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Classical Register Mechanics

6.1 Introduction

Classical mechanics (CM) is conventionally formulated according to partially

contextually complete Block Universe principles: an exophysical observer sitting

in some frame of reference looks in on a system under observation (SUO) and

assigns truth values to propositions about states of that SUO, but the details of

how these truth values are obtained are not given.

There is a curious aspect to this scenario: the contextual incompleteness of CM

is itself contextual. By this we mean that there are two scenarios, with different

general propositional classifications (GPCs).

The Experimentalist’s Perspective

From a classical experimentalist’s perspective, generalized propositions (GPs) in

CM take the form

P(P , ∅|∅, F ). (6.1)

Here P is some proposition of scientific interest, such as “The orbit of Jupiter

is an ellipse,” and F is relative external context describing the frame of reference

used to describe states of the SUO relative to the wider Universe external to that

SUO. This form of GP has a GPC of 2 according to the algorithm discussed in

Chapter 2.

Remark 6.1 Suppose an astronomer used a telescope T to test proposition

P . That would not upgrade the GP to one of the form P(P , T |∅, F ) with

a GPC of 3. The reason is that the use of a telescope is not essential in

this context. Historically, Kepler did not use a telescope to state his laws

of planetary motion: he used the data obtained by Tycho using naked eye

observations. On the other hand, the observation of the Hubble red shift using

telescopes fitted with spectrum analyzers would qualify for such an upgrade.
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76 Classical Register Mechanics

The Theorist’s Perspective

Newtonian mechanics applied to the description of classical dynamically evolving

SUOs has the strength of mathematics: the classical laws of motion can be consid-

ered as a set of mathematical principles, axioms, and theorems, relative to which

propositions about classical states of SUOs can be tested. From this perspective,

the contextual information F about frames of reference becomes part of the

mathematical framework, and therefore should be included in relative internal

context . In this scenario, GPs take the form P(P ,Laws of motion, F |∅, ∅), with
a GPC of 1, as befitting mathematical propositions.1

6.2 Classical Registers

We shall focus our attention on the second scenario discussed above, that of the

theorist’s perspective. Therefore, we shall not discuss apparatus or the observer.

Instead, we focus our attention on the mathematical structures that we employ

to model particles moving about in continuous space and time.

The first thing is to construct a model for classical space, objectifying it as a

vast collection of containers into which, and out of which, particles can move.

Now conventionally and until relatively recently, space has always been consid-

ered to be continuous. But that is an empirically vacuous assertion. Therefore,

we take the liberty of modeling space in discrete and finite terms. This leads us

to define a classical register R[r] of rank r, the Cartesian product of r classical

bits. We write

R[r] ≡ B1B2 . . . Br, (6.2)

where theBi, i = 1, 2, . . . , r, are the individual labeled bits and we use bit labeling

to bypass the need for the Cartesian product symbol ×. We will consider classical

registers of sufficiently large rank so that they can model regions of classical

physical space over which particles can move. In this approach, particle motion

is discussed in terms of the tracking of signals from a vast collection of detectors

over time. A particularly useful feature of this approach is that signality need

not be conserved, which means that classical particle creation and annihilation

is readily incorporated into the formalism.

6.3 Architecture

In any such discussion it is important to establish the relevant spatiotempo-

ral architecture. There are two aspects of architecture relevant to the present

discussion. One has to do with the unspecified exophysical observer and their

1 It seems invalid to argue that in Newtonian mechanics, we have the laws of motion for
relative internal context and the observer’s frame for relative external context, so that
would appear to give a GPC of 3. That would be mixing theory and experiment to an
unacceptable degree. We have made the point before that mathematics is not physics.
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apparatus, and the other is to do with the dynamics of the system under obser-

vation. We shall refer to these aspects as the external and internal architectures,

respectively.

External architecture involves time and persistence.

Time

In classical register mechanics, time is modeled as a succession of discrete stages,

ΣM , ΣM+1, . . . ,ΣN , representing the actions or lack of actions by an observer

in a physical laboratory. At stage Σn, the state of the SUO will be denoted Ψn,

an element of a classical register Rn of rank rn.

Persistence

This refers to the question of identity of a given detector over a succession of

stages. In quantized detector networks (QDN), each detector is identified with

a single stage only. Therefore, there is no concept of “existential persistence” in

QDN. This applies as much to the observer and their apparatus as it does to the

SUOs that they observe. The first law of time (the dictum of Heraclitus), that

everything changes, applies here.

That does not rule out effective persistence, meaning that as the observer’s

time runs from stage to stage, their description of the apparatus seems to be

constant, in terms of the rank of the registers concerned and in terms of the

labeling of the detectors in those registers.

Effective persistence is the rule in ordinary experience, to the extent that

humans are strongly conditioned to believe that they are moving around in

time over a fixed spatial background. This belief carries over into conventional

descriptions of experiments, in which apparatus is assumed to persist while states

of SUOs evolve. What is really going on is that the first law of time always

applies, but the time scales for significant change in apparatus are generally so

great relative to those associated with the SUOs that the former time scales may

be taken to be infinite compared with the latter. This is a common assumption

made in high-energy particle physics scattering experiments, for instance.

Internal architecture depends on the assumed laws of mechanics, there being

three distinct types.

Time-Dependent Laws of Motion

The laws of mechanics for a given SUO could be contextual, changing in some

way from stage to stage, or they could be constant. An example of the former

scenario is demonstrated by phase diagrams in chemistry. These show under

which conditions of pressure and temperature a collection of molecules behaves

as a gas, a liquid, or a solid. Such behavior is a manifestation of emergent

processes driven by reductionist laws of physics, and the challenge is to explain

the emergent behavior in each phase using those reductionist laws.
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Autonomy or Not

An SUO could be autonomous, meaning that it has been effectively isolated

from its environment. Alternatively, the exophysical observer could arrange for

external agencies, such as electric and magnetic forces, to influence the dynamics

of an SUO.

Signality Conservation

Signality is taken in this chapter as a marker of particle number: a signality-

p state of a classical register at a given stage will be interpreted as a state

with p particles. Newtonian mechanics does not readily countenance changes of

particle number. If that has to be considered, then that can be readily modeled

by signality nonconserving register dynamics. The reason for this is that register

mechanics is more like a field theory than a particle theory.

For the rest of this chapter we shall restrict our attention to autonomous SUOs

moving over a succession of classical registers, each of which has the same rank r,

with stage-independent laws of dynamics, as these are generally of most interest.

In principle, there would be no problem in dealing with other forms of dynamics,

including those where the rank of the physical register changes with time. Indeed,

that is a common scenario in the quantum register dynamics we shall discuss in

the next chapter.

We could also deal with classical stochastic mechanics, which would incorpo-

rate Bayesian principles in a natural way, but for the rest of the chapter we shall

deal with deterministic laws of mechanics. In the following, the set of integers

{0, 1, 2, 4, . . . , 2r − 1} is denoted Z [r].

We shall use the computational basis representation (CBR) Bn ≡ {kn : k ∈
Z [r]} to represent the 2r labstates in a rank r classical register Rn at stage Σn.

Consider the temporal evolution of a system from labstate Ψn in register Rn at

stage Σn to labstate Ψn+1 in register Rn+1at stage Σn+1. The dynamical rules

will be encoded into the expression

Ψn → Ψn+1 ≡ Cn+1,nΨn, (6.3)

where Cn+1,n is a classical register operator. Such an operator maps any one of

the 2r labstates in Bn into precisely one of the 2r labstates in Bn+1.

The reason for this constraint on any classical register operator comes from

the basic principles of CM: states in CM are well-defined, single-valued elements

of phase space at any given time. This translates in the present context to the

requirement that at any stage Σn, the classical state of an SUO is precisely

one of the 2r possible states of the register Rn. In consequence, any admissible

classical register operator acts on single elements ofRn and maps them into single

elements of Rn+1. Note that this does not rule out nonsurjective or noninjective

operators; that is, there may be elements in Bn+1 that are not mapped into

(nonsurjective), and it could be the case that more than one element in Bn may

be mapped into the same element in Bn+1 (noninjective).
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Taking any initial state, there are 2r possible final states. Since there is a total

of 2r possible initial states, we immediately deduce that there is a total of (2r)
2r

different possible classical register operators mapping from Rn into Rn+1.

Even for low-rank registers, the number of possible operators can be impres-

sive. For a rank-one system, we deduce that there should be 22 = 4 different

possible such operators. Indeed, that is exactly what we saw in Chapter 3, where

we identified the four classical bit operators I,F ,U , and D. The number of

possibilities grows rapidly with r. For example, there are 256 different operators

that can map a rank-two register into another rank-two register, and a total of

88 = 16,777,216 different operators mapping a rank-three register into another

rank-three register.

Given a potentially vast number of possible evolution operators, some criteria

need to be imposed in order to reduce the discussion to manageable and realistic

proportions. What comes to our assistance here is that most of the possible

evolution operators over a classical register will not be useful. Many of them

will correspond to irreversible and/or unphysical dynamical evolution and only

a small subset will be of interest. We need to find some principles to guide us in

our choice of evolution operator.

We turn to standard classical mechanics as discussed in Hamiltonian mechan-

ics. The first thing to note is that classical phase spaces are generally constant

in time. This corresponds to taking the rank of successive classical registers to

be constant, i.e., rn = rn+1 ≡ r for some integer r and for all n in the temporal

interval under discussion. We shall make this assumption from this point on.

Next, we recall that in standard CM of the Hamiltonian variety, Hamilton’s

equations of motion lead to Liouville’s theorem. This tells us that as we track a

small volume element along a classical trajectory,2 this volume remains constant

in magnitude though not necessarily constant in shape or orientation. This leads

to the idea that a system of many noninteracting particles moving along classical

trajectories in phase space behaves as an incompressible fluid, such a phenomenon

being referred to as a Hamiltonian flow.

An important characteristic of Hamiltonian flows is that flow lines never cross.

We shall encode this idea into our development of classical register mechanics.

There are two versions of this mechanics, one of which does not necessarily

conserve signality while the other does. We consider the first one now.

6.4 Permutation Flows

A classical rank-r register Rn contains 2r labstates denoted by kn, k ∈ Z [r],

in the CBR. Consider a permutation Pn of the integers k, such that under Pn,

kn → kn+1 ≡ Pn(kn) ∈ Z [r]. Define the evolution of the labstate kn over one

2 A classical trajectory is a phase space trajectory that satisfies Hamilton’s equations of
motion.
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stage by kn → kn+1 ≡ Pn(kn). Such a process is reversible and will be referred

to as a permutation flow .

Example 6.2 Mathematicians often represent a permutation of, say, five

objects in the form (135)(24), which means the permutation 1 → 3 → 5 →
1, 2 → 4 → 2, and so on, where the notation a → b → c means that original

element a is replaced by, or goes to, element b, original element b is replaced

by element c, and so on. A group of elements within a given pair of brackets

is called a cycle.

Consider a rank-three classical register R[3]. This has a total of eight states

{k : k = 0, 1, 2, . . . , 7}. Under the permutation (0346)(1)(25)(7), the evolution

is given by

0 → 3 → 4 → 6 → 0,1 → 1,2 → 5 → 2,7 → 7. (6.4)

This permutation flow does not conserve signality. The simplest proof of this

is to note that the signality zero state 0 evolves into a state with nonzero

signality.

There is a total of n! distinct permutations of n objects, so there are (2r)! pos-

sible distinct permutation flow processes. For large r, the number of permutation

flows is a rapidly decreasing fraction of the number (2r)2
r

of all possible forms

of rank-preserving classical register processes.

Permutation flows are restricted to constant rank registers, and even then, are

of debatable value in the following sense. Given two successive classical registers

Rn and Rn+1 of the same rank, the relationship between the labeling of states

in the two registers is contextual. By this we mean that the identification of

element 1n with element 1n+1, 2n with 2n+1, and so on, is up to the observer.

This is analogous to the parallel transport problem in general relativity, where

contextual information relating initial and final tangent spaces along a path is

required before a notion of parallelism can be established.

Example 6.3 Consider a permutation written as a transformation from R0

to R1 in the form

i0 → p(i)1 : i = 0, 1, 2, . . . , 2r − 1. (6.5)

Now suppose that we passively relabel the 2r states in R1 by the rule

p(i)1 → i1. Then the permutation reduces to the “identity” transformation

i0 → i1, i = 0, 1, 2, . . . , 2r − 1. (6.6)

This relabeling seems to have eliminated the significance of permutation

dynamics.

This apparent paradox is resolved by context : if we had no knowledge of the

original permutation (6.5) or of the physical meaning of the original states and
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the final states, then (6.6) would indeed be trivial. If we had such contextual

information, however, then the relabeling p(i)1 → i1 would have no physical

significance, and the real dynamics would be understood by the observer.

Permutation flows have the following features with analogues in CM.

Reversibility

Permutations form a group, which means that given a permutation P , then its

inverse P−1 always exists. Hence permutation flows are reversible.

Orbits

Any SUO evolving under stage-independent permutation dynamics will demon-

strate patterns known as orbits or cycles . Given a permutation of 2r objects,

there will exist subsets known as cycles of the objects being permuted such that

only elements within a given cycle replace each other under the permutation. This

is relevant here because we have chosen to discuss time-independent autonomous

systems, the evolution of which is given by repeated applications of the same

permutation. Therefore, the structure of the cycles does not change and so each

cycle is stable, consisting of the same p elements with a dynamical period p. For

example, the identity permutation gives a trivial form of mechanics where nothing

changes. It has 2r cycles each of period 1. At the other end of the spectrum, the

permutation denoted by (0 → 1 → 2 → · · · → 2r − 1 → 0) has no cycles except

itself and has period 2r.

Any physical register evolving under time-independent, autonomous permu-

tation mechanics must return to its initial labstate no later than after 2r time

steps. This is the analogue of the Poincaré recurrence theorem (Poincaré, 1890).

6.5 Signality-Conserving Flows

Most permutation flows will not conserve signality, as Example 6.2 shows. Sup-

pose now we have decided to identify signality with particle number. Then expe-

rience with Hamiltonian mechanics, where particle conservation is the general

rule, leads us to investigate signality-conserving flows.

We can readily identify the subset of the permutation flows that conserve

signality by using the signality classes discussed in the previous chapter. Suppose

Un+1,n is an evolution operator with the following characteristics:

1. Un+1,n0n = 0n+1: such an evolution is called calibrated .

2. Un+1,n permutes signality-1 states, that is, Un+1,nÂ
i
n0n = ÂiP

n+10n+1, for

i = 1, 2, . . . , r and with iP the number into which i is transformed under the

permutation.

3. Likewise for each signality class, until finally, we have for the fully saturated

signal state Un+1,n2
r − 1n = 2r − 1n+1.

Then clearly, signality is conserved under such a dynamical scheme.
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The total number of distinct permutations of r objects is r!, so there are

that many distinct forms of signal permutation dynamics for a rank-r classical

register. Since there are (2r)! distinct forms of permutation dynamics, the set of

signal permutation dynamics forms a rapidly decreasing fraction of the set of all

possible permutation dynamics.

6.6 Evolution and Measurement

Any experiment consists of several distinct phases. An important phase is the

process of measurement itself, which ends with the extraction of classical informa-

tion from an SUO. Typically this information will be in the form of real numbers,

and these can always be expressed in binary form, justifying our approach.

Context plays a vital role here. When, for example, an observer reports that a

particle has been observed at position x = 1.5, what they mean is that positive

signals have been detected at some normal detector or detectors associated with

the number x = 1.5. This assignment is based on the context of the experiment:

the observer will know on the basis of prior theoretical and empirical knowledge,

gained during the process of calibration (preparation of apparatus) what those

detectors mean in terms of the physics of the SUO concerned, and therefore,

what values of some measurable quantity those signals represent.

There is room here for error, in that the observer could associate the wrong

context to the signals being observed. Such a process occurred in the Mars

Climate Orbiter disaster in 1999, when there was a “failure to use metric units in

the coding of a ground software file” (Mars Climate Orbiter Mishap Investigation

Board, 1999). In the following, we assume all contexts have been interpreted

correctly by the observer.

So far we have discussed the evolution of labstates. For each run or repetition

of the experiment, this is modeled by the action of an evolution operator UN,0

mapping initial labstates at stage Σ0 into final labstates at stage ΣN . We need

now to discuss how numbers are extracted at the end of an experiment consisting

of a number of runs.

With reference to the position measurement discussed above, we model the

measurement process in terms of weighted relevant questions. What this means

is this. Suppose the final physical register RN has rank rN . Assuming the exper-

imentalist has established that each detector is working normally, then there will

be a total of 2rN possible normal labstates in this register. Therefore, the observer

could ask a total of 2rN maximal questions. These questions are represented by

the dual labstates
{
k : k = 0, 1, . . . , 2rN − 1

}
. Given a final labstate ΨN , the

answer yes or no to each question kN ≡ is it true that ΨN = k? is repre-

sented by the number one or zero, respectively, and given by the answer kNΨN .

Now the observer will generally have some theory as to what each answer

kNΨN means physically. In many experiments, this will be some real number

Xk. Therefore, the actual number 〈X〉ΨN
obtained at time tN at end of a single

run of the experiment can be written in the form

〈X〉ΨN
= ΨNXNΨN , (6.7)
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where XN ≡
∑2rN −1

k=0 kNXkkN is an classical observable, a sum of dyadics

representing a weighted relevant question.

Two comments are relevant. First, despite appearances, this is still a classical

theory at this point. The final labstateΨN is a single element in the final physical

register,RN , not a superposition of elements. Second, there is nothing in classical

mechanics that rules out weighted sums of dyadics. For any element in RN , all

the possible answers kNΨN are zero except for one of them, so (6.7) returns a

physically sensible value for 〈X〉ΨN
.

A further refinement, anticipating the possibility of random variations in the

initial state and the extension of these ideas to quantum mechanics, is to write

〈X〉ΨN
= Tr{XN�N}, (6.8)

where Tr represents the familiar trace process and �N is the dyadic ΨNΨN

analogous to a pure state density operator in quantum mechanics.

We note that ΨN = UN,0Ψ0 and ΨN = ΨN UN,0, where the evolution

operator UN,0 maps elements of R0 into elements of RN and similarly for the

dual evolution operator UN,0. In general, it will be true that

UN,0UN,0 = I0, (6.9)

the identity operator for R0. However, because there is no requirement formally

in this approach for the rank rN of the final physical register RN to equal the

rank r0 of the initial physical register R0, it is possible that UN,0UN,0 does not

equal IN . This corresponds to irreversible dynamics. In the analogous quantum

formalism that we will discuss in the next chapter, such evolution operators are

referred to as semi-unitary, and UN,0 is the retraction of UN,0.

Using (6.9) in (6.8), we may write 〈X〉ΨN
= Tr{XNUN,0�0UN,0}, where �0 is

the initial dyadic Ψ0Ψ0.

6.7 Random Initial States

Real experiments normally consist of a large number of repetitions or runs of a

basic process. However, it cannot always be guaranteed that the initial labstate is

always the same. In principle, we could start with any one of 2r0 initial labstates.

In such a case, a statistical approach can be taken.

Consider an extremely large number R of runs, such that there is a total

of Rk runs starting with initial labstate k0, for k = 0, 1, . . . , 2r0 − 1. Clearly,∑2r0−1
k=0 Rk = R. Then in the limit of R tending to infinity, we would assign a

probability ωk ≡ limR→∞ Rk/R for the initial labstate to be in state k0.

In such a scenario we define the initial density matrix

�0 ≡
2r0−1∑
k=0

ωkk0k0, (6.10)

where k0 is any one of the 2r0 elements of the initial physical register R0 and

the ωk are probabilities summing to unity. The formalism outlined above then

gives the expectation values of operators.
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