds number even for Ra < Rac,
and Re ∼ Ra0.5 at high Ra is consistent with the scaling in classic RBC (Ahlers et al. 2009). (c) Total angular
momentum |L| has a 0.5 power-law scaling with Ra when the horizontal flux is small, but takes a 0.34 power
law when Nu⊥ dominates.

simulation, this relation is recovered as the dark blue data of figure 3(a). As we shall
determine later, the critical Rayleigh number in our numerical system is near Rac = 2415,
slightly higher than the theoretical value 1708 for an infinitely wide convection cell
(Koschmieder 1993), but consistent with experiments and simulations conducted in finite
domain (Hébert et al. 2010).

The behaviour near Rac changes with the addition of a horizontal flux: figure 3(a) shows
that the Nusselt number can be greater than 1 when Ra < Rac and Nu⊥ > 0. The side
heating and cooling set up the circulation even though the vertical temperature gradient is
small, and this mixing effectively stirs the bulk fluid and increases the vertical flux. Indeed,
figure 3(b,c) shows that horizontal flux does lead to fluid motion with non-vanishing Re
and L, even at Ra < Rac. Paying attention to the top half of the convection cell, the warm
fluid close to the left wall flows upward to the top plate, creating a larger temperature
difference between the fluid and the top plate and a smaller characteristic length as the
boundary-layer thickness decreases with the fluid velocity (figure 2f ). All together, these
effects result in a greater temperature gradient near the top hence an enhanced Nu. Similar
analysis can be performed symmetrically near the bottom plate, as the system is symmetric
about its centre such that θ(x, y) = 1 − θ(1 − x, 1 − y).

This enhancement of Nu exists for a wide range of Ra and Nu⊥. Shown in the inset
of figure 3(a), the relative enhancement f = (Nu/Nu0)− 1 is an increasing function of
Nu⊥ when Ra is fixed. At a fixed Nu⊥, however, the value of f peaks around the critical
Rayleigh number Rac. One possible explanation for this peak is that the fluid (and hence
the vertical heat flux) is easily perturbed when Ra ∼ Rac while the unperturbed Nu0 is still
at unity. As Ra increases, the relative enhancement f becomes smaller and approaches 0
asymptotically. This is understandable as the relative strength of the imposed horizontal
flux and the unperturbed vertical flux Nu⊥/Nu0 diminishes with increasing Ra. Eventually,
Nu0 	 Nu⊥ as Ra → ∞ so the horizontal flux has negligible effects on the RBC. In the
same limit, the Reynolds number shown in figure 3(b) also returns to the asymptote of
Re ∼ Ra0.5, consistent with the scaling in classic RBC (Ahlers et al. 2009) and suggesting
the buoyancy flow generated by the top–bottom temperature difference determines the
scale of flow speed. We notice that Re, compared with Nu, is less sensitive to the change
of Nu⊥ at high Ra – an observation worth further examination.
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diminishes after this flux is removed. (b) Reynolds number in the above-onset system decreases to the usual
level of RBC after the perturbation is removed. (c) The fluid motion decays exponentially in the below-onset
RBC after the perturbation is removed. (d) The relaxation time τ reaches a maximum at Rac = 2415,
approaches a constant as Ra → 0, and decreases rapidly when Ra > Rac. In (c,d), Nu⊥ = 2; cases with
different values of Nu⊥, shown in (a,b), yield similar τ at a fixed Ra.

The circulation of a perturbed RBC has a non-trivial dependence on Ra and Nu⊥. Shown
in figure 3(c), the time-averaged total angular momentum |L| has a 0.50 power-law scaling
with Ra when Nu⊥ is fixed low, consistent with the scaling of Re ∼ Ra0.5, suggesting
that the circulation rate is proportional to the flow speed. When Nu⊥ becomes higher, the
scaling deviates and approaches an exponent of 0.34, perhaps due to the development of
thin boundary layers near vertical walls seen in figure 2(b–d). This change of scaling for
|L| demands a more detailed analysis of the boundary-layer structures, which awaits future
investigations to justify. On the other hand, |L| is an increasing function of Nu⊥ when
holding a constant Ra < 2 × 105, but this monotonicity is reversed for Ra > 2 × 105 –
increasing horizontal flux Nu instead leads to a decreased total angular momentum. It is
known that the large-scale circulation only exists beyond a sufficiently large Ra (around
107), and very little circulation exists for low-Ra convection. Therefore, the addition of
horizontal flux to low-Ra convection generates an otherwise non-existent circulation and
hence increases the total flow angular momentum. At high Ra, increasing Nu⊥ does
not change Re significantly (figure 3b) but the flow becomes confined in a boundary
layer (figure 2d), so |L| consequently reduces as the bulk’s contribution to the angular
momentum integral gradually diminishes.

3.3. Relaxation of a perturbed RBC
In the following examples, we temporally impose a horizontal heat flux during the time
t ∈ (0, 1), and then turn it off at t = 1 (corresponding to the diffusion time L2/κ) so the
system is allowed to return to the configuration of classical RBC. Figure 4(a) shows how
the fluid responds to such perturbations. The Reynolds number for both the below-onset
(Ra < Rac, figure 4a) and above-onset (Ra > Rac, figure 4b) states increases while the
horizontal flux is applied. This is expected as there is a horizontal temperature difference
in the fluid, which results in convective motion without threshold.

When the horizontal flux is turned off, the flow speed, represented by the Reynolds
number Re(t), relaxes to that of RBC. In figure 4(a), the flow velocity drops to 0 as the
system is below onset; in figure 4(b), the flow velocity decreases to a constant Re(∞).
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RB thermal convection perturbed by a horizontal heat flux

This relaxation is further demonstrated in figure 4(c). For Ra < Rac, the magnitude of
flow speed is found to decay exponentially after removing the horizontal flux, leading to
straight lines in the semi-logarithmic plot of figure 4(c). The slope of these lines shows the
rate of decay, and we define a relaxation time τ that is the negative inverse of the slope.
In the case of Ra > Rac, one can also calculate τ from Re(1)− Re(τ ) = e−1[Re(1)−
Re(∞)], providing that Re(∞) can be accurately determined. Shown in figure 4(d), τ is
a non-monotonic function of Ra that peaks at a critical value determined as Rac = 2415,
where RBC takes the longest time to relax due to a phenomenon known as critical slowing
down (Hohenberg & Halperin 1977). This can also be seen in the inset of figure 4(c), where
the Ra = Rac curve (green) decays the slowest. It is worth noting that, at the same Rac,
the Nusselt enhancement f also reaches a maximum when holding Nu⊥ constant (inset of
figure 3a).

In the below-onset system, the relaxation of temperature and flow fields is closely
associated with the dissipation of energy through the diffusion of heat and momentum.
In the extreme case of Ra → 0, the flow speed decreases to 0 as the driving term in
§ 2.2 vanishes, and (2.1) becomes the heat equation, ∂θ/∂t = Δθ , whose solution decays
exponentially in time. The relaxation time of this exponential decay is set by the initial
condition of θ and geometry, therefore independent of Ra. As the flow field is only driven
by the temperature field, the magnitude of flow speed shall exhibit the same exponential
decay in time. This confirms the exponential decay in figure 4(c), and explains why
the relaxation time τ in figure 4(d) is almost constant for small Ra. Consequently, the
dimensional relaxation time Tτ = H2τ/κ ∝ H2/κ has the same scaling as pure thermal
diffusion in the limit of Ra → 0.

Above Rac, the relaxation time in figure 4(d) decreases rapidly with Ra, as the vertical
temperature gradient sustains fluid motion and the perturbation applied during t ∈ (0, 1)
is quickly ‘washed away’.

4. Discussion

In this work, we numerically explore the effects of an additional horizontal heat flux in
RBC. We found that, in eight decades of Ra, this horizontal heat flux induces fluid motion,
modifies flow structures, and increases the Nusselt number. We observe a monotonic
response in vertical heat flux when the horizontal heat flux is added, for convection both
well below (Ra ∼ 1) and well beyond (Ra ∼ 108) onset, and this allows us to directly
control the vertical heat transfer rate of RBC in a diverse range of parameters. By adding
a horizontal flux, convection can also be initiated in an otherwise below-onset, conductive
state. Once this flux is removed, fluid motion decays exponentially and the system returns
to its equilibrium. Right at the critical Ra, the Rayleigh–Bénard system is most sensitive
to the perturbation of the horizontal flux, where the highest Nu amplification ratio f and
the longest relaxation time τ are reached. These nonlinear, non-monotonic behaviours of
perturbed RBC could find future applications in the design of more complicated thermal
devices.

As one example of achieving active control, we demonstrate a simple ‘dynamic-zero’
mechanism to reduce the net large-scale circulation of RBC through adjusting the
magnitude and direction of the horizontal flux. Shown in figure 5(a), we allow the strength
of horizontal flux to depend on the total angular momentum such that Nu⊥(t) = βL(t),
where β is a positive constant. With this control, a time-dependent, horizontal temperature
gradient is imposed so the resulting buoyancy torque counteracts the existing large-scale
circulation. Two moments of such active control are shown in figure 5(a) and its video can
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Dynamic-zero circulation suppression

Dynamic zero
Classic RBC

(b) (c)

(d )Nu⊥(t) = βL(t) Nu⊥(t) = βL(t)

(a)

Figure 5. Actively controlling the RBC with a horizontal flux that depends on the strength of large-scale
circulation, Nu⊥ = βL. (a) Two moments of the temperature fields and the dynamic-zero control. (b) The total
angular momentum L stays close to 0 under the dynamic-zero control regime. (c) The Reynolds number of the
controlled RBC is slightly reduced, while (d) the Nusselt number stays unchanged. Classic RBC (blue) data
in (b–d) is the same as figure 1. Dynamic-zero regime in (a–d) has the same Ra = 108 and Pr = 4.4, and the
control parameter is β = 0.128. Video of (a) is included in the supplementary movies.

be found in the supplementary movies. Indeed, figure 5(b) shows that the magnitude of
total angular momentum L is suppressed through this dynamic-zero approach, suggesting
a reduced net circulation even though the fluid motion persists and the Reynolds number
is only slightly decreased as shown in figure 5(c). This control mechanism might not be
the optimal way of bringing the total angular momentum close to zero, as it does not
account for the response time due to thermal inertia. Better control mechanisms, such
as the proportional–integral–derivative (PID) controller, can probably suppress the net
circulation more efficiently. Nonetheless, our simple mechanism works well as shown in
figure 5(b), considering the total angular momentum is suppressed with a weak control
signal. This control signal is given by the orange data in figure 5(b) multiplied by
β = 0.128.

We would naturally ask: Is the Nusselt number reduced without the large-scale
circulation? It turns out that the Nusselt number in figure 5(d) stays unchanged, suggesting
that the circulation contribution is not significant. However, we have to point out that
our dynamic-zero regime actively supplies horizontal flux to the RBC, which is known
to increase its Nu. As we cannot isolate this factor, a more delicate approach is needed
for future investigation of large-scale circulations. Experimentally, it is also difficult to
simultaneously inject heat through one sidewall while extracting the same amount of heat
from the other, so we have instead built an experiment to investigate the influence of
sidewall heating (no cooling) in RBC (Huang & Zhang 2022). To control the large-scale
circulation there, a modification could include two heating sidewalls, so the direction of
large-scale circulation can be controlled by adjusting the heating power on each side.

Nonetheless, active control is proven possible for the high-Ra convection and it can
successfully eliminate the otherwise persistent large-scale circulation. Among many
avenues for harnessing RBC, the addition of horizontal flux is perhaps the simplest way
of regulating one heat flux (Nu) with another (Nu⊥), therefore serving a thermal purpose
quite similar to the celebrated electronic transistor, and further bridging the thermal and
electrical analogies.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.1035.
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