TEM and Magnetic Studies of Metallic Nanoparticles in Ni-ion-implanted Rutile

X.T. Zu,^{*} S. Zhu,^{**} X. Xiang,^{*} L.M. Wang^{**}

^{*} Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu, 610054, P.R. China

^{**} Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109-2104, U.S.A.

Ion implantation is one of the most powerful techniques to fabricate metal nanoparticles in the near surface of insulating substrates. Titanium dioxide (TiO₂) has attracted much attention because it is one of the wide band gap insulators and one of the most promising photocatalysts with high activity. Surface modification of TiO₂ by Cu or Ag negative ion implantation can improve photocatalytic efficiencies by approximately 1.8 times [1]. Cr ion implantation has enhanced electrical conductivity of TiO₂ single crystals [2]. Room temperature ferromagnetic properties of Co-doped TiO₂ have been reported. [3]. Nano-sized Au particles in TiO₂ have been synthesized by ion implantation for unusual nonlinear optical properties enhanced by surface plasmon resonance [4]. In our study, the magnetic nanoparticles of Ni embedded in TiO₂ single crystals have been synthesized by ion implantation, which may provide potential application of the nanocomposite as magneto-optical materials for high density magnetic data storage device.

Nanoparticles of Ni in the near surface region of TiO₂ single crystals have been synthesized by ion beam implantation. The Ni ion implantation was conducted at the room temperature to a fluence of 1×10^{17} /cm². Transmission electron microscopy and a MPMS superconducting quantum interference device (SQUID) magnetometer have been utilized to characterize the nanostructure of Ni particles in TiO₂, and the change of optical and magnetic properties. Nanopartilce of Ni with size ranging 3 - 18 nm was observed in the surface of TiO₂ and these nanoparticles have a specific orientation relationship with the matrix: Ni [011]_{Ni} // [010]_{TiO2}. Magnetic measurement indicated that the coercive force of Ni nanoparticles was about 210 Oe at 10 K. The blocking temperature based on ZFC/FC curves was about 85 K.

Reference

[1] H. Tsuji et al., Surface Coating and Technology 158-159 (2002) 208.

[2] R.C. da Silva et al., Nucl. Instr. and Meth. B 191 (2002) 158.

[3] V. Shuttanandan et al., Applied Physics Letter 84 (2004) 4466.

[4] H.B. Liao et al., Applied Physics Letter 72 (1998) 1817.

[5] This work was supported financially by the NSAF Joint Foundation of China (10376006) and

by Program for New Century Excellent Talents in University.

Fig. 1. A Z-contrast STEM image indicating the Ni nanoparticles in a TiO_2 crystal after ion implantation (a); A high resolution TEM micrographs showing crystalline characteristics of Ni nanoparticles in amorphous TiO_2 host which result from the implantation damage (b).

Fig. 2. Magnetic hysteresis loops of Ni nanoparticles in TiO_2 single crystals at 10 K and 300 K indicating the coercive force of Ni nanoparticles was about 210 Oe at 10 K.

Fig. 3. Temperature dependence of the magnetization showing the $T_b = 85$ K. Curves were taken in the ZFC and FC processes at H = 100 Oe.