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P-ADIC INTERPOLATION OF DEDEKIND SUMS

C. SNYDER

In this article we give an explicit representdtion of p-adic Dedekind sums and their reci-
procity laws by using p-adic measure theory. We then study the consequences of the
p-adic reciprocity law for particular positive integer values in which case we can recover a
reciprocity law for Dedekind sums attached to particular Dirichlet characters. This gives
a proof different from that of Nagasaka.

1. INTRODUCTION

In (4], the authors showed that by p-adically interpolating certain partial zeta
functions, it is possible to interpolate the higher order Dedekind sums introduced by
Apostol [1], thus obtaining p-adic Dedekind sums. The authors then showed that there
is a reciprocity law for p-adic Dedekind sums, however they were not able to obtain
an explicit representation of the reciprocity law for all p-adic integers. In this article,
we obtain an explicit form for the reciprocity law for arbitrary p-adic integers. This is
accomplished by the use of p-adic measure theory. We then study the consequences of
this p-adic reciprocity law for particular integer values in which case we can recover a
reciprocity law for Dedekind sums attached to particular types of Dirichlet characters.

This gives a proof different from that of Nagasaka [3] for these special cases.

2. p-ADIC INTERPOLATION OF HIGHER ORDER DEDEKIND SUMS

The higher order Dedekind sums are defined as follows: let m, h and k be integers
such that m > 0 and k > 0, then

(B, k) = 2?1(%)@(%)

where Em(z) denotes the mth periodic Bernoulli function defined by

o m zz

z ze
> Bale) o = 2l <2m)
m=0
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for all real z and Bn(z) = Bm(z—{z]). It is well-known that B,(z) =
E;'":o ';'):c"‘_jBJ- or, symbolically, B,,(z) = (z + B)™ and B,,(0) = B, the mth
Bernoulli number.

Throughout this section, let p denote a fixed prime which, for convenience, we
assume to be odd. Let Z, and Q, denote the set of p-adic integers and p-adic rationals,
respectively. Let ||, denote the p-adic norm, normalised so that |p|, = —;;. Recall that
the group of p-adic units Z; ~V x (1 +pZ,) where V is the group of (p — 1)st roots
of unity in Z, and 1+ pZ, is the so called group of principal units. If z € Z, then
we denote by w(z) and < z > the projections of  onto V and 1+ pZ,, respectively.
Furthermore let A, denote the set

()= 3 amz™ € K[il]: lim om =0},
m=0
where K is a finite extension of Q,. We define a linear functional d3 from A, to K
by
[1@a8) = [ 3 amemdge) = Y amBn
m=0 m=0

Notice that this series converges since |Bmlp < p by the von Staudt-Clausen theorem.
We then have the following proposition.

PROPOSITION 1. For all integers m, a and k such that m 20, k#0

a

k"‘Bm(k) = /(a-f-kz)mdﬂ(z).

If in addition a # 0, then

k'"Bm(%) = am/ (1 + %)mdﬂ(z).

PROOF:

/(a +k2)™dB(z) = /f: (T;)am‘jkajdﬂ(z) = i (’;") a™ Ik B;.

Jj=0

The second part is equally obvious. ]

a

Now, if p| k but p 1 a, then it is easy to see how we can extend k’"Bm(;c-) to

a continuous function for “p-adic m", namely, by < a >* [(1+ %)’dﬂ(z) or more
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generally by w™™(a) < a>* [(1+ %)adﬂ(z) for some fixed integer n. Here s € Z,
and (1+ %)a =Y o () (f)mz"‘ € Ap since (°) € Z, and k/a € pZ,. From this
we see easily how to interpolate k™s,,(h,k) when p|k, p{a:

DEFINITION: Let h, k be integers such that £ > 0, p | £k but p + A. Then
Sp(sih k) = S575 By (B)w(hu) < (hu), >° j(1+ o ) dB(z) for all s € Z,.

pin
(a), denotes the integer z € [0,k) such that a = z(inod k).

We introduced the factor w™(hu) in the above definition in order to recover the

classical reciprocity law for higher order Dedekind sums, as we shall see later.

PROPOSITION 2. For any integers m, h and k such that m 20, k>0 andplk
but pt h,

L(m; b, k) ZB1< E)o=™ (hu)k™ B (hk").
Ph‘

Moreover,if m+1=0 (modp -1},

Sp(m;h, k) = k™sm(hy k) — p™(k/P)" sm(h, k/p).

Salmio) = 3 B (2o ) 0= (i )00,)" /( h’“)k)mdﬂ(z)

p=0

by Proposition 1 and the observation that w=™((hu),) = w=™(hp) since p | k and
w™™ has period dividing p. f m+1 =0 (mod p— 1), then w ™" !(hp) =1 for all

.
Thus

Sy(m; h, k) =k§ 1(£)k" B ( ) ZB,( g (T)

P|#

S lae

= k™sm(h, k) —z—: B, (“”)k"‘B (th)

=k™sm(h, k) - k"‘sm(h,k/p)
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We shall now define Sp,(s;h,k) when p + hk. We proceed as above by replacing &
by pk and appealing to Raabe’s theorem:

m h’” m-—1m h,LL+k]
kB(k)z kZB(

Each term on the right-hand side may be interpolated p-adically provided hup + kj # 0

( mod p).
DEFINITION: Let h, k be integers such that k > 0 and p ¥ hk. Then

Sp(s3h, k) = ZB() Pi 0™ (hp + kj)

j=0
pthp+kj

< (hu+ ki) 4 >’/<1+(h—u’f2—j)—k) dB(z)

for all s € Z,.

PROPOSITION 3. For any integers m, h and k such that m > 0, k > 0 and

pthk.
p—1 .
. 1 1 —-—m—1 . AT h[l, + IC]
Sp(m h, k) ZBl(z)p Y T kel Bm( ),
pthutkj

Moreover, if m +1 =0 (modp—-1),
Sp(m;h,k) = k™ sm(h, k) — p™ k™ s ((p71R) ,, k)
where (p_]h)k denotes the integer = € {0,k) such that pz = h ( mod k).

ProOOF: The first formula follows just as in the proof of Proposition 2. If m+1 =0
(mod p — 1), then

=0 7=0
k—1 p—1
—ZE(%)% . (kp)mBm(ku-i’;kJ>
= pl’i,::kj
Zk_lgl(g)kmBm(@)_SE(g) m—1m ((P*‘ )w)
Y E) 7=k %
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since hu + kj = 0 (mod p) and hu + kj = hp (mod k) implies that hp + kj =
p(p“‘h)kp (mod pk). Thus the Proposition. (]

We now review the reciprocity law for higher order Dedekind sums and then see
how to interpolate it. Recall that for all integers m, h and k such that m >0, h >0,
k>0 and (h,k) =1

1 m
hk™ s m(h, k) + kh™ s (k, h) = #Bm“ + ——(hB + kB) +1

where (AB + kB)™*! is written symbolically.
We would like to determine explicitly hS,(s;h,k) + kSy(s;k,h) when p { hk. To
this end we have the following Proposition.

PROPOSITION 4. Let m, h and k be positive integers such that (h,k) =1, p 4 hk
and m+1=0 (modp—1). Then

m 1 m+1
h sh,k kS ik = 1-p™)B,, + ——(kB — hB
Sp(mvhak)+ p(mv 7h) +1( p )B +m+1( B )
1 -1 m+1 hk
- m= ks - h
mi? (ks —hs) <p
where (ks — hs)m+l(hpk) = E;"_‘Zl (mjl)(—h)m"'l_]kjsj,mﬁ_j (';)k) with sm,,,(';,k)

1= —
=Y 0Bm (hpA)Bn(k)‘) see [2].
PROOF: By Proposition 3, we have for m +1=0 (mod p — 1)

hSp(mh, k) + kSp(m; ky h) = Rk™ s (hy k) + kh™ spm(k, R)
=P (kT sm ((P77R), ) + KR 0m ((p77K) 50 2))-

The sum of the first two terms on the right-hand side is given by the reciprocity law
above.

We now consider the remaining terms. Notice that

am((271) . 8) ZBI( )B ((”—ﬁiﬁ)
-3 ()Ba () - ()

Similarly, sm((p~'k),,h) = s1,m (®¥) . But by [2] (5.8) we have the following reciprocity
law:

h k '
hE™sy m (Pk ) +kh™s1,m (ph) = m7t|l. pBmy1— hk™B,, + —— — (ks _ )m+] (hpk) -
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Putting the two terms together we obtain

hSy(m;h, k) + kSp(m;k,h) =

m m
1(1 —-P )Bm+1

+ __I_(kB +hB)™! L_l(ks — hs)™H! hk +p™ 'hk™B
m+1 m 1 p P ™

This yields the proposition since (kB + hB)"H'1 = (kB - hB)m'H —hk™B,, and m is
odd since m+1 =0 (modp— 1). ]

We are now in a position to state and prove our main theorem.

THEOREM. Let h, k be positive integers such that (h,k) =1 and p t hk. For
any s € £,, let

p-1 s41
I(s) = % Y <p>t / (1 + I;—z) dp(z),

1 &3 . N
Ky(s) = p E < k(hj), — h(ki), > +
i\j=0
i#j

s+1 )
// (1+ h]kz‘zai) ) dB(2)dp(w).

Then

1
hS,(s; h,k) + kSp(s;k,h) = ST I(s)+ ppre le(s).

PRrOOF: We show that for m+1 =0 ( mod p — 1), the theorem reduces to Propo-
sition 4. Thus by continuity and the fact that {m e N|m+1=0 ( mod p—1)} is
dense in Z,, the theorem will follow.

Thus assume m is a positive integer such that m+1=0 ( mod p —1).

Then

p=1

1232 pz\"H! 1232 — 7
by = 3w [ (142) 7 )= L X0 B (4)
p=1

p-1
m n u m
=p E :Bm+1(;) =P " Bmt1=(1 - p")Bmt1.
u=0
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On the other hand,

Kom) = 2 5 (k) - ak9),) R " doapte)
P 7 k(h]) T h(k), ?

_ 1 Z // (hi), — h(ki), + plkz — b)) dB(z)dB(w)

:—z"’z“(’““)

i#£y =0

x / ki), +p)) " (=hiCk), + pu]) dB()dB(w)
(vt o))

i#]
( D n-tony
(B () ()

1,7=0 =0

m-+1
hk
=Y ("" 7 1)km+1~’(_h)’3m+1_,3, —p™ ks — hs)"'+‘< )

=0 p

I
M-’E

Therefore hSp(m;h,k) + kSp(mik,h) = 3571 (m) + ﬁKP(m). This in turn estab-
lishes the theorem. [ ]

In particular the theorem is true for any integer m. We obtain the following

Corollary to the Theorem.

COROLLARY. Let m be any nonnegative integer such that m+1 #£ 0 (mod p—1)
and let h, k be positive integers such that (h,k) =1 and p { hk, then

k-1 .
hk™ Y By (£)pm- ]Zw =1 (hy + kj) B (h“p:_k’>

u=0

mh_l“ AN = —m— = [kv+hi

i=0

m

= m—-l_le+l'w—m—1

+ :Lm:l“"""’(h’“) Z;, w1 i)(kﬁ(%) - hﬁ(’%’»"’“

i,j=0
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where B, ,-m-1 is the (m + 1) st generalised Bernoulli number associated with the

character w=™"1 that is, B, is defined by

g 2 S e
m,x m! - efz _ 1
m=0 a=0

where f is a modulus of x. The expression

2)-m(3) =S (e e (F)(5)

kB —hB| — = k™ —h) By B

( ( P P g ! (R Brmat{ 57 )P 5

PROOF: Let s = m be as in the statement of the Corollary. Then by Proposition 3,
hSy(m;h, k) + kSy(m;k,h)

k-1 i , |
= wm 3B () 2T e+ k) B (*52)

pn=0

kv +hi)

h-1
+ k™ Y By (5 )P lzw ™ (kv + hi)Brm (
v=0

Moreover,

g T w)p™ B +1(::)

= pm Z w_m_](/j‘)ﬁm*f-l ('E) = Bm+l,«.v—”"1 .
u=1 p

The last equality follows from the definitions of B,,,; ,-m-1 and Bmyi(z) in terms’
of their generating functions.
By an argument similar to the one in the proof of the theorem we obtain

Kp(m) = Pz—‘j w1 (k(hj)p - h(ki)p)

i,j=0

m+1 . .
m+1\ m— hi\~ (ki
<3 (M)t B (3)3(5)

=0

= p™ 1w ™" (hk) Z w (G — q(w(h )-h‘(%))mH.

i,7=0
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The corollary now follows easily. ']

The corollary to the theorem suggests a definition of Dedekind sums attached to
characters somewhat different (although equivalent) to that of Nagasaka [3].

DEFINITION: Let x be a numerical character on Z of modulus dividing f. For

any integer m > 0, define

= a+z
Fm,x(“’) = fm-l ZX(G+$)§n1< 7 )

a=0

for any rational number z with denominator relatively prime to f.

(Notice x extends without ambiguity to such = by multiplicativity).

DEFINITION: Let x be a numerical character of modulus f,let h, k£ be integers
such that k& > 0 and (k,f) = 1. Then for any integer m > 0, define

k—1
X (ko k) = B‘,,(%)Fm,x@kﬁ).

It is easy to see that sX _(h,k) is independent of the choice of representatives of

#{mod k). Then the corollary is equivalent to the following result for x = w—™"1,

Let x be a primitive character of conductor f. Let m be any integer with m > 0
and h and k positive integers such that (h,k) =1 and (hk, f) = 1. Then

hk™x (k)83 (b, k) + KR x(R)s3 . (K, )

1,m

m fm‘l f-1 ] ] [ —(j m+1
= Bt i Y x(hz-}-k])(hB(?) +k3(?)> .

i, =0

We shall not prove this statement since an equivalent form may be found in [3].
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